1dbo Citations

Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution.

J Mol Biol 294 1257-69 (1999)
Cited: 60 times
EuropePMC logo PMID: 10600383

Abstract

Glycosaminoglycans (GAGs) are a family of acidic heteropolysaccharides, including such molecules as chondroitin sulfate, dermatan sulfate, heparin and keratan sulfate. Cleavage of the O-glycosidic bond within GAGs can be accomplished by hydrolases as well as lyases, yielding disaccharide and oligosaccharide products. We have determined the crystal structure of chondroitinase B, a glycosaminoglycan lyase from Flavobacterium heparinum, as well as its complex with a dermatan sulfate disaccharide product, both at 1.7 A resolution. Chondroitinase B adopts the right-handed parallel beta-helix fold, found originally in pectate lyase and subsequently in several polysaccharide lyases and hydrolases. Sequence homology between chondroitinase B and a mannuronate lyase from Pseudomonas sp. suggests this protein also adopts the beta-helix fold. Binding of the disaccharide product occurs within a positively charged cleft formed by loops extending from the surface of the beta-helix. Amino acid residues responsible for recognition of the disaccharide, as well as potential catalytic residues, have been identified. Two arginine residues, Arg318 and Arg364, are found to interact with the sulfate group attached to O-4 of N-acetylgalactosamine. Cleavage of dermatan sulfate likely occurs at the reducing end of the disaccharide, with Glu333 possibly acting as the general base.

Articles - 1dbo mentioned but not cited (6)

  1. BETAWRAP: successful prediction of parallel beta -helices from primary sequence reveals an association with many microbial pathogens. Bradley P, Cowen L, Menke M, King J, Berger B. Proc. Natl. Acad. Sci. U.S.A. 98 14819-14824 (2001)
  2. The structure of chondroitin B lyase complexed with glycosaminoglycan oligosaccharides unravels a calcium-dependent catalytic machinery. Michel G, Pojasek K, Li Y, Sulea T, Linhardt RJ, Raman R, Prabhakar V, Sasisekharan R, Cygler M. J. Biol. Chem. 279 32882-32896 (2004)
  3. GlycoPP: a webserver for prediction of N- and O-glycosites in prokaryotic protein sequences. Chauhan JS, Bhat AH, Raghava GP, Rao A. PLoS One 7 e40155 (2012)
  4. Docking glycosaminoglycans to proteins: analysis of solvent inclusion. Samsonov SA, Teyra J, Pisabarro MT. J. Comput. Aided Mol. Des. 25 477-489 (2011)
  5. Functional Exploration of the Polysaccharide Lyase Family PL6. Mathieu S, Henrissat B, Labre F, Skjåk-Bræk G, Helbert W. PLoS ONE 11 e0159415 (2016)
  6. Characterization of a Thermostable and Surfactant-Tolerant Chondroitinase B from a Marine Bacterium Microbulbifer sp. ALW1. Mou M, Hu Q, Li H, Long L, Li Z, Du X, Jiang Z, Ni H, Zhu Y. Int J Mol Sci 23 5008 (2022)


Reviews citing this publication (11)

  1. Hyaluronidases: their genomics, structures, and mechanisms of action. Stern R, Jedrzejas MJ. Chem. Rev. 106 818-839 (2006)
  2. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Kobe B, Kajava AV. Trends Biochem. Sci. 25 509-515 (2000)
  3. The architecture of parallel beta-helices and related folds. Jenkins J, Pickersgill R. Prog. Biophys. Mol. Biol. 77 111-175 (2001)
  4. Glycomics approach to structure-function relationships of glycosaminoglycans. Sasisekharan R, Raman R, Prabhakar V. Annu Rev Biomed Eng 8 181-231 (2006)
  5. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. Gazit E. FEBS J. 272 5971-5978 (2005)
  6. Structure and function of pectic enzymes: virulence factors of plant pathogens. Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F. Proc. Natl. Acad. Sci. U.S.A. 97 8762-8769 (2000)
  7. Structural view of glycosaminoglycan-protein interactions. Imberty A, Lortat-Jacob H, Pérez S. Carbohydr. Res. 342 430-439 (2007)
  8. Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Zhu B, Yin H. Bioengineered 6 125-131 (2015)
  9. CS lyases: structure, activity, and applications in analysis and the treatment of diseases. Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M. Adv. Pharmacol. 53 187-215 (2006)
  10. TMEM2: A missing link in hyaluronan catabolism identified? Yamaguchi Y, Yamamoto H, Tobisawa Y, Irie F. Matrix Biol 78-79 139-146 (2019)
  11. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Xu F, Wang P, Zhang YZ, Chen XL. Appl. Environ. Microbiol. 84 (2018)

Articles citing this publication (43)

  1. Crystal structure of alginate lyase A1-III complexed with trisaccharide product at 2.0 A resolution. Yoon HJ, Hashimoto W, Miyake O, Murata K, Mikami B. J. Mol. Biol. 307 9-16 (2001)
  2. Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9A resolution. Huang W, Lunin VV, Li Y, Suzuki S, Sugiura N, Miyazono H, Cygler M. J. Mol. Biol. 328 623-634 (2003)
  3. Mechanism of hyaluronan binding and degradation: structure of Streptococcus pneumoniae hyaluronate lyase in complex with hyaluronic acid disaccharide at 1.7 A resolution. Ponnuraj K, Jedrzejas MJ. J. Mol. Biol. 299 885-895 (2000)
  4. Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Prabhakar V, Capila I, Bosques CJ, Pojasek K, Sasisekharan R. Biochem. J. 386 103-112 (2005)
  5. Preparation and structural determination of dermatan sulfate-derived oligosaccharides. Yang HO, Gunay NS, Toida T, Kuberan B, Yu G, Kim YS, Linhardt RJ. Glycobiology 10 1033-1039 (2000)
  6. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. Langedijk JP, Fuentes G, Boshuizen R, Bonvin AM. J. Mol. Biol. 360 907-920 (2006)
  7. The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. Cho SW, Lee S, Shin W. J. Mol. Biol. 311 863-878 (2001)
  8. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. Michel G, Chantalat L, Fanchon E, Henrissat B, Kloareg B, Dideberg O. J Biol Chem 276 40202-40209 (2001)
  9. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins. Raso SW, Clark PL, Haase-Pettingell C, King J, Thomas GJ. J. Mol. Biol. 307 899-911 (2001)
  10. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix. Smith NL, Taylor EJ, Lindsay AM, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW. Proc. Natl. Acad. Sci. U.S.A. 102 17652-17657 (2005)
  11. Characterization of mannuronan C-5-epimerase genes from the brown alga Laminaria digitata. Nyvall P, Corre E, Boisset C, Barbeyron T, Rousvoal S, Scornet D, Kloareg B, Boyen C. Plant Physiol. 133 726-735 (2003)
  12. Crystal structure of unsaturated glucuronyl hydrolase, responsible for the degradation of glycosaminoglycan, from Bacillus sp. GL1 at 1.8 A resolution. Itoh T, Akao S, Hashimoto W, Mikami B, Murata K. J. Biol. Chem. 279 31804-31812 (2004)
  13. Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Larsson AM, Andersson R, Ståhlberg J, Kenne L, Jones TA. Structure 11 1111-1121 (2003)
  14. Biochemical characterization of the chondroitinase ABC I active site. Prabhakar V, Raman R, Capila I, Bosques CJ, Pojasek K, Sasisekharan R. Biochem. J. 390 395-405 (2005)
  15. Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. Shaya D, Zhao W, Garron ML, Xiao Z, Cui Q, Zhang Z, Sulea T, Linhardt RJ, Cygler M. J. Biol. Chem. 285 20051-20061 (2010)
  16. Recombinant expression, purification, and kinetic characterization of chondroitinase AC and chondroitinase B from Flavobacterium heparinum. Pojasek K, Shriver Z, Kiley P, Venkataraman G, Sasisekharan R. Biochem. Biophys. Res. Commun. 286 343-351 (2001)
  17. The K5 lyase KflA combines a viral tail spike structure with a bacterial polysaccharide lyase mechanism. Thompson JE, Pourhossein M, Waterhouse A, Hudson T, Goldrick M, Derrick JP, Roberts IS. J. Biol. Chem. 285 23963-23969 (2010)
  18. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation. Sattelle BM, Shakeri J, Roberts IS, Almond A. Carbohydr. Res. 345 291-302 (2010)
  19. Crystal structure of Bacillus sp. GL1 xanthan lyase, which acts on the side chains of xanthan. Hashimoto W, Nankai H, Mikami B, Murata K. J. Biol. Chem. 278 7663-7673 (2003)
  20. Predicting the beta-helix fold from protein sequence data. Cowen L, Bradley P, Menke M, King J, Berger B. J. Comput. Biol. 9 261-276 (2002)
  21. Crystal structure of unsaturated glucuronyl hydrolase complexed with substrate: molecular insights into its catalytic reaction mechanism. Itoh T, Hashimoto W, Mikami B, Murata K. J. Biol. Chem. 281 29807-29816 (2006)
  22. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3). Han C, Spring S, Lapidus A, Del Rio TG, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CC, Saunders E, Chertkov O, Brettin T, Göker M, Rohde M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Stand Genomic Sci 1 54-62 (2009)
  23. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid. Shaya D, Hahn BS, Bjerkan TM, Kim WS, Park NY, Sim JS, Kim YS, Cygler M. Glycobiology 18 270-277 (2008)
  24. Crystal structure of Bacillus sp. GL1 xanthan lyase complexed with a substrate: insights into the enzyme reaction mechanism. Maruyama Y, Hashimoto W, Mikami B, Murata K. J. Mol. Biol. 350 974-986 (2005)
  25. A novel structural fold in polysaccharide lyases: Bacillus subtilis family 11 rhamnogalacturonan lyase YesW with an eight-bladed beta-propeller. Ochiai A, Itoh T, Maruyama Y, Kawamata A, Mikami B, Hashimoto W, Murata K. J Biol Chem 282 37134-37145 (2007)
  26. Recombinant expression, purification, and biochemical characterization of chondroitinase ABC II from Proteus vulgaris. Prabhakar V, Capila I, Soundararajan V, Raman R, Sasisekharan R. J. Biol. Chem. 284 974-982 (2009)
  27. Beta-helix core packing within the triple-stranded oligomerization domain of the P22 tailspike. Kreisberg JF, Betts SD, King J. Protein Sci. 9 2338-2343 (2000)
  28. Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed beta-helix. Douthit SA, Dlakic M, Ohman DE, Franklin MJ. J. Bacteriol. 187 4573-4583 (2005)
  29. Novel Molecular Insights into the Catalytic Mechanism of Marine Bacterial Alginate Lyase AlyGC from Polysaccharide Lyase Family 6. Xu F, Dong F, Wang P, Cao HY, Li CY, Li PY, Pang XH, Zhang YZ, Chen XL. J. Biol. Chem. 292 4457-4468 (2017)
  30. ProGlycProt: a repository of experimentally characterized prokaryotic glycoproteins. Bhat AH, Mondal H, Chauhan JS, Raghava GP, Methi A, Rao A. Nucleic Acids Res. 40 D388-93 (2012)
  31. An atypical approach identifies TYR234 as the key base catalyst in chondroitin AC lyase. Rye CS, Matte A, Cygler M, Withers SG. Chembiochem 7 631-637 (2006)
  32. Expression system for high levels of GAG lyase gene expression and study of the hepA upstream region in Flavobacterium heparinum. Blain F, Tkalec AL, Shao Z, Poulin C, Pedneault M, Gu K, Eggimann B, Zimmermann J, Su H. J. Bacteriol. 184 3242-3252 (2002)
  33. The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Rye CS, Withers SG. Carbohydr. Res. 339 699-703 (2004)
  34. Posttranslational processing of polysaccharide lyase: maturation route for gellan lyase in Bacillus sp. GL1. Miyake O, Kobayashi E, Nankai H, Hashimoto W, Mikami B, Murata K. Arch. Biochem. Biophys. 422 211-220 (2004)
  35. Structural glycobiology of heparinase II from Pedobacter heparinus. Fernandes CL, Escouto GB, Verli H. J. Biomol. Struct. Dyn. 32 1092-1102 (2014)
  36. Super-channel in bacteria: structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. Hashimoto W, Yamasaki M, Itoh T, Momma K, Mikami B, Murata K. J. Biosci. Bioeng. 98 399-413 (2004)
  37. Propagation of Fibrillar Structural Forms in Proteins Stopped by Naturally Occurring Short Polypeptide Chain Fragments. Roterman I, Banach M, Konieczny L. Pharmaceuticals (Basel) 10 (2017)
  38. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming. Zhou Z, Liu Y, Chang Z, Wang H, Leier A, Marquez-Lago TT, Ma Y, Li J, Song J. Appl. Microbiol. Biotechnol. 101 2919-2929 (2017)
  39. Towards the design of anti-amyloid short peptide helices. Roterman I, Banach M, Konieczny L. Bioinformation 14 1-7 (2018)
  40. Biopolymer Extracted from Anadenanthera colubrina (Red Angico Gum) Exerts Therapeutic Potential in Mice: Antidiarrheal Activity and Safety Assessment. Araújo TSL, de Oliveira TM, de Sousa NA, Souza LKM, Sousa FBM, de Oliveira AP, Nicolau LAD, da Silva AAV, Araújo AR, Magalhães PJC, Vasconcelos DFP, de Jonge HR, Souza MHLP, Silva DA, Paula RCM, Medeiros JVR. Pharmaceuticals (Basel) 13 (2020)
  41. Cloning and Characterization of a Novel Alginate Lyase from Paenibacillus sp. LJ-23. Wang M, Chen L, Lou Z, Yuan X, Pan G, Ren X, Wang P. Mar Drugs 20 66 (2022)
  42. Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082. Wang J, Liu Z, Pan X, Wang N, Li L, Du Y, Li J, Li M. Mar Drugs 20 533 (2022)
  43. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. J. Biol. Chem. 294 17915-17930 (2019)