1d66 Citations

DNA recognition by GAL4: structure of a protein-DNA complex.

Nature 356 408-14 (1992)
Cited: 398 times
EuropePMC logo PMID: 1557122

Abstract

A specific DNA complex of the 65-residue, N-terminal fragment of the yeast transcriptional activator, GAL4, has been analysed at 2.7 A resolution by X-ray crystallography. The protein binds as a dimer to a symmetrical 17-base-pair sequence. A small, Zn(2+)-containing domain recognizes a conserved CCG triplet at each end of the site through direct contacts with the major groove. A short coiled-coil dimerization element imposes 2-fold symmetry. A segment of extended polypeptide chain links the metal-binding module to the dimerization element and specifies the length of the site. The relatively open structure of the complex would allow another protein to bind coordinately with GAL4.

Reviews - 1d66 mentioned but not cited (4)

  1. From Lipid Homeostasis to Differentiation: Old and New Functions of the Zinc Cluster Proteins Ecm22, Upc2, Sut1 and Sut2. Joshua IM, Höfken T. Int J Mol Sci 18 E772 (2017)
  2. How structural biology transformed studies of transcription regulation. Wolberger C. J Biol Chem 296 100741 (2021)
  3. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  4. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. Neuhaus D. Prog Nucl Magn Reson Spectrosc 130-131 62-105 (2022)

Articles - 1d66 mentioned but not cited (20)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res 31 532-550 (2003)
  2. Bioclipse: an open source workbench for chemo- and bioinformatics. Spjuth O, Helmus T, Willighagen EL, Kuhn S, Eklund M, Wagener J, Murray-Rust P, Steinbeck C, Wikberg JE. BMC Bioinformatics 8 59 (2007)
  3. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Pougach K, Voet A, Kondrashov FA, Voordeckers K, Christiaens JF, Baying B, Benes V, Sakai R, Aerts J, Zhu B, Van Dijck P, Verstrepen KJ. Nat Commun 5 4868 (2014)
  4. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. Yang Y, Gordenin DA, Resnick MA. DNA Repair (Amst) 9 914-921 (2010)
  5. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins. Paz I, Kligun E, Bengad B, Mandel-Gutfreund Y. Nucleic Acids Res 44 W568-74 (2016)
  6. DSSR-enhanced visualization of nucleic acid structures in Jmol. Hanson RM, Lu XJ. Nucleic Acids Res 45 W528-W533 (2017)
  7. Structural analysis reveals a "molecular calipers" mechanism for a LATERAL ORGAN BOUNDARIES DOMAIN transcription factor protein from wheat. Chen WF, Wei XB, Rety S, Huang LY, Liu NN, Dou SX, Xi XG. J Biol Chem 294 142-156 (2019)
  8. Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4. Tuttle LM, Pacheco D, Warfield L, Wilburn DB, Hahn S, Klevit RE. Nat Commun 12 2220 (2021)
  9. Distance and helical phase dependence of synergistic transcription activation in cis-regulatory module. Huang Q, Gong C, Li J, Zhuo Z, Chen Y, Wang J, Hua ZC. PLoS One 7 e31198 (2012)
  10. Insights into Centromere DNA Bending Revealed by the Cryo-EM Structure of the Core Centromere Binding Factor 3 with Ndc10. Zhang W, Lukoyanova N, Miah S, Lucas J, Vaughan CK. Cell Rep 24 744-754 (2018)
  11. PiDNA: Predicting protein-DNA interactions with structural models. Lin CK, Chen CY. Nucleic Acids Res 41 W523-30 (2013)
  12. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  13. Rational elicitation of cold-sensitive phenotypes. Baliga C, Majhi S, Mondal K, Bhattacharjee A, VijayRaghavan K, Varadarajan R. Proc Natl Acad Sci U S A 113 E2506-15 (2016)
  14. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale. Wang C, Lv Y, Wang B, Yin C, Lin Y, Pan L. Nucleic Acids Res 43 4429-4446 (2015)
  15. Protein structure determination in human cells by in-cell NMR and a reporter system to optimize protein delivery or transexpression. Gerez JA, Prymaczok NC, Kadavath H, Ghosh D, Bütikofer M, Fleischmann Y, Güntert P, Riek R. Commun Biol 5 1322 (2022)
  16. Novel 3,4-diarylpyrazole as prospective anti-cancerous agents. Pandey V, Tripathi G, Kumar D, Kumar A, Dubey PK. Heliyon 6 e04397 (2020)
  17. Knowledge-based three-body potential for transcription factor binding site prediction. Qin W, Zhao G, Carson M, Jia C, Lu H. IET Syst Biol 10 23-29 (2016)
  18. Light-switchable transcription factors obtained by direct screening in mammalian cells. Zhu L, McNamara HM, Toettcher JE. Nat Commun 14 3185 (2023)
  19. Molecular dissection studies of TAC1, a transcription activator of Candida drug resistance genes of the human pathogenic fungus Candida albicans. Jain T, Mishra P, Kumar S, Panda G, Banerjee D. Front Microbiol 14 994873 (2023)
  20. Synthesis, Antioxidant, Molecular Docking and DNA Interaction Studies of Metal-Based Imine Derivatives. Ibrahim M, Nabi HU, Muhammad N, Ikram M, Khan M, Ibrahim M, AlAsmari AF, Alharbi M, Alshammari A. Molecules 28 5926 (2023)


Reviews citing this publication (56)

  1. Yeast carbon catabolite repression. Gancedo JM. Microbiol Mol Biol Rev 62 334-361 (1998)
  2. Function and regulation of yeast hexose transporters. Ozcan S, Johnston M. Microbiol Mol Biol Rev 63 554-569 (1999)
  3. A fungal family of transcriptional regulators: the zinc cluster proteins. MacPherson S, Larochelle M, Turcotte B. Microbiol Mol Biol Rev 70 583-604 (2006)
  4. The RING finger. A novel protein sequence motif related to the zinc finger. Freemont PS. Ann N Y Acad Sci 684 174-192 (1993)
  5. An overview of the structures of protein-DNA complexes. Luscombe NM, Austin SE, Berman HM, Thornton JM. Genome Biol 1 REVIEWS001 (2000)
  6. Recognition of specific DNA sequences. Garvie CW, Wolberger C. Mol Cell 8 937-946 (2001)
  7. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Todd RB, Andrianopoulos A. Fungal Genet Biol 21 388-405 (1997)
  8. Heptad breaks in alpha-helical coiled coils: stutters and stammers. Brown JH, Cohen C, Parry DA. Proteins 26 134-145 (1996)
  9. Nitrogen catabolite repression in Saccharomyces cerevisiae. Hofman-Bang J. Mol Biotechnol 12 35-73 (1999)
  10. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Stricker AR, Mach RL, de Graaff LH. Appl Microbiol Biotechnol 78 211-220 (2008)
  11. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. Turcotte B, Liang XB, Robert F, Soontorngun N. FEMS Yeast Res 10 2-13 (2010)
  12. Gal4/UAS transgenic tools and their application to zebrafish. Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD. Zebrafish 5 97-110 (2008)
  13. Leucine biosynthesis in fungi: entering metabolism through the back door. Kohlhaw GB. Microbiol Mol Biol Rev 67 1-15, table of contents (2003)
  14. Yeast Gal4: a transcriptional paradigm revisited. Traven A, Jelicic B, Sopta M. EMBO Rep 7 496-499 (2006)
  15. Deciphering gene expression regulatory networks. Wyrick JJ, Young RA. Curr Opin Genet Dev 12 130-136 (2002)
  16. Cn3D: a new generation of three-dimensional molecular structure viewer. Hogue CW. Trends Biochem Sci 22 314-316 (1997)
  17. Boehringer Mannheim award lecture 1995. La conference Boehringer Mannheim 1995. De novo design of alpha-helical proteins: basic research to medical applications. Hodges RS. Biochem Cell Biol 74 133-154 (1996)
  18. Histone structure and the organization of the nucleosome. Ramakrishnan V. Annu Rev Biophys Biomol Struct 26 83-112 (1997)
  19. Transactivated and chemically inducible gene expression in plants. Moore I, Samalova M, Kurup S. Plant J 45 651-683 (2006)
  20. Eukaryotic transcription factor-DNA complexes. Patikoglou G, Burley SK. Annu Rev Biophys Biomol Struct 26 289-325 (1997)
  21. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Suzuki M. Structure 2 317-326 (1994)
  22. Modular design of artificial transcription factors. Ansari AZ, Mapp AK. Curr Opin Chem Biol 6 765-772 (2002)
  23. On the mechanism of DNA binding by nuclear hormone receptors: a structural and functional perspective. Freedman LP, Luisi BF. J Cell Biochem 51 140-150 (1993)
  24. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. Rubio-Texeira M. FEMS Yeast Res 5 1115-1128 (2005)
  25. Prospects for NMR of large proteins. Wagner G. J Biomol NMR 3 375-385 (1993)
  26. Regulations of sugar transporters: insights from yeast. Horák J. Curr Genet 59 1-31 (2013)
  27. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Svetlov VV, Cooper TG. Yeast 11 1439-1484 (1995)
  28. Structure, function and application of the coiled-coil protein folding motif. Adamson JG, Zhou NE, Hodges RS. Curr Opin Biotechnol 4 428-437 (1993)
  29. Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Clore GM, Gronenborn AM. Protein Sci 3 372-390 (1994)
  30. Antivirals interacting with hepatitis B virus core protein and core mutations may misdirect capsid assembly in a similar fashion. Hacker HJ, Deres K, Mildenberger M, Schröder CH. Biochem Pharmacol 66 2273-2279 (2003)
  31. Metals in biology: defining metalloproteomes. Yannone SM, Hartung S, Menon AL, Adams MW, Adams MW, Tainer JA. Curr Opin Biotechnol 23 89-95 (2012)
  32. Protein metal-binding sites. Tainer JA, Roberts VA, Getzoff ED. Curr Opin Biotechnol 3 378-387 (1992)
  33. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit Rev Biochem Mol Biol 30 351-385 (1995)
  34. Modulation by nitric oxide of metalloprotein regulatory activities. Drapier JC, Bouton C. Bioessays 18 549-556 (1996)
  35. Genome-wide analysis of the Zn(II)₂Cys₆ zinc cluster-encoding gene family in Aspergillus flavus. Chang PK, Ehrlich KC. Appl Microbiol Biotechnol 97 4289-4300 (2013)
  36. DNA-carrier proteins for targeted gene delivery. Uherek C, Wels W. Adv Drug Deliv Rev 44 153-166 (2000)
  37. Homeotic protein binding sites, origins of replication, and nuclear matrix anchorage sites share the ATTA and ATTTA motifs. Boulikas T. J Cell Biochem 50 111-123 (1992)
  38. Common structural motifs in small proteins and domains. Efimov AV. FEBS Lett 355 213-219 (1994)
  39. Design of alpha-helical peptides: their role in protein folding and molecular biology. Parthasarathy R, Chaturvedi S, Go K. Prog Biophys Mol Biol 64 1-54 (1995)
  40. Regulatory implications of protein assemblies at the gamma origin of plasmid R6K - a review. Filutowicz M, Rakowski SA. Gene 223 195-204 (1998)
  41. The Q-System: A Versatile Expression System for Drosophila. Riabinina O, Potter CJ. Methods Mol Biol 1478 53-78 (2016)
  42. A feel for the template: zinc finger protein transcription factors and chromatin. Urnov FD. Biochem Cell Biol 80 321-333 (2002)
  43. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  44. Fungal catabolic gene regulation: molecular genetic analysis of the amdS gene of Aspergillus nidulans. Davis MA, Kelly JM, Hynes MJ. Genetica 90 133-145 (1993)
  45. Direct recognition of the trp operator by the trp holorepressor--a review. Youderian P, Arvidson DN. Gene 150 1-8 (1994)
  46. Co-chairman's remarks: protein designs for the specific recognition of DNA. Klug A. Gene 135 83-92 (1993)
  47. Improving extracellular production of food-use enzymes from Aspergillus nidulans. MacCabe AP, Orejas M, Tamayo EN, Villanueva A, Ramón D. J Biotechnol 96 43-54 (2002)
  48. Genomic approaches for reconstructing gene networks. Lee NH. Pharmacogenomics 6 245-258 (2005)
  49. Structures of larger proteins, protein-ligand and protein-DNA complexes by multi-dimensional heteronuclear NMR. Clore GM, Gronenborn AM. Prog Biophys Mol Biol 62 153-184 (1994)
  50. Gene regulatory proteins and their interaction with DNA. Klug A. Ann N Y Acad Sci 758 143-160 (1995)
  51. Modulation of DNA-binding domains for sequence-specific DNA recognition. Marmorstein R, Fitzgerald MX. Gene 304 1-12 (2003)
  52. Methods for transcription factor separation. Moxley RA, Jarrett HW, Mitra S. J Chromatogr B Analyt Technol Biomed Life Sci 797 269-288 (2003)
  53. Falling out of the fold: tumorigenic mutations and p53. Erlanson DA, Verdine GL. Chem Biol 1 79-84 (1994)
  54. Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans. Li YH, Liu TB. Int J Mol Sci 21 E1361 (2020)
  55. Molecular recognition in DNA-binding proteins and enzymes. Tainer JA, Cunningham RP. Curr Opin Biotechnol 4 474-483 (1993)
  56. The dangers of 'splicing and dicing': on the use of chimeric transcriptional activators in vitro. Kodadek T, Johnston SA. Chem Biol 2 187-194 (1995)

Articles citing this publication (318)

  1. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. Nucleic Acids Res 38 W529-33 (2010)
  2. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Rhee HS, Pugh BF. Cell 147 1408-1419 (2011)
  3. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA. EMBO J 14 4108-4120 (1995)
  4. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Vettese-Dadey M, Grant PA, Hebbes TR, Crane- Robinson C, Allis CD, Workman JL. EMBO J 15 2508-2518 (1996)
  5. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Beese LS, Derbyshire V, Steitz TA. Science 260 352-355 (1993)
  6. Protein-DNA interactions: A structural analysis. Jones S, van Heyningen P, Berman HM, Thornton JM. J Mol Biol 287 877-896 (1999)
  7. Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Hegde RS, Grossman SR, Laimins LA, Sigler PB. Nature 359 505-512 (1992)
  8. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Adams CC, Workman JL. Mol Cell Biol 15 1405-1421 (1995)
  9. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Barberis A, Pearlberg J, Simkovich N, Farrell S, Reinagel P, Bamdad C, Sigal G, Ptashne M. Cell 81 359-368 (1995)
  10. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. van Peij NN, Visser J, de Graaff LH. Mol Microbiol 27 131-142 (1998)
  11. Identification and preliminary characterization of a protein motif related to the zinc finger. Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS. Proc Natl Acad Sci U S A 90 2112-2116 (1993)
  12. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA. Appl Environ Microbiol 60 2408-2414 (1994)
  13. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Schjerling P, Holmberg S. Nucleic Acids Res 24 4599-4607 (1996)
  14. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition? Pabo CO, Nekludova L. J Mol Biol 301 597-624 (2000)
  15. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M. PLoS Pathog 5 e1000612 (2009)
  16. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Tao Y, Strelkov SV, Mesyanzhinov VV, Rossmann MG. Structure 5 789-798 (1997)
  17. Nucleosome sliding via TBP DNA binding in vivo. Lomvardas S, Thanos D. Cell 106 685-696 (2001)
  18. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. Molinete M, Vermeulen W, Bürkle A, Ménissier-de Murcia J, Küpper JH, Hoeijmakers JH, de Murcia G. EMBO J 12 2109-2117 (1993)
  19. Comment Zinc mining for protein domains. Schwabe JW, Klug A. Nat Struct Biol 1 345-349 (1994)
  20. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Katzmann DJ, Burnett PE, Golin J, Mahé Y, Moye-Rowley WS. Mol Cell Biol 14 4653-4661 (1994)
  21. Sequence-specific binding by Aspergillus nidulans AflR, a C6 zinc cluster protein regulating mycotoxin biosynthesis. Fernandes M, Keller NP, Adams TH. Mol Microbiol 28 1355-1365 (1998)
  22. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C. Mol Gen Genet 244 501-511 (1994)
  23. Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Louvion JF, Havaux-Copf B, Picard D. Gene 131 129-134 (1993)
  24. Structure and expression of the hairless gene of mice. Cachon-Gonzalez MB, Fenner S, Coffin JM, Moran C, Best S, Stoye JP. Proc Natl Acad Sci U S A 91 7717-7721 (1994)
  25. Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Pérez-Alvarado GC, Miles C, Michelsen JW, Louis HA, Winge DR, Beckerle MC, Summers MF. Nat Struct Biol 1 388-398 (1994)
  26. Fused protein domains inhibit DNA binding by LexA. Golemis EA, Brent R. Mol Cell Biol 12 3006-3014 (1992)
  27. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Newman JR, Wolf E, Kim PS. Proc Natl Acad Sci U S A 97 13203-13208 (2000)
  28. MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model. Moses AM, Chiang DY, Pollard DA, Iyer VN, Eisen MB. Genome Biol 5 R98 (2004)
  29. Position specific variation in the rate of evolution in transcription factor binding sites. Moses AM, Chiang DY, Kellis M, Lander ES, Eisen MB. BMC Evol Biol 3 19 (2003)
  30. Transgenerational analysis of transcriptional silencing in zebrafish. Akitake CM, Macurak M, Halpern ME, Goll MG. Dev Biol 352 191-201 (2011)
  31. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park JW, Oh SW, Fujita T, Hou F, Binder M, Hur S. Cell 177 1187-1200.e16 (2019)
  32. Elusive affinities. Janin J. Proteins 21 30-39 (1995)
  33. Improved and expanded Q-system reagents for genetic manipulations. Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, Potter CJ. Nat Methods 12 219-22, 5 p following 222 (2015)
  34. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Vettese-Dadey M, Walter P, Chen H, Juan LJ, Workman JL. Mol Cell Biol 14 970-981 (1994)
  35. Unraveling determinants of transcription factor binding outside the core binding site. Levo M, Zalckvar E, Sharon E, Dantas Machado AC, Kalma Y, Lotam-Pompan M, Weinberger A, Yakhini Z, Rohs R, Segal E. Genome Res 25 1018-1029 (2015)
  36. Massively parallel single-amino-acid mutagenesis. Kitzman JO, Starita LM, Lo RS, Fields S, Shendure J. Nat Methods 12 203-6, 4 p following 206 (2015)
  37. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Ehrlich KC, Montalbano BG, Cary JW. Gene 230 249-257 (1999)
  38. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y. Mol Microbiol 38 940-954 (2000)
  39. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttilä M, Mach RL. Eukaryot Cell 5 447-456 (2006)
  40. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, Sadler PJ. Proc Natl Acad Sci U S A 98 9593-9598 (2001)
  41. Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene. Kim JG, Hudson LD. Mol Cell Biol 12 5632-5639 (1992)
  42. Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mizuguchi G, Tsukiyama T, Wisniewski J, Wu C. Mol Cell 1 141-150 (1997)
  43. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers. Zhu L, Wilken J, Phillips NB, Narendra U, Chan G, Stratton SM, Kent SB, Weiss MA. Genes Dev 14 1750-1764 (2000)
  44. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Kim JH, Polish J, Johnston M. Mol Cell Biol 23 5208-5216 (2003)
  45. A role for CH...O interactions in protein-DNA recognition. Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB. J Mol Biol 277 1129-1140 (1998)
  46. Variation of half-site organization and DNA looping by AraC protein. Carra JH, Schleif RF. EMBO J 12 35-44 (1993)
  47. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Bellon SF, Rodgers KK, Schatz DG, Coleman JE, Steitz TA. Nat Struct Biol 4 586-591 (1997)
  48. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Choi WS, Jeong BC, Joo YJ, Lee MR, Kim J, Eck MJ, Song HK. Nat Struct Mol Biol 17 1175-1181 (2010)
  49. The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K. Mol Microbiol 46 1429-1440 (2002)
  50. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  51. The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. Hardwick JM, Tse L, Applegren N, Nicholas J, Veliuona MA. J Virol 66 5500-5508 (1992)
  52. Analysis of the SWI4/SWI6 protein complex, which directs G1/S-specific transcription in Saccharomyces cerevisiae. Sidorova J, Breeden L. Mol Cell Biol 13 1069-1077 (1993)
  53. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Larochelle M, Drouin S, Robert F, Turcotte B. Mol Cell Biol 26 6690-6701 (2006)
  54. The LIM motif defines a specific zinc-binding protein domain. Michelsen JW, Schmeichel KL, Beckerle MC, Winge DR. Proc Natl Acad Sci U S A 90 4404-4408 (1993)
  55. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M. Fungal Genet Biol 45 984-993 (2008)
  56. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Iraqui I, Vissers S, André B, Urrestarazu A. Mol Cell Biol 19 3360-3371 (1999)
  57. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae. McIsaac RS, Silverman SJ, McClean MN, Gibney PA, Macinskas J, Hickman MJ, Petti AA, Botstein D. Mol Biol Cell 22 4447-4459 (2011)
  58. Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS. Qian X, Jeon C, Yoon H, Agarwal K, Weiss MA. Nature 365 277-279 (1993)
  59. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. André B, Hein C, Grenson M, Jauniaux JC. Mol Gen Genet 237 17-25 (1993)
  60. DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA. Liang SD, Marmorstein R, Harrison SC, Ptashne M. Mol Cell Biol 16 3773-3780 (1996)
  61. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CA, Scazzocchio C. Mol Cell Biol 15 5688-5699 (1995)
  62. The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD. Genomics 66 76-86 (2000)
  63. War1p, a novel transcription factor controlling weak acid stress response in yeast. Kren A, Mamnun YM, Bauer BE, Schüller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K. Mol Cell Biol 23 1775-1785 (2003)
  64. Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. Nekludova L, Pabo CO. Proc Natl Acad Sci U S A 91 6948-6952 (1994)
  65. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. Russell ID, Grancell AS, Sorger PK. J Cell Biol 145 933-950 (1999)
  66. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Seo JA, Guan Y, Yu JH. Genetics 172 1535-1544 (2006)
  67. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mo Y, Vaessen B, Johnston K, Marmorstein R. Mol Cell 2 201-212 (1998)
  68. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Ogihara NL, Weiss MS, Degrado WF, Eisenberg D. Protein Sci 6 80-88 (1997)
  69. Coordination dynamics of biological zinc "clusters" in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Maret W, Larsen KS, Vallee BL. Proc Natl Acad Sci U S A 94 2233-2237 (1997)
  70. Phenotypic analysis of genes encoding yeast zinc cluster proteins. Akache B, Wu K, Turcotte B. Nucleic Acids Res 29 2181-2190 (2001)
  71. Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. Rottensteiner H, Kal AJ, Filipits M, Binder M, Hamilton B, Tabak HF, Ruis H. EMBO J 15 2924-2934 (1996)
  72. Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Ozcan S, Johnston M. Mol Cell Biol 16 5536-5545 (1996)
  73. Nucleosomes accelerate transcription factor dissociation. Luo Y, North JA, Rose SD, Poirier MG. Nucleic Acids Res 42 3017-3027 (2014)
  74. Regulation of pleiotropic drug resistance in yeast. Kolaczkowska A, Goffeau A. Drug Resist Updat 2 403-414 (1999)
  75. Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Schmitt ME, Clayton DA. Genes Dev 8 2617-2628 (1994)
  76. Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Bork P, Ouzounis C, Sander C, Scharf M, Schneider R, Sonnhammer E. Protein Sci 1 1677-1690 (1992)
  77. Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Olson KA, Nelson C, Tai G, Hung W, Yong C, Astell C, Sadowski I. Mol Cell Biol 20 4199-4209 (2000)
  78. Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wösten HA, de Vries RP. Stud Mycol 69 31-38 (2011)
  79. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. Strunnikov AV, Kingsbury J, Koshland D. J Cell Biol 128 749-760 (1995)
  80. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. Juan LJ, Utley RT, Adams CC, Vettese-Dadey M, Workman JL. EMBO J 13 6031-6040 (1994)
  81. Molecular mechanism governing heme signaling in yeast: a higher-order complex mediates heme regulation of the transcriptional activator HAP1. Zhang L, Hach A, Wang C. Mol Cell Biol 18 3819-3828 (1998)
  82. Probing the architecture of a simple kinetochore using DNA-protein crosslinking. Espelin CW, Kaplan KB, Sorger PK. J Cell Biol 139 1383-1396 (1997)
  83. A zinc finger protein, essential for chromosome segregation, constitutes a putative DNA binding subunit of the Saccharomyces cerevisiae kinetochore complex, Cbf3. Lechner J. EMBO J 13 5203-5211 (1994)
  84. A synergistic increase in potency of a multimerized VP16 transcriptional activation domain. Emami KH, Carey M. EMBO J 11 5005-5012 (1992)
  85. Stereochemical basis of DNA bending by transcription factors. Suzuki M, Yagi N. Nucleic Acids Res 23 2083-2091 (1995)
  86. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Murwantoko, Yano M, Ueta Y, Murasaki A, Kanda H, Oka C, Kawaichi M. Biochem J 381 895-904 (2004)
  87. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Pires DE, Chen J, Blundell TL, Ascher DB. Sci Rep 6 19848 (2016)
  88. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Fancy DA, Denison C, Kim K, Xie Y, Holdeman T, Amini F, Kodadek T. Chem Biol 7 697-708 (2000)
  89. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Anderson SF, Steber CM, Esposito RE, Coleman JE. Protein Sci 4 1832-1843 (1995)
  90. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Swaminathan K, Flynn P, Reece RJ, Marmorstein R. Nat Struct Biol 4 751-759 (1997)
  91. The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. Stemmann O, Lechner J. EMBO J 15 3611-3620 (1996)
  92. A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N. Fungal Genet Biol 35 157-169 (2002)
  93. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. Mol Cell Biol 22 4390-4401 (2002)
  94. Transcription Factors in Fungi: TFome Dynamics, Three Major Families, and Dual-Specificity TFs. Shelest E. Front Genet 8 53 (2017)
  95. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Greger IH, Aranda A, Proudfoot N. Proc Natl Acad Sci U S A 97 8415-8420 (2000)
  96. Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1. Craig JP, Coradetti ST, Starr TL, Glass NL. mBio 6 e01452-15 (2015)
  97. Regulation of aromatic alcohol production in Candida albicans. Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. Appl Environ Microbiol 74 7211-7218 (2008)
  98. Progress toward an expanded eukaryotic genetic code. Chin JW, Cropp TA, Chu S, Meggers E, Schultz PG. Chem Biol 10 511-519 (2003)
  99. Yeast Two-Hybrid: State of the Art. Van Criekinge W, Beyaert R. Biol Proced Online 2 1-38 (1999)
  100. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Takechi S, Nakayama T. Biochem Biophys Res Commun 266 405-410 (1999)
  101. The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. Suárez T, de Queiroz MV, Oestreicher N, Scazzocchio C. EMBO J 14 1453-1467 (1995)
  102. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Blank TE, Woods MP, Lebo CM, Xin P, Hopper JE. Mol Cell Biol 17 2566-2575 (1997)
  103. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding. Walker S, Greaves R, O'Hare P. Mol Cell Biol 13 5233-5244 (1993)
  104. Analysis of a fungus-specific transcription factor family, the Candida albicans zinc cluster proteins, by artificial activation. Schillig R, Morschhäuser J. Mol Microbiol 89 1003-1017 (2013)
  105. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Sil AK, Alam S, Xin P, Ma L, Morgan M, Lebo CM, Woods MP, Hopper JE. Mol Cell Biol 19 7828-7840 (1999)
  106. Analysis of Large-Scale Mutagenesis Data To Assess the Impact of Single Amino Acid Substitutions. Gray VE, Hause RJ, Fowler DM. Genetics 207 53-61 (2017)
  107. Connecting protein structure with predictions of regulatory sites. Morozov AV, Siggia ED. Proc Natl Acad Sci U S A 104 7068-7073 (2007)
  108. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. Akache B, MacPherson S, Sylvain MA, Turcotte B. J Biol Chem 279 27855-27860 (2004)
  109. Design of temperature-sensitive mutants solely from amino acid sequence. Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R. Proc Natl Acad Sci U S A 101 7925-7930 (2004)
  110. Structural basis for dimerization in DNA recognition by Gal4. Hong M, Fitzgerald MX, Harper S, Luo C, Speicher DW, Marmorstein R. Structure 16 1019-1026 (2008)
  111. A novel DNA binding motif for yeast zinc cluster proteins: the Leu3p and Pdr3p transcriptional activators recognize everted repeats. Hellauer K, Rochon MH, Turcotte B. Mol Cell Biol 16 6096-6102 (1996)
  112. An analysis of the relationship between hydration and protein-DNA interactions. Woda J, Schneider B, Patel K, Mistry K, Berman HM. Biophys J 75 2170-2177 (1998)
  113. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. Schneider TD. Nucleic Acids Res 29 4881-4891 (2001)
  114. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B. J Biol Chem 285 18505-18515 (2010)
  115. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Talibi D, Grenson M, André B. Nucleic Acids Res 23 550-557 (1995)
  116. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. Todd RB, Andrianopoulos A, Davis MA, Hynes MJ. EMBO J 17 2042-2054 (1998)
  117. Metal ion binding properties of Triticum [corrected] aestivum Ec-1 metallothionein: evidence supporting two separate metal thiolate clusters. Peroza EA, Freisinger E. J Biol Inorg Chem 12 377-391 (2007)
  118. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP. Appl Microbiol Biotechnol 91 387-397 (2011)
  119. Pitch diversity in alpha-helical coiled coils. Seo J, Cohen C. Proteins 15 223-234 (1993)
  120. Oxytricha telomere-binding protein: DNA-dependent dimerization of the alpha and beta subunits. Fang G, Cech TR. Proc Natl Acad Sci U S A 90 6056-6060 (1993)
  121. Specificity of protein-DNA recognition revealed by structure-based potentials: symmetric/asymmetric and cognate/non-cognate binding. Selvaraj S, Kono H, Sarai A. J Mol Biol 322 907-915 (2002)
  122. Two genes required for the binding of an essential Saccharomyces cerevisiae kinetochore complex to DNA. Sorger PK, Doheny KF, Hieter P, Kopski KM, Huffaker TC, Hyman AA. Proc Natl Acad Sci U S A 92 12026-12030 (1995)
  123. GAL4 is regulated by a glucose-responsive functional domain. Stone G, Sadowski I. EMBO J 12 1375-1385 (1993)
  124. SUT1 is a putative Zn[II]2Cys6-transcription factor whose upregulation enhances both sterol uptake and synthesis in aerobically growing Saccharomyces cerevisiae cells. Ness F, Bourot S, Régnacq M, Spagnoli R, Bergès T, Karst F. Eur J Biochem 268 1585-1595 (2001)
  125. A transcriptional activating region with two contrasting modes of protein interaction. Ansari AZ, Reece RJ, Ptashne M. Proc Natl Acad Sci U S A 95 13543-13548 (1998)
  126. Evidence for an interaction between the CYP1(HAP1) activator and a cellular factor during heme-dependent transcriptional regulation in the yeast Saccharomyces cerevisiae. Fytlovich S, Gervais M, Agrimonti C, Guiard B. EMBO J 12 1209-1218 (1993)
  127. Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Masloff S, Jacobsen S, Pöggeler S, Kück U. Fungal Genet Biol 36 107-116 (2002)
  128. Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B. Mol Cell Biol 27 7895-7905 (2007)
  129. Targeting of Krüppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. Matsuda E, Agata Y, Sugai M, Katakai T, Gonda H, Shimizu A. J Biol Chem 276 14222-14229 (2001)
  130. The regulator of nitrate assimilation in ascomycetes is a dimer which binds a nonrepeated, asymmetrical sequence. Strauss J, Muro-Pastor MI, Scazzocchio C. Mol Cell Biol 18 1339-1348 (1998)
  131. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. André B, Talibi D, Soussi Boudekou S, Hein C, Vissers S, Coornaert D. Nucleic Acids Res 23 558-564 (1995)
  132. Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements. Holmberg S, Schjerling P. Genetics 144 467-478 (1996)
  133. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. Swapna LS, Srikeerthana K, Srinivasan N. PLoS One 7 e36688 (2012)
  134. Mapping the DNA- and zinc-binding domains of ASR1 (abscisic acid stress ripening), an abiotic-stress regulated plant specific protein. Rom S, Gilad A, Kalifa Y, Konrad Z, Karpasas MM, Goldgur Y, Bar-Zvi D. Biochimie 88 621-628 (2006)
  135. Molecular cloning and characterization of mouse EBAG9, homolog of a human cancer associated surface antigen: expression and regulation by estrogen. Tsuchiya F, Ikeda K, Tsutsumi O, Hiroi H, Momoeda M, Taketani Y, Muramatsu M, Inoue S. Biochem Biophys Res Commun 284 2-10 (2001)
  136. cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. Wang H, Liu J, Gharib S, Chai CM, Schwarz EM, Pokala N, Sternberg PW. Nat Methods 14 145-148 (2017)
  137. Approaching the function of new genes by detection of their potential upstream activation sequences in Saccharomyces cerevisiae: application to chromosome III. Fondrat C, Kalogeropoulos A. Curr Genet 25 396-406 (1994)
  138. Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114. Sasanuma H, Murakami H, Fukuda T, Shibata T, Nicolas A, Ohta K. Nucleic Acids Res 35 1119-1133 (2007)
  139. The EGD1 product, a yeast homolog of human BTF3, may be involved in GAL4 DNA binding. Parthun MR, Mangus DA, Jaehning JA. Mol Cell Biol 12 5683-5689 (1992)
  140. Gal80 dimerization and the yeast GAL gene switch. Pilauri V, Bewley M, Diep C, Hopper J. Genetics 169 1903-1914 (2005)
  141. Protein three-dimensional structure determination and sequence-specific assignment of 13C and 15N-separated NOE data. A novel real-space ab initio approach. Kraulis PJ. J Mol Biol 243 696-718 (1994)
  142. Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. Tsukagoshi N, Kobayashi T, Kato M. J Gen Appl Microbiol 47 1-19 (2001)
  143. Structure and mobility of the PUT3 dimer. Walters KJ, Dayie KT, Reece RJ, Ptashne M, Wagner G. Nat Struct Biol 4 744-750 (1997)
  144. Comparative Study Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. Chen LW, Chang PJ, Delecluse HJ, Miller G. J Virol 79 9635-9650 (2005)
  145. Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Cai T, Reilly TR, Cerio M, Schmitt ME. Mol Cell Biol 19 7857-7869 (1999)
  146. Mutations in target DNA elements of yeast HAP1 modulate its transcriptional activity without affecting DNA binding. Ha N, Hellauer K, Turcotte B. Nucleic Acids Res 24 1453-1459 (1996)
  147. Overproduction and single-step purification of GAL4 fusion proteins from Escherichia coli. Reece RJ, Rickles RJ, Ptashne M. Gene 126 105-107 (1993)
  148. Reconstitution of transcriptional activation domains by reiteration of short peptide segments reveals the modular organization of a glutamine-rich activation domain. Tanaka M, Herr W. Mol Cell Biol 14 6056-6067 (1994)
  149. Heterodimerization of the yeast MATa1 and MAT alpha 2 proteins is mediated by two leucine zipper-like coiled-coil motifs. Ho CY, Adamson JG, Hodges RS, Smith M. EMBO J 13 1403-1413 (1994)
  150. Modulating the potency of an activator in a yeast in vitro transcription system. Ohashi Y, Brickman JM, Furman E, Middleton B, Carey M. Mol Cell Biol 14 2731-2739 (1994)
  151. Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G. Genes Dev 15 1007-1020 (2001)
  152. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Ye X, Han SJ, Tsai SY, DeMayo FJ, Xu J, Tsai MJ, O'Malley BW. Proc Natl Acad Sci U S A 102 9487-9492 (2005)
  153. Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Kim YG, Smith J, Durgesha M, Chandrasegaran S. Biol Chem 379 489-495 (1998)
  154. Modelling repressor proteins docking to DNA. Aloy P, Moont G, Gabb HA, Querol E, Aviles FX, Sternberg MJ. Proteins 33 535-549 (1998)
  155. Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Fu YH, Feng B, Evans S, Marzluf GA. Mol Microbiol 15 935-942 (1995)
  156. The two distinctive metal ion binding domains of the wheat metallothionein Ec-1. Peroza EA, Kaabi AA, Meyer-Klaucke W, Wellenreuther G, Freisinger E. J Inorg Biochem 103 342-353 (2009)
  157. Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae. Rahner A, Hiesinger M, Schüller HJ. Mol Microbiol 34 146-156 (1999)
  158. The analysis of the transcriptional activator PrnA reveals a tripartite nuclear localisation sequence. Pokorska A, Drevet C, Scazzocchio C. J Mol Biol 298 585-596 (2000)
  159. Two-hybrid interaction of a human UBC9 homolog with centromere proteins of Saccharomyces cerevisiae. Jiang W, Koltin Y. Mol Gen Genet 251 153-160 (1996)
  160. Assemblies of replication initiator protein on symmetric and asymmetric DNA sequences depend on multiple protein oligomerization surfaces. Urh M, Wu J, Wu J, Forest K, Inman RB, Filutowicz M. J Mol Biol 283 619-631 (1998)
  161. PrnA, a Zn2Cys6 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Gómez D, Cubero B, Cecchetto G, Scazzocchio C. Mol Microbiol 44 585-597 (2002)
  162. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1. Aras S, Singh G, Johnston K, Foster T, Aiyar A. PLoS Pathog 5 e1000469 (2009)
  163. Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1, and its involvement in their transcriptional activation. Avila J, González C, Brito N, Siverio JM. Biochem J 335 ( Pt 3) 647-652 (1998)
  164. Functional annotation of putative hypothetical proteins from Candida dubliniensis. Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI. Gene 543 93-100 (2014)
  165. Makorin RING finger protein 1 (MKRN1) has negative and positive effects on RNA polymerase II-dependent transcription. Omwancha J, Zhou XF, Chen SY, Baslan T, Fisher CJ, Zheng Z, Cai C, Shemshedini L. Endocrine 29 363-373 (2006)
  166. Sequence-specific transactivators counteract topoisomerase II-mediated inhibition of in vitro transcription by RNA polymerases I and II. Brou C, Kuhn A, Staub A, Chaudhary S, Grummt I, Davidson I, Tora L. Nucleic Acids Res 21 4011-4018 (1993)
  167. Technical advance: the DNA-binding activity of gal4 is inhibited by methylation of the gal4 binding site in plant chromatin. Gälweiler L, Conlan RS, Mader P, Palme K, Moore I. Plant J 23 143-157 (2000)
  168. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Lavy T, Kumar PR, He H, Joshua-Tor L. Genes Dev 26 294-303 (2012)
  169. The interaction between an acidic transcriptional activator and its inhibitor. The molecular basis of Gal4p recognition by Gal80p. Thoden JB, Ryan LA, Reece RJ, Holden HM. J Biol Chem 283 30266-30272 (2008)
  170. Unique regulatory mechanism for D-galactose utilization in Aspergillus nidulans. Christensen U, Gruben BS, Madrid S, Mulder H, Nikolaev I, de Vries RP. Appl Environ Microbiol 77 7084-7087 (2011)
  171. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. Zhang L, Bermingham-McDonogh O, Turcotte B, Guarente L. Proc Natl Acad Sci U S A 90 2851-2855 (1993)
  172. Regulation of the DNA-binding and transcriptional activities of Xenopus laevis NFI-X by a novel C-terminal domain. Roulet E, Armentero MT, Krey G, Corthésy B, Dreyer C, Mermod N, Wahli W. Mol Cell Biol 15 5552-5562 (1995)
  173. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants. Ehrlich KC, Montalbano BG, Bhatnagar D, Cleveland TE. Fungal Genet Biol 23 279-287 (1998)
  174. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Sweet DH, Jang YK, Sancar GB. Mol Cell Biol 17 6223-6235 (1997)
  175. Using electrophoretic mobility shift assays to measure equilibrium dissociation constants: GAL4-p53 binding DNA as a model system. Heffler MA, Walters RD, Kugel JF. Biochem Mol Biol Educ 40 383-387 (2012)
  176. A nonameric core sequence is required upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent repression by lysine. Becker B, Feller A, el Alami M, Dubois E, Piérard A. Mol Microbiol 29 151-163 (1998)
  177. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC. Mol Microbiol 40 890-899 (2001)
  178. Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancer-binding protein. Gray WM, Fassler JS. Mol Cell Biol 16 347-358 (1996)
  179. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Pathak GP, Spiltoir JI, Höglund C, Polstein LR, Heine-Koskinen S, Gersbach CA, Rossi J, Tucker CL. Nucleic Acids Res 45 e167 (2017)
  180. Detection of leucine-independent DNA site occupancy of the yeast Leu3p transcriptional activator in vivo. Kirkpatrick CR, Schimmel P. Mol Cell Biol 15 4021-4030 (1995)
  181. Questioning the ubiquity of neofunctionalization. Gibson TA, Goldberg DS. PLoS Comput Biol 5 e1000252 (2009)
  182. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation. Psakhye I, Castellucci F, Branzei D. Mol Cell 76 632-645.e6 (2019)
  183. The C6 zinc cluster dictates asymmetric binding by HAP1. Zhang L, Guarente L. EMBO J 15 4676-4681 (1996)
  184. The DNA binding and activation domains of Gal4p are sufficient for conveying its regulatory signals. Ding WV, Johnston SA. Mol Cell Biol 17 2538-2549 (1997)
  185. Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. Martchenko M, Levitin A, Whiteway M. Eukaryot Cell 6 291-301 (2007)
  186. A heterologous coiled coil can substitute for helix I of the Sindbis virus capsid protein. Perera R, Navaratnarajah C, Kuhn RJ. J Virol 77 8345-8353 (2003)
  187. DNA-binding properties of the yeast Rgt1 repressor. Kim JH. Biochimie 91 300-303 (2009)
  188. Defining the DNA Binding Site Recognized by the Fission Yeast Zn2Cys6 Transcription Factor Pho7 and Its Role in Phosphate Homeostasis. Schwer B, Sanchez AM, Garg A, Chatterjee D, Shuman S. mBio 8 e01218-17 (2017)
  189. Role of the TATA binding protein-transcription factor IIB interaction in supporting basal and activated transcription in plant cells. Pan S, Czarnecka-Verner E, Gurley WB. Plant Cell 12 125-136 (2000)
  190. Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions. Sze JY, Remboutsika E, Kohlhaw GB. Mol Cell Biol 13 5702-5709 (1993)
  191. Comparison of 12 turkey hemorrhagic enteritis virus isolates allows prediction of genetic factors affecting virulence. Beach NM, Duncan RB, Larsen CT, Meng XJ, Sriranganathan N, Pierson FW. J Gen Virol 90 1978-1985 (2009)
  192. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG. BMC Plant Biol 5 9 (2005)
  193. Equivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities. Arndt KM, Wobbe CR, Ricupero-Hovasse S, Struhl K, Winston F. Mol Cell Biol 14 3719-3728 (1994)
  194. Phenotypic mixing between different hepadnavirus nucleocapsid proteins reveals C protein dimerization to be cis preferential. Chang C, Zhou S, Ganem D, Standring DN. J Virol 68 5225-5231 (1994)
  195. Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Cazelle B, Pokorska A, Hull E, Green PM, Stanway G, Scazzocchio C. Mol Microbiol 28 355-370 (1998)
  196. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. Sun W, O'Connell M, Speck NA. J Virol 67 1976-1986 (1993)
  197. DNA constraints on transcription activation in vitro. Ross ED, Keating AM, Maher LJ 3RD. J Mol Biol 297 321-334 (2000)
  198. Comment DNA transcription. Zinc standard for economy. Luisi B. Nature 356 379-380 (1992)
  199. Molecular characterization of mutants of the acetate regulatory gene facB of Aspergillus nidulans. Todd RB, Kelly JM, Davis MA, Hynes MJ. Fungal Genet Biol 22 92-102 (1997)
  200. Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB. Microbiology (Reading) 159 2467-2480 (2013)
  201. Transcriptional activation and repression, two properties of the lymphoid-specific transcription factor Oct-2a. Friedl EM, Matthias P. Eur J Biochem 234 308-316 (1995)
  202. A second Zn(II)(2)Cys(6) transcriptional factor encoded by the YNA2 gene is indispensable for the transcriptional activation of the genes involved in nitrate assimilation in the yeast Hansenula polymorpha. Avila J, González C, Brito N, Machín F, Pérez MD, Siverio JM. Yeast 19 537-544 (2002)
  203. Binding of Gal4p and bicoid to nucleosomal sites in yeast in the absence of replication. Balasubramanian B, Morse RH. Mol Cell Biol 19 2977-2985 (1999)
  204. Classification of multi-helical DNA-binding domains and application to predict the DBD structures of sigma factor, LysR, OmpR/PhoB, CENP-B, Rapl, and Xy1S/Ada/AraC. Suzuki M, Brenner SE. FEBS Lett 372 215-221 (1995)
  205. Identification of functional regions of the positively acting regulatory gene amdR from Aspergillus nidulans. Parsons LM, Davis MA, Hynes MJ. Mol Microbiol 6 2999-3007 (1992)
  206. Molecular architecture of a Leu3p-DNA complex in solution: a biochemical approach. Remboutsika E, Kohlhaw GB. Mol Cell Biol 14 5547-5557 (1994)
  207. Tertiary structure prediction of SARS coronavirus helicase. Bernini A, Spiga O, Venditti V, Prischi F, Bracci L, Huang J, Tanner JA, Niccolai N. Biochem Biophys Res Commun 343 1101-1104 (2006)
  208. A 37.5 kb region of yeast chromosome X includes the SME1, MEF2, GSH1 and CSD3 genes, a TCP-1-related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Rasmussen SW. Yeast 11 873-883 (1995)
  209. Binding geometry of alpha-helices that recognize DNA. Suzuki M, Gerstein M. Proteins 23 525-535 (1995)
  210. Sequence analysis of a 33.1 kb fragment from the left arm of Saccharomyces cerevisiae chromosome X, including putative proteins with leucine zippers, a fungal Zn(II)2-Cys6 binuclear cluster domain and a putative alpha 2-SCB-alpha 2 binding site. Miosga T, Schaaff-Gerstenschläger I, Chalwatzis N, Baur A, Boles E, Fournier C, Schmitt S, Velten C, Wilhelm N, Zimmermann FK. Yeast 11 681-689 (1995)
  211. Solution structure of the Kluyveromyces lactis LAC9 Cd2 Cys6 DNA-binding domain. Gardner KH, Anderson SF, Coleman JE. Nat Struct Biol 2 898-905 (1995)
  212. Synergy of importin alpha recognition and DNA binding by the yeast transcriptional activator GAL4. Chan CK, Jans DA. FEBS Lett 462 221-224 (1999)
  213. Vhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5. Weider M, Machnik A, Klebl F, Sauer N. J Biol Chem 281 13513-13524 (2006)
  214. Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Tebung WA, Choudhury BI, Tebbji F, Morschhäuser J, Whiteway M. Curr Biol 26 1677-1687 (2016)
  215. The Drosophila melanogaster gene lethal(3)73Ah encodes a ring finger protein homologous to the oncoproteins MEL-18 and BMI-1. Irminger-Finger I, Nöthiger R. Gene 163 203-208 (1995)
  216. A single amino acid, outside the AlcR zinc binuclear cluster, is involved in DNA binding and in transcriptional regulation of the alc genes in Aspergillus nidulans. Nikolaev I, Cochet MF, Lenouvel F, Felenbok B. Mol Microbiol 31 1115-1124 (1999)
  217. Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Law MJ, Mallory MJ, Dunbrack RL, Strich R. Mol Cell Biol 34 631-642 (2014)
  218. Crystal structure of the yeast inner kinetochore subunit Cep3p. Bellizzi JJ, Sorger PK, Harrison SC. Structure 15 1422-1430 (2007)
  219. Identification of a sporulation-specific promoter regulating divergent transcription of two novel sporulation genes in Saccharomyces cerevisiae. Coe JG, Murray LE, Dawes IW. Mol Gen Genet 244 661-672 (1994)
  220. Design and isolation of temperature-sensitive mutants of Gal4 in yeast and Drosophila. Mondal K, Dastidar AG, Singh G, Madhusudhanan S, Gande SL, VijayRaghavan K, Varadarajan R. J Mol Biol 370 939-950 (2007)
  221. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster. Lee BM, Buck-Koehntop BA, Martinez-Yamout MA, Dyson HJ, Wright PE. J Mol Biol 371 1274-1289 (2007)
  222. Gal11p dosage-compensates transcriptional activator deletions via Taf14p. Lim MK, Tang V, Le Saux A, Schüller J, Bongards C, Lehming N. J Mol Biol 374 9-23 (2007)
  223. Insights into kinetochore-DNA interactions from the structure of Cep3Delta. Purvis A, Singleton MR. EMBO Rep 9 56-62 (2008)
  224. Kluyveromyces lactis SEF1 and its Saccharomyces cerevisiae homologue bypass the unknown essential function, but not the mitochondrial RNase P function, of the S. cerevisiae RPM2 gene. Groom KR, Heyman HC, Steffen MC, Hawkins L, Martin NC. Yeast 14 77-87 (1998)
  225. Structural basis for assembly of the CBF3 kinetochore complex. Leber V, Nans A, Singleton MR. EMBO J 37 269-281 (2018)
  226. Structure of a Leu3-DNA complex: recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein. Fitzgerald MX, Rojas JR, Kim JM, Kohlhaw GB, Marmorstein R. Structure 14 725-735 (2006)
  227. Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p. Idicula AM, Blatch GL, Cooper TG, Dorrington RA. J Biol Chem 277 45977-45983 (2002)
  228. Distinctive structural basis for DNA recognition by the fission yeast Zn2Cys6 transcription factor Pho7 and its role in phosphate homeostasis. Garg A, Goldgur Y, Schwer B, Shuman S. Nucleic Acids Res 46 11262-11273 (2018)
  229. Genomic exploration of the hemiascomycetous yeasts: 21. Comparative functional classification of genes. Gaillardin C, Duchateau-Nguyen G, Tekaia F, Llorente B, Casaregola S, Toffano-Nioche C, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, de Montigny J, Dujon B, Durrens P, Lépingle A, Malpertuy A, Neuvéglise C, Ozier-Kalogéropoulos O, Potier S, Saurin W, Termier M, Wésolowski-Louvel M, Wincker P, Souciet J, Weissenbach J. FEBS Lett 487 134-149 (2000)
  230. Hybrid tetanus toxin C fragment-diphtheria toxin translocation domain allows specific gene transfer into PC12 cells. Barati S, Chegini F, Hurtado P, Rush RA. Exp Neurol 177 75-87 (2002)
  231. The use of variable density self-assembled monolayers to probe the structure of a target molecule. Bamdad C. Biophys J 75 1989-1996 (1998)
  232. A cell-specific factor represses stimulation of transcription in vitro by transcriptional enhancer factor 1. Chaudhary S, Brou C, Valentin ME, Burton N, Tora L, Chambon P, Davidson I. Mol Cell Biol 14 5290-5299 (1994)
  233. Induced folding of the U2AF35 RRM upon binding to U2AF65. Kellenberger E, Stier G, Sattler M. FEBS Lett 528 171-176 (2002)
  234. Regulation of transcription in mammalian cells by yeast Leu3p and externally supplied inducer. Guo H, Kohlhaw GB. FEBS Lett 390 191-195 (1996)
  235. Temperature dependence of DNA affinity chromatography of transcription factors. Jarrett HW. Anal Biochem 279 209-217 (2000)
  236. The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates L-rhamnose utilization and the production of α-L-rhamnosidases. Pardo E, Orejas M. Microb Cell Fact 13 161 (2014)
  237. The contribution of a zinc finger motif to the function of yeast ribosomal protein YL37a. Rivlin AA, Chan YL, Wool IG. J Mol Biol 294 909-919 (1999)
  238. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. Stanway CA, Gibbs JM, Kearsey SE, López MC, Baker HV. Mol Gen Genet 243 207-214 (1994)
  239. 113Cd-1H heteroTOCSY: a method for determining metal-protein connectivities. Gardner KH, Coleman JE. J Biomol NMR 4 761-774 (1994)
  240. DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*). Rodgers KK, Coleman JE. Protein Sci 3 608-619 (1994)
  241. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange. Mau T, Baleja JD, Wagner G. Protein Sci 1 1403-1412 (1992)
  242. Functional specificity of artificial transcriptional activators. Majmudar CY, Lum JK, Prasov L, Mapp AK. Chem Biol 12 313-321 (2005)
  243. Genome-Wide Analysis of the Zn(II)₂Cys₆ Zinc Cluster-Encoding Gene Family in Tolypocladiumguangdongense and Its Light-Induced Expression. Zhang C, Huang H, Deng W, Li T. Genes (Basel) 10 E179 (2019)
  244. Quantitative models for accelerated protein dissociation from nucleosomal DNA. Chen C, Bundschuh R. Nucleic Acids Res 42 9753-9760 (2014)
  245. The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. Cerdan R, Collin D, Lenouvel F, Felenbok B, Guittet E. FEBS Lett 408 235-240 (1997)
  246. The DNA-binding domain of the yeast Saccharomyces cerevisiae CYP1(HAP1) transcription factor possesses two zinc ions which are complexed in a zinc cluster. Timmerman JE, Guiard B, Shechter E, Delsuc MA, Lallemand JY, Gervais M. Eur J Biochem 225 593-599 (1994)
  247. Does structural and chemical divergence play a role in precluding undesirable protein interactions? Jiménez JL. Proteins 59 757-764 (2005)
  248. Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication. Lavy T, Yanagida H, Tawfik DS. Mol Biol Evol 33 472-477 (2016)
  249. Palindromes in proteins. Giel-Pietraszuk M, Hoffmann M, Dolecka S, Rychlewski J, Barciszewski J. J Protein Chem 22 109-113 (2003)
  250. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Mol Microbiol 98 1051-1072 (2015)
  251. Role for homodimerization in growth deregulation by E2a fusion proteins. Bayly R, LeBrun DP. Mol Cell Biol 20 5789-5796 (2000)
  252. A functional chimeric DNA primase: the Cys4 zinc-binding domain of bacteriophage T3 primase fused to the helicase of bacteriophage T7. Hine AV, Richardson CC. Proc Natl Acad Sci U S A 91 12327-12331 (1994)
  253. Characterization of pco-1, a newly identified gene which regulates purine catabolism in Neurospora. Liu TD, Marzluf GA. Curr Genet 46 213-227 (2004)
  254. Delivery of nucleic acid into mammalian cells by anthrax toxin. Gaur R, Gupta PK, Goyal A, Wels W, Singh Y. Biochem Biophys Res Commun 297 1121-1127 (2002)
  255. Direct characterisation by electrospray ionisation mass spectroscopy of mercuro-polypeptide complexes after deprotection of acetamidomethyl groups from protected cysteine residues of synthetic polypeptides. Boysen RI, Hearn MT. J Biochem Biophys Methods 45 157-168 (2000)
  256. Genome-wide characterization of the Zn(II)2Cys6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. Hou Z, Chen Q, Zhao M, Huang C, Wu X. PeerJ 8 e9336 (2020)
  257. HeteroTOCSY-based experiments for measuring heteronuclear relaxation in nucleic acids and proteins. Schweitzer BI, Gardner KH, Tucker-Kellogg G. J Biomol NMR 6 180-188 (1995)
  258. Identification of the specific sequence recognized by Penicillium citrinum MlcR, a GAL4-type transcriptional activator of ML-236B (compactin) biosynthetic genes. Baba S, Nihira T, Hosobuchi M. Fungal Genet Biol 45 1277-1283 (2008)
  259. Refined solution structure of the DNA-binding domain of GAL4 and use of 3J(113Cd,1H) in structure determination. Baleja JD, Thanabal V, Wagner G. J Biomol NMR 10 397-401 (1997)
  260. Relationship between zinc content and DNA-binding activity of the DNA-binding motif of the transcription factor ALCR in Aspergillus nidulans. Sequeval D, Felenbok B. Mol Gen Genet 242 33-39 (1994)
  261. Structure of Fission Yeast Transcription Factor Pho7 Bound to pho1 Promoter DNA and Effect of Pho7 Mutations on DNA Binding and Phosphate Homeostasis. Garg A, Goldgur Y, Sanchez AM, Schwer B, Shuman S. Mol Cell Biol 39 e00132-19 (2019)
  262. Design, synthesis and DNA-cleaving efficiency of photoswitchable dimeric azobenzene-based C2-symmetric enediynes. Basak A, Mitra D, Kar M, Biradha K. Chem Commun (Camb) 3067-3069 (2008)
  263. Phenotypic analysis of a family of transcriptional regulators, the zinc cluster proteins, in the human fungal pathogen Candida glabrata. Klimova N, Yeung R, Kachurina N, Turcotte B. G3 (Bethesda) 4 931-940 (2014)
  264. Phosphorylation of the Gal4 DNA-binding domain is essential for activator mono-ubiquitylation and efficient promoter occupancy. Ferdous A, O'Neal M, Nalley K, Sikder D, Kodadek T, Johnston SA. Mol Biosyst 4 1116-1125 (2008)
  265. Structure determination of a pseudotripeptide zinc complex with the COSMOS-NMR force field and DFT methods. Witter R, Seyfart L, Greiner G, Reissmann S, Weston J, Anders E, Sternberg U. J Biomol NMR 24 277-289 (2002)
  266. Structure of HAP1-PC7 bound to DNA: implications for DNA recognition and allosteric effects of DNA-binding on transcriptional activation. Lukens AK, King DA, Marmorstein R. Nucleic Acids Res 28 3853-3863 (2000)
  267. An electrospray ionisation mass spectrometry (ESI-MS) study to probe the metal ion binding site in the DNA binding domain of the yeast transcriptional activator GAL4. Gadhavi PL. FEBS Lett 417 145-149 (1997)
  268. Development of a high throughput yeast-based screening assay for human carbonic anhydrase isozyme II inhibitors. Sangkaew A, Krungkrai J, Yompakdee C. AMB Express 8 124 (2018)
  269. Functional importance of the DNA binding activity of Candida albicans Czf1p. Petrovska I, Kumamoto CA. PLoS One 7 e39624 (2012)
  270. High-affinity binding of the cell cycle-regulated transcription factors E2F1 and E2F4 to benzo[a]pyrene diol epoxide-DNA adducts. Johnson DG, Coleman A, Powell KL, MacLeod MC. Mol Carcinog 20 216-223 (1997)
  271. News Linkers made to measure. Schwabe JW, Rhodes D. Nat Struct Biol 4 680-683 (1997)
  272. Localization and Spectroscopic Analysis of the Cu(I) Binding Site in Wheat Metallothionein Ec-1. Tarasava K, Loebus J, Freisinger E. Int J Mol Sci 17 371 (2016)
  273. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo. Hjelm BE, Grunseich C, Gowing G, Avalos P, Tian J, Shelley BC, Mooney M, Narwani K, Shi Y, Svendsen CN, Wolfe JH, Fischbeck KH, Pierson TM. Gene Ther 23 424-437 (2016)
  274. On the detection of functionally coherent groups of protein domains with an extension to protein annotation. McLaughlin WA, Chen K, Hou T, Wang W. BMC Bioinformatics 8 390 (2007)
  275. Prediction of Function Determining and Buried Residues Through Analysis of Saturation Mutagenesis Datasets. Bhasin M, Varadarajan R. Front Mol Biosci 8 635425 (2021)
  276. Some DNA targets of the yeast CYP1 transcriptional activator are functionally asymmetric--evidence of two half-sites with different affinities. Näit-Kaoudjt R, Williams R, Guiard B, Gervais M. Eur J Biochem 244 301-309 (1997)
  277. The DNA binding domains of the yeast Gal4 and human c-Jun transcription factors interact through the zinc-finger and bZIP motifs. Sollerbrant K, Akusjärvi G, Linder S, Svensson C. Nucleic Acids Res 23 588-594 (1995)
  278. Unraveling the mechanism of a potent transcriptional activator. Lu Z, Rowe SP, Brennan BB, Davis SE, Metzler RE, Nau JJ, Majmudar CY, Mapp AK, Ansari AZ. J Biol Chem 280 29689-29698 (2005)
  279. Cross-pathway regulation in Saccharomyces cerevisiae: activation of the proline utilization pathway by Ga14p in vivo. D'Alessio M, Brandriss MC. J Bacteriol 182 3748-3753 (2000)
  280. Factors influencing accuracy of computer-built models: a study based on leucine zipper GCN4 structure. Shen L, Bruccoleri RE, Krystek S, Novotny J. Biophys J 70 1096-1104 (1996)
  281. Glucocorticoid receptor-like Zn(Cys)4 motifs in BslI restriction endonuclease. Vanamee ES, Hsieh Pc, Zhu Z, Yates D, Garman E, Xu Sy, Aggarwal AK. J Mol Biol 334 595-603 (2003)
  282. Mutants of Escherichia coli Trp repressor with changes of conserved, helix-turn-helix residue threonine 81 have altered DNA-binding specificities. Pfau J, Arvidson DN, Youderian P. Mol Microbiol 13 1001-1012 (1994)
  283. NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein. Cerdan R, Cahuzac B, Félenbok B, Guittet E. J Mol Biol 295 729-736 (2000)
  284. Solution structure of the circular γ-domain analog from the wheat metallothionein E(c)-1. Tarasava K, Johannsen S, Freisinger E. Molecules 18 14414-14429 (2013)
  285. Zinc co-ordination in the DNA-binding domain of the yeast transcriptional activator PPR1. Ball LJ, Diakun GP, Gadhavi PL, Young NA, Armstrong EM, Garner CD, Laue ED. FEBS Lett 358 278-282 (1995)
  286. A 29.425 kb segment on the left arm of yeast chromosome XV contains more than twice as many unknown as known open reading frames. Zumstein E, Pearson BM, Kalogeropoulos A, Schweizer M. Yeast 11 975-986 (1995)
  287. A dual-light reporter system to determine the efficiency of protein-protein interactions in mammalian cells. Nasim MT, Trembath RC. Nucleic Acids Res 33 e66 (2005)
  288. A physico-chemical investigation of the self-association of the DNA binding domain of the yeast transcriptional activator GAL4. Gadhavi P, Morgan PJ, Alefounder P, Harding SE. Eur Biophys J 24 405-412 (1996)
  289. Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XlnR using integrated mining of gSELEX-Seq and microarray data. Oka H, Kojima T, Ihara K, Kobayashi T, Nakano H. BMC Genomics 20 16 (2019)
  290. Influence of NH-Sgamma bonding interactions on the structure and dynamics of metallothioneins. Romero-Isart N, Oliva B, Vasák M. J Mol Model 16 387-394 (2010)
  291. Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B. Noda N, Ozawa T. Photochem Photobiol 94 1071-1076 (2018)
  292. Mutations in the basic loop of the Zn binuclear cluster of the UaY transcriptional activator suppress mutations in the dimerisation domain. Cecchetto G, Richero M, Oestreicher N, Muro-Pastor MI, Pantano S, Scazzocchio C. Fungal Genet Biol 49 731-743 (2012)
  293. NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence interactions: recognition of a CGG trinucleotide and of an additional thymine 5 bp downstream by the zinc cluster and the N-terminal extremity of the protein. Vuidepot AL, Bontems F, Gervais M, Guiard B, Shechter E, Lallemand JY. Nucleic Acids Res 25 3042-3050 (1997)
  294. Sequence-specific DNA binding by covalently constrained peptide dimers of the basic leucine zipper protein GCN4. Okagami M, Ueno M, Makino K, Shimomura M, Saito I, Morii T, Sugiura Y. Bioorg Med Chem 3 777-784 (1995)
  295. Conformations of arginine and lysine side chains in association with anions. Chakrabarti P. Int J Pept Protein Res 43 284-291 (1994)
  296. Tumor-specific adenoviral gene therapy: transcriptional repression of gene expression by utilizing p53-signal transduction pathways. Kühnel F, Zender L, Wirth T, Schulte B, Trautwein C, Manns M, Kubicka S. Cancer Gene Ther 11 28-40 (2004)
  297. A Bit Stickier, a Bit Slower, a Lot Stiffer: Specific vs. Nonspecific Binding of Gal4 to DNA. Carzaniga T, Zanchetta G, Frezza E, Casiraghi L, Vanjur L, Nava G, Tagliabue G, Dieci G, Buscaglia M, Bellini T. Int J Mol Sci 22 3813 (2021)
  298. Enhanced CPT sensitivity of yeast cells and selective relaxation of Ga14 motif-containing DNA by novel Gal4-topoisomerase I fusion proteins. Alessandri M, Beretta GL, Ferretti E, Mancia A, Khobta A, Capranico G. J Mol Biol 337 295-305 (2004)
  299. In-Depth Characterization of a Mifepristone-Regulated Expression System for AAV5-Mediated Gene Therapy in the Liver. Liefhebber JM, Martier R, Van der Zon T, Keskin S, Huseinovic A, Lubelski J, Blits B, Petry H, Konstantinova P. Mol Ther Methods Clin Dev 13 512-525 (2019)
  300. Intraresidue 1H-15N-13C' and 1H alpha-13C alpha-13C' dipole-CSA relaxation interference as a source of constraints for structural refinement of metal-binding sites in zinc-finger proteins. Kloiber K, Schüler W, Konrat R. J Biomol NMR 19 347-354 (2001)
  301. Major versus minor groove DNA binding of a bisarginylporphyrin hybrid molecule: a molecular mechanics investigation. Gresh N, Perrée-Fauvet M. J Comput Aided Mol Des 13 123-137 (1999)
  302. On the role of structural zinc in bis(cysteinyl) protein sequences. Meißner A, Haehnel W, Vahrenkamp H. Chemistry 3 261-267 (1997)
  303. Solvent-exposed serines in the Gal4 DNA-binding domain are required for promoter occupancy and transcriptional activation in vivo. Jeličić B, Nemet J, Traven A, Sopta M. FEMS Yeast Res 14 302-309 (2014)
  304. Theoretical design of a bis-orthopepetide derivative of a tetracationic porphyrin targeted toward a six-base pair sequence of DNA. Hui X, Gresh N. J Biomol Struct Dyn 11 333-344 (1993)
  305. Towards a black-box for biological EXAFS data analysis. II. Automatic BioXAS Refinement and Analysis (ABRA). Wellenreuther G, Parthasarathy V, Meyer-Klaucke W. J Synchrotron Radiat 17 25-35 (2010)
  306. Analysis of DNA binding by a eubacterial zinc finger transcription factor. McAlister VJ, McAlister VJ, Christie GE. J Bacteriol 191 4513-4521 (2009)
  307. MlcR, a zinc cluster activator protein, is able to bind to a single (A/T)CGG site of cognate asymmetric motifs in the ML-236B (compactin) biosynthetic gene cluster. Baba S, Kinoshita H, Hosobuchi M, Nihira T. Mol Genet Genomics 281 627-634 (2009)
  308. Parametric bootstrapping for biological sequence motifs. O'Neill PK, Erill I. BMC Bioinformatics 17 406 (2016)
  309. Structural dissection of the DNA-binding domain of the yeast transcriptional activator GAL4 reveals an alpha-helical region responsible for dimerization. Gadhavi PL. J Protein Chem 17 591-598 (1998)
  310. Veritas per structuram. Harrison SC. Annu Rev Biochem 84 37-60 (2015)
  311. Bioinformatics Analysis of the Periodicity in Proteins with Coiled-Coil Structure-Enumerating All Decompositions of Sequence Periods. Then A, Zhang H, Ibrahim B, Schuster S. Int J Mol Sci 23 8692 (2022)
  312. Controlled transcriptional regulation in eukaryotes by a novel transcription factor derived from Escherichia coli purine repressor. Yeon EH, Noh JY, Kim JM, Lee MY, Yoon S, Park SK, Choi KY, Kim KS. Biochem Biophys Res Commun 319 334-341 (2004)
  313. DNA between the sheets. Schwabe JW. Curr Biol 2 661-663 (1992)
  314. Integration of multiple stress signals in plants using synthetic Boolean logic gates. Anderson CE, Ferreira SS, Antunes MS. Plant Physiol 192 3189-3202 (2023)
  315. Removal of impurities from transcription factor preparations that alter their DNA-binding properties. Sun L, Kodadek T. Nucleic Acids Res 30 e88 (2002)
  316. RuX: A Novel, Flexible, and Sensitive Mifepristone-Induced Transcriptional Regulation System. Meinzinger A, Zsigmond Á, Horváth P, Kellenberger A, Paréj K, Tallone T, Flachner B, Cserhalmi M, Lőrincz Z, Cseh S, Shmerling D. Int J Cell Biol 2023 7121512 (2023)
  317. Transcription factor clusters enable target search but do not contribute to target gene activation. Meeussen JVW, Pomp W, Brouwer I, de Jonge WJ, Patel HP, Lenstra TL. Nucleic Acids Res 51 5449-5468 (2023)
  318. Zinc cluster transcription factors frequently activate target genes using a non-canonical half-site binding mode. Recio PS, Mitra NJ, Shively CA, Song D, Jaramillo G, Lewis KS, Chen X, Mitra RD. Nucleic Acids Res 51 5006-5021 (2023)