1ckc Citations

Contribution of intra- and intermolecular hydrogen bonds to the conformational stability of human lysozyme(,).

Biochemistry 38 12698-708 (1999)
Related entries: 1cj6, 1cj7, 1cj8, 1cj9, 1ckd, 1ckf, 1ckg, 1ckh

Cited: 37 times
EuropePMC logo PMID: 10504240

Abstract

In globular proteins, there are intermolecular hydrogen bonds between protein and water molecules, and between water molecules, which are bound with the proteins, in addition to intramolecular hydrogen bonds. To estimate the contribution of these hydrogen bonds to the conformational stability of a protein, the thermodynamic parameters for denaturation and the crystal structures of five Thr to Val and five Thr to Ala mutant human lysozymes were determined. The denaturation Gibbs energy (DeltaG) of Thr to Val and Thr to Ala mutant proteins was changed from 4.0 to -5.6 kJ/mol and from 1.6 to -6.3 kJ/mol, respectively, compared with that of the wild-type protein. The contribution of hydrogen bonds to the stability (DeltaDeltaG(HB)) of the Thr and other mutant human lysozymes previously reported was extracted from the observed stability changes (DeltaDeltaG) with correction for changes in hydrophobicity and side chain conformational entropy between the wild-type and mutant structures. The estimation of the DeltaDeltaG(HB) values of all mutant proteins after removal of hydrogen bonds, including protein-water hydrogen bonds, indicates a favorable contribution of the intra- and intermolecular hydrogen bonds to the protein stability. The net contribution of an intramolecular hydrogen bond (DeltaG(HB[pp])), an intermolecular one between protein and ordered water molecules (DeltaG(HB[pw])), and an intermolecular one between ordered water molecules (DeltaG(HB[ww])) could be estimated to be 8. 5, 5.2, and 5.0 kJ/mol, respectively, for a 3 A long hydrogen bond. This result shows the different contributions to protein stability of intra- and intermolecular hydrogen bonds. The entropic cost due to the introduction of a water molecule (DeltaG(H)()2(O)) could be also estimated to be about 8 kJ/mol.

Reviews citing this publication (2)

  1. Do all backbone polar groups in proteins form hydrogen bonds? Fleming PJ, Rose GD. Protein Sci 14 1911-1917 (2005)
  2. Membrane protein folding: how important are hydrogen bonds? Bowie JU. Curr Opin Struct Biol 21 42-49 (2011)

Articles citing this publication (35)

  1. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. Guerois R, Nielsen JE, Serrano L. J Mol Biol 320 369-387 (2002)
  2. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. Protein Sci 15 949-960 (2006)
  3. Heat capacity changes upon burial of polar and nonpolar groups in proteins. Loladze VV, Ermolenko DN, Makhatadze GI. Protein Sci 10 1343-1352 (2001)
  4. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM. J Mol Biol 381 324-340 (2008)
  5. Buried water molecules contribute to the conformational stability of a protein. Takano K, Yamagata Y, Yutani K. Protein Eng 16 5-9 (2003)
  6. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole. Higo J, Nakasako M. J Comput Chem 23 1323-1336 (2002)
  7. Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins? Funahashi J, Takano K, Yutani K. Protein Eng 14 127-134 (2001)
  8. 3-(5-Chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Brough PA, Barril X, Beswick M, Dymock BW, Drysdale MJ, Wright L, Grant K, Massey A, Surgenor A, Workman P. Bioorg Med Chem Lett 15 5197-5201 (2005)
  9. Thermodynamic consequences of disrupting a water-mediated hydrogen bond network in a protein:pheromone complex. Sharrow SD, Edmonds KA, Goodman MA, Novotny MV, Stone MJ. Protein Sci 14 249-256 (2005)
  10. Thermodynamics of trimer-of-hairpins formation by the SIV gp41 envelope protein. Jelesarov I, Lu M. J Mol Biol 307 637-656 (2001)
  11. Impact of the native-state stability of human lysozyme variants on protein secretion by Pichia pastoris. Kumita JR, Johnson RJ, Alcocer MJ, Dumoulin M, Holmqvist F, McCammon MG, Robinson CV, Archer DB, Dobson CM. FEBS J 273 711-720 (2006)
  12. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. Nakamura T, Meshitsuka S, Kitagawa S, Abe N, Yamada J, Ishino T, Nakano H, Tsuzuki T, Doi T, Kobayashi Y, Fujii S, Sekiguchi M, Yamagata Y. J Biol Chem 285 444-452 (2010)
  13. Effect of foreign N-terminal residues on the conformational stability of human lysozyme. Takano K, Tsuchimori K, Yamagata Y, Yutani K. Eur J Biochem 266 675-682 (1999)
  14. Effect of extra N-terminal residues on the stability and folding of human lysozyme expressed in Pichia pastoris. Goda S, Takano K, Yamagata Y, Katakura Y, Yutani K. Protein Eng 13 299-307 (2000)
  15. Interatomic potentials and solvation parameters from protein engineering data for buried residues. Lomize AL, Reibarkh MY, Pogozheva ID. Protein Sci 11 1984-2000 (2002)
  16. Amino acid sequence autocorrelation vectors and Bayesian-regularized genetic neural networks for modeling protein conformational stability: gene V protein mutants. Fernández L, Caballero J, Abreu JI, Fernández M. Proteins 67 834-852 (2007)
  17. Backbone Hydrogen Bond Strengths Can Vary Widely in Transmembrane Helices. Cao Z, Hutchison JM, Sanders CR, Bowie JU. J Am Chem Soc 139 10742-10749 (2017)
  18. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). Ranok A, Wongsantichon J, Robinson RC, Suginta W. J Biol Chem 290 2617-2629 (2015)
  19. The stability and folding process of amyloidogenic mutant human lysozymes. Takano K, Funahashi J, Yutani K. Eur J Biochem 268 155-159 (2001)
  20. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes. Saraboji K, Gromiha MM, Ponnuswamy MN. Comput Biol Chem 29 25-35 (2005)
  21. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins. Cao Z, Bowie JU. Protein Sci 23 566-575 (2014)
  22. Role of non-glycine residues in left-handed helical conformation for the conformational stability of human lysozyme. Takano K, Yamagata Y, Yutani K. Proteins 44 233-243 (2001)
  23. Peptide Solubility Limits: Backbone and Side-Chain Interactions. Sarma R, Wong KY, Lynch GC, Pettitt BM. J Phys Chem B 122 3528-3539 (2018)
  24. The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors. Hioki Y, Ogasahara K, Lee SJ, Ma J, Ishida M, Yamagata Y, Matsuura Y, Ota M, Ikeguchi M, Kuramitsu S, Yutani K. Eur J Biochem 271 2624-2635 (2004)
  25. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K. Sang P, Yang Q, Du X, Yang N, Yang LQ, Ji XL, Fu YX, Meng ZH, Liu SQ. Int J Mol Sci 17 254 (2016)
  26. Differential strengths of positive selection revealed by hitchhiking effects at small physical scales in Drosophila melanogaster. Lee YC, Langley CH, Begun DJ. Mol Biol Evol 31 804-816 (2014)
  27. Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein. Takano K, Yamagata Y, Yutani K. Proteins 45 274-280 (2001)
  28. Underexposed polar residues and protein stabilization. Ayuso-Tejedor S, Abián O, Sancho J. Protein Eng Des Sel 24 171-177 (2011)
  29. Understanding the molecular dynamics of type-2 diabetes drug target DPP-4 and its interaction with Sitagliptin and inhibitor Diprotin-A. Chakraborty C, Hsu MJ, Agoramoorthy G. Cell Biochem Biophys 70 907-922 (2014)
  30. Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state. Yamamoto H, Miwa H, Kunishima N. J Mol Biol 382 747-762 (2008)
  31. Titania Nanosheet Generates Peroxynitrite-Dependent S-Nitrosylation and Enhances p53 Function in Lung Cancer Cells. Soonnarong R, Tungsukruthai S, Nutho B, Rungrotmongkol T, Vinayanuwattikun C, Maluangnont T, Chanvorachote P. Pharmaceutics 13 1233 (2021)
  32. A systematic method for analysing the protein hydration structure of T4 lysozyme. Kysilka J, Vondrášek J. J Mol Recognit 26 479-487 (2013)
  33. Engineering enhanced thermostability into the Geobacillus pallidus nitrile hydratase. Van Wyk JC, Sewell BT, Danson MJ, Tsekoa TL, Sayed MF, Cowan DA. Curr Res Struct Biol 4 256-270 (2022)
  34. Expression, crosslinking, and developing modulus master curves of recombinant resilin. Khandaker MSK, Dudek DM, Beers EP, Dillard DA. J Mech Behav Biomed Mater 69 385-394 (2017)
  35. Molecular insight into Aspergillus oryzae β-mannanase interacting with mannotriose revealed by molecular dynamic simulation study. Jana UK, Singh G, Soni H, Pletschke B, Kango N. PLoS One 17 e0268333 (2022)