1dd6 Citations

Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor.

Abstract

Metallo beta-lactamase enzymes confer antibiotic resistance to bacteria by catalyzing the hydrolysis of beta-lactam antibiotics. This relatively new form of resistance is spreading unchallenged as there is a current lack of potent and selective inhibitors of metallo beta-lactamases. Reported here are the crystal structures of the native IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor, 2-[5-(1-tetrazolylmethyl)thien-3-yl]-N-[2-(mercaptomethyl)-4 -(phenylb utyrylglycine)]. The structures were determined by molecular replacement, and refined to 3.1 A (native) and 2.0 A (complex) resolution. Binding of the inhibitor in the active site induces a conformational change that results in closing of the flap and transforms the active site groove into a tunnel-shaped cavity enclosing 83% of the solvent accessible surface area of the inhibitor. The inhibitor binds in the active site through interactions with residues that are conserved among metallo beta-lactamases; the inhibitor's carboxylate group interacts with Lys161, and the main chain amide nitrogen of Asn167. In the "oxyanion hole", the amide carbonyl oxygen of the inhibitor interacts through a water molecule with the side chain of Asn167, the inhibitor's thiolate bridges the two Zn(II) ions in the active site displacing the bridging water, and the phenylbutyryl side chain binds in a hydrophobic pocket (S1) at the base of the flap. The flap is displaced 2.9 A compared to the unbound structure, allowing Trp28 to interact edge-to-face with the inhibitor's thiophene ring. The similarities between this inhibitor and the beta-lactam substrates suggest a mode of substrate binding and the role of the conserved residues in the active site. It appears that the metallo beta-lactamases bind their substrates by establishing a subset of binding interactions near the catalytic center with conserved characteristic chemical groups of the beta-lactam substrates. These interactions are complemented by additional nonspecific binding between the more variable groups in the substrates and the flexible flap. This unique mode of binding of the mercaptocarboxylate inhibitor in the enzyme active site provides a binding model for metallo beta-lactamase inhibition with utility for future drug design.

Reviews - 1dd6 mentioned but not cited (7)

  1. Three decades of beta-lactamase inhibitors. Drawz SM, Bonomo RA. Clin Microbiol Rev 23 160-201 (2010)
  2. Metallo-β-lactamase structure and function. Palzkill T. Ann N Y Acad Sci 1277 91-104 (2013)
  3. B1-Metallo-β-Lactamases: Where Do We Stand? Mojica MF, Bonomo RA, Fast W. Curr Drug Targets 17 1029-1050 (2016)
  4. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Jeon JH, Lee JH, Lee JJ, Park KS, Karim AM, Lee CR, Jeong BC, Lee SH. Int J Mol Sci 16 9654-9692 (2015)
  5. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Bahr G, González LJ, Vila AJ. Chem Rev 121 7957-8094 (2021)
  6. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Palacios AR, Rossi MA, Mahler GS, Vila AJ. Biomolecules 10 E854 (2020)
  7. Fragment-based inhibitor discovery against β-lactamase. Nichols DA, Renslo AR, Chen Y. Future Med Chem 6 413-427 (2014)

Articles - 1dd6 mentioned but not cited (27)

  1. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Hinchliffe P, González MM, Mojica MF, González JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J. Proc Natl Acad Sci U S A 113 E3745-54 (2016)
  2. Structure of apo- and monometalated forms of NDM-1--a highly potent carbapenem-hydrolyzing metallo-β-lactamase. Kim Y, Tesar C, Mire J, Jedrzejczak R, Binkowski A, Babnigg G, Sacchettini J, Joachimiak A. PLoS One 6 e24621 (2011)
  3. N-arylsulfonyl hydrazones as inhibitors of IMP-1 metallo-beta-lactamase. Siemann S, Evanoff DP, Marrone L, Clarke AJ, Viswanatha T, Dmitrienko GI. Antimicrob Agents Chemother 46 2450-2457 (2002)
  4. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Payne DJ, Hueso-Rodríguez JA, Boyd H, Concha NO, Janson CA, Gilpin M, Bateson JH, Cheever C, Niconovich NL, Pearson S, Rittenhouse S, Tew D, Díez E, Pérez P, De La Fuente J, Rees M, Rivera-Sagredo A. Antimicrob Agents Chemother 46 1880-1886 (2002)
  5. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. J Med Chem 53 3013-3027 (2010)
  6. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW. Biochemistry 53 7321-7331 (2014)
  7. Systematic analysis of metallo-β-lactamases using an automated database. Widmann M, Pleiss J, Oelschlaeger P. Antimicrob Agents Chemother 56 3481-3491 (2012)
  8. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-β-lactamases. Chen P, Horton LB, Mikulski RL, Deng L, Sundriyal S, Palzkill T, Song Y. Bioorg Med Chem Lett 22 6229-6232 (2012)
  9. The sequence-activity relationship between metallo-β-lactamases IMP-1, IMP-6, and IMP-25 suggests an evolutionary adaptation to meropenem exposure. Liu EM, Pegg KM, Oelschlaeger P. Antimicrob Agents Chemother 56 6403-6406 (2012)
  10. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements. Gomes CM, Frazão C, Xavier AV, Legall J, Teixeira M. Protein Sci 11 707-712 (2002)
  11. Crystal structures of Pseudomonas aeruginosa GIM-1: active-site plasticity in metallo-β-lactamases. Borra PS, Samuelsen Ø, Spencer J, Walsh TR, Lorentzen MS, Leiros HK. Antimicrob Agents Chemother 57 848-854 (2013)
  12. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution. LaCuran AE, Pegg KM, Liu EM, Bethel CR, Ai N, Welsh WJ, Bonomo RA, Oelschlaeger P. Antimicrob Agents Chemother 59 7299-7307 (2015)
  13. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Pegg KM, Liu EM, George AC, LaCuran AE, Bethel CR, Bonomo RA, Oelschlaeger P. Protein Sci 23 1451-1460 (2014)
  14. Computational analysis of pathogen-borne metallo β-lactamases reveals discriminating structural features between B1 types. Cadag E, Vitalis E, Lennox KP, Zhou CL, Zemla AT. BMC Res Notes 5 96 (2012)
  15. Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic Acid as a First-in-Class Low-Cytotoxic Nanomolar Metallo β-Lactamase Inhibitor. Shin WS, Bergstrom A, Bonomo RA, Crowder MW, Muthyala R, Sham YY. ChemMedChem 12 845-849 (2017)
  16. Biochemical characterization of IMP-30, a metallo-β-lactamase with enhanced activity toward ceftazidime. Pegg KM, Liu EM, Lacuran AE, Oelschlaeger P. Antimicrob Agents Chemother 57 5122-5126 (2013)
  17. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. J Chem Inf Model 58 1902-1914 (2018)
  18. Structural and Mutagenic Analysis of Metallo-β-Lactamase IMP-18. Furuyama T, Nonomura H, Ishii Y, Hanson ND, Shimizu-Ibuka A. Antimicrob Agents Chemother 60 5521-5526 (2016)
  19. Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases. Tehrani KHME, Wade N, Mashayekhi V, Brüchle NC, Jespers W, Voskuil K, Pesce D, van Haren MJ, van Westen GJP, Martin NI. J Med Chem 64 9141-9151 (2021)
  20. Influence of C-H...O interactions on the structural stability of β-lactamases. Lavanya P, Ramaiah S, Anbarasu A. J Biol Phys 39 649-663 (2013)
  21. Mutation S115T in IMP-Type Metallo-β-Lactamases Compensates for Decreased Expression Levels Caused by Mutation S119G. Zhang CJ, Faheem M, Dang P, Morris MN, Kumar P, Oelschlaeger P. Biomolecules 9 E724 (2019)
  22. Structural phylogeny by profile extraction and multiple superimposition using electrostatic congruence as a discriminator. Chakraborty S, Rao BJ, Baker N, Asgeirsson B. Intrinsically Disord Proteins 1 e25463 (2013)
  23. Structure and Molecular Recognition Mechanism of IMP-13 Metallo-β-Lactamase. Softley CA, Zak KM, Bostock MJ, Fino R, Zhou RX, Kolonko M, Mejdi-Nitiu R, Meyer H, Sattler M, Popowicz GM. Antimicrob Agents Chemother 64 e00123-20 (2020)
  24. Crystallization and preliminary diffraction studies of GIM-1, a class B carbapenem-hydrolyzing β-lactamase. Hong MK, Lee JH, Kwon DB, Kim JK, Tran TH, Nguyen DD, Jeong BC, Lee SH, Kang LW. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 1226-1228 (2012)
  25. A multiscale approach to predict the binding mode of metallo beta-lactamase inhibitors. Gervasoni S, Spencer J, Hinchliffe P, Pedretti A, Vairoletti F, Mahler G, Mulholland AJ. Proteins 90 372-384 (2022)
  26. Synthesis, DFT investigations, antioxidant, antibacterial activity and SAR-study of novel thiophene-2-carboxamide derivatives. Metwally HM, Khalaf NA, Abdel-Latif E, Ismail MA. BMC Chem 17 6 (2023)
  27. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. Yamamoto K, Tanaka H, Kurisu G, Nakano R, Yano H, Sakai H. J Biochem 173 21-30 (2022)


Reviews citing this publication (25)

  1. Carbapenemases: the versatile beta-lactamases. Queenan AM, Bush K. Clin Microbiol Rev 20 440-58, table of contents (2007)
  2. Metallo-beta-lactamases: the quiet before the storm? Walsh TR, Toleman MA, Poirel L, Nordmann P. Clin Microbiol Rev 18 306-325 (2005)
  3. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Bebrone C. Biochem Pharmacol 74 1686-1701 (2007)
  4. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. Daiyasu H, Osaka K, Ishino Y, Toh H. FEBS Lett 503 1-6 (2001)
  5. New strategies for combating multidrug-resistant bacteria. Wright GD, Sutherland AD. Trends Mol Med 13 260-267 (2007)
  6. Targeting Metalloenzymes for Therapeutic Intervention. Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Chem Rev 119 1323-1455 (2019)
  7. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Drugs 70 651-679 (2010)
  8. Molecular analysis of beta-lactamase structure and function. Majiduddin FK, Materon IC, Palzkill TG. Int J Med Microbiol 292 127-137 (2002)
  9. The bacterial cell wall as a source of antibacterial targets. Green DW. Expert Opin Ther Targets 6 1-19 (2002)
  10. Overcoming differences: The catalytic mechanism of metallo-β-lactamases. Meini MR, Llarrull LI, Vila AJ. FEBS Lett 589 3419-3432 (2015)
  11. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Walsh TR. Clin Microbiol Infect 11 Suppl 6 2-9 (2005)
  12. Metallo-β-lactamase: inhibitors and reporter substrates. Fast W, Sutton LD. Biochim Biophys Acta 1834 1648-1659 (2013)
  13. Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. Gupta V. Expert Opin Investig Drugs 17 131-143 (2008)
  14. Overcoming antimicrobial resistance by targeting resistance mechanisms. Poole K. J Pharm Pharmacol 53 283-294 (2001)
  15. Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. De Pascale G, Wright GD. Chembiochem 11 1325-1334 (2010)
  16. Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Appl Environ Microbiol 84 e00698-18 (2018)
  17. Targeting metallo-β-lactamase enzymes in antibiotic resistance. King DT, Strynadka NC. Future Med Chem 5 1243-1263 (2013)
  18. The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-β-lactamases and arginases. McGeary RP, Schenk G, Guddat LW. Eur J Med Chem 76 132-144 (2014)
  19. A new approach to the inhibition of metallo-beta-lactamases. Spencer J, Walsh TR. Angew Chem Int Ed Engl 45 1022-1026 (2006)
  20. Outsmarting metallo-beta-lactamases by mimicking their natural evolution. Oelschlaeger P. J Inorg Biochem 102 2043-2051 (2008)
  21. Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases. Estiu G, Suárez D, Merz KM. J Comput Chem 27 1240-1262 (2006)
  22. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Molecules 27 3832 (2022)
  23. Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. Kaushik A, Kaushik M, Lather V, Dua JS. Curr Drug Targets 20 756-762 (2019)
  24. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Front Chem 11 1196073 (2023)
  25. [Structure-Function Analysis and Development of Inhibitors of Metallo-β-lactamases Conferring Drug Resistance in Bacteria]. Yamaguchi Y. Yakugaku Zasshi 135 1299-1305 (2015)

Articles citing this publication (123)

  1. Standard numbering scheme for class B beta-lactamases. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM, Metallo-beta-lactamases Working Group. Antimicrob Agents Chemother 45 660-663 (2001)
  2. Update of the standard numbering scheme for class B beta-lactamases. Garau G, García-Sáez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frère JM, Dideberg O. Antimicrob Agents Chemother 48 2347-2349 (2004)
  3. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. Gresh N, Cisneros GA, Darden TA, Piquemal JP. J Chem Theory Comput 3 1960-1986 (2007)
  4. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. Zhang H, Zhang H, Hao Q. FASEB J 25 2574-2582 (2011)
  5. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. Garau G, Bebrone C, Anne C, Galleni M, Frère JM, Dideberg O. J Mol Biol 345 785-795 (2005)
  6. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. Toney JH, Hammond GG, Fitzgerald PM, Sharma N, Balkovec JM, Rouen GP, Olson SH, Hammond ML, Greenlee ML, Gao YD. J Biol Chem 276 31913-31918 (2001)
  7. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. García-Sáez I, Mercuri PS, Papamicael C, Kahn R, Frère JM, Galleni M, Rossolini GM, Dideberg O. J Mol Biol 325 651-660 (2003)
  8. IMP-12, a new plasmid-encoded metallo-beta-lactamase from a Pseudomonas putida clinical isolate. Docquier JD, Riccio ML, Mugnaioli C, Luzzaro F, Endimiani A, Toniolo A, Amicosante G, Rossolini GM. Antimicrob Agents Chemother 47 1522-1528 (2003)
  9. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Guo Y, Wang J, Niu G, Shui W, Sun Y, Zhou H, Zhang Y, Yang C, Lou Z, Rao Z. Protein Cell 2 384-394 (2011)
  10. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Moali C, Anne C, Lamotte-Brasseur J, Groslambert S, Devreese B, Van Beeumen J, Galleni M, Frère JM. Chem Biol 10 319-329 (2003)
  11. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O. J Mol Biol 375 604-611 (2008)
  12. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Liénard BM, Garau G, Horsfall L, Karsisiotis AI, Damblon C, Lassaux P, Papamicael C, Roberts GC, Galleni M, Dideberg O, Frère JM, Schofield CJ. Org Biomol Chem 6 2282-2294 (2008)
  13. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Brem J, van Berkel SS, Zollman D, Lee SY, Gileadi O, McHugh PJ, Walsh TR, McDonough MA, Schofield CJ. Antimicrob Agents Chemother 60 142-150 (2016)
  14. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. Mollard C, Moali C, Papamicael C, Damblon C, Vessilier S, Amicosante G, Schofield CJ, Galleni M, Frere JM, Roberts GC. J Biol Chem 276 45015-45023 (2001)
  15. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Tomatis PE, Rasia RM, Segovia L, Vila AJ. Proc Natl Acad Sci U S A 102 13761-13766 (2005)
  16. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Murphy TA, Catto LE, Halford SE, Hadfield AT, Minor W, Walsh TR, Spencer J. J Mol Biol 357 890-903 (2006)
  17. Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum. Rossolini GM, Condemi MA, Pantanella F, Docquier JD, Amicosante G, Thaller MC. Antimicrob Agents Chemother 45 837-844 (2001)
  18. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Liu D, Momb J, Thomas PW, Moulin A, Petsko GA, Fast W, Ringe D. Biochemistry 47 7706-7714 (2008)
  19. Detection of a variant metallo-beta-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an alcaligenes xylosoxidans strain. Iyobe S, Kusadokoro H, Takahashi A, Yomoda S, Okubo T, Nakamura A, O'Hara K. Antimicrob Agents Chemother 46 2014-2016 (2002)
  20. Chromosome-encoded beta-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Mammeri H, Bellais S, Nordmann P. Antimicrob Agents Chemother 46 3561-3567 (2002)
  21. Analysis of the context dependent sequence requirements of active site residues in the metallo-beta-lactamase IMP-1. Materon IC, Beharry Z, Huang W, Perez C, Palzkill T. J Mol Biol 344 653-663 (2004)
  22. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. Nauton L, Kahn R, Garau G, Hernandez JF, Dideberg O. J Mol Biol 375 257-269 (2008)
  23. Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Mercuri PS, Bouillenne F, Boschi L, Lamotte-Brasseur J, Amicosante G, Devreese B, van Beeumen J, Frère JM, Rossolini GM, Galleni M. Antimicrob Agents Chemother 45 1254-1262 (2001)
  24. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chiou J, Wan S, Chan KF, So PK, He D, Chan EW, Chan TH, Wong KY, Tao J, Chen S. Chem Commun (Camb) 51 9543-9546 (2015)
  25. Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa. Murphy TA, Simm AM, Toleman MA, Jones RN, Walsh TR. Antimicrob Agents Chemother 47 582-587 (2003)
  26. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Borgianni L, Vandenameele J, Matagne A, Bini L, Bonomo RA, Frère JM, Rossolini GM, Docquier JD. Antimicrob Agents Chemother 54 3197-3204 (2010)
  27. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Materon IC, Palzkill T. Protein Sci 10 2556-2565 (2001)
  28. Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-beta-lactamase. Huntley JJ, Fast W, Benkovic SJ, Wright PE, Dyson HJ. Protein Sci 12 1368-1375 (2003)
  29. The mechanisms of catalysis by metallo beta-lactamases. Page MI, Badarau A. Bioinorg Chem Appl 576297 (2008)
  30. Impact of remote mutations on metallo-beta-lactamase substrate specificity: implications for the evolution of antibiotic resistance. Oelschlaeger P, Mayo SL, Pleiss J. Protein Sci 14 765-774 (2005)
  31. Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases. Dal Peraro M, Vila AJ, Carloni P, Klein ML. J Am Chem Soc 129 2808-2816 (2007)
  32. Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase. Rasia RM, Vila AJ. J Biol Chem 279 26046-26051 (2004)
  33. Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Leiros HK, Borra PS, Brandsdal BO, Edvardsen KS, Spencer J, Walsh TR, Samuelsen O. Antimicrob Agents Chemother 56 4341-4353 (2012)
  34. Probing the role of Asp-120(81) of metallo-beta-lactamase (IMP-1) by site-directed mutagenesis, kinetic studies, and X-ray crystallography. Yamaguchi Y, Kuroki T, Yasuzawa H, Higashi T, Jin W, Kawanami A, Yamagata Y, Arakawa Y, Goto M, Kurosaki H. J Biol Chem 280 20824-20832 (2005)
  35. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Meini MR, Llarrull LI, Vila AJ. Antibiotics (Basel) 3 285-316 (2014)
  36. Irreversible inhibition of metallo-beta-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)propionic acid pentafluorophenyl ester. Kurosaki H, Yamaguchi Y, Higashi T, Soga K, Matsueda S, Yumoto H, Misumi S, Yamagata Y, Arakawa Y, Goto M. Angew Chem Int Ed Engl 44 3861-3864 (2005)
  37. Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Costello A, Periyannan G, Yang KW, Crowder MW, Tierney DL. J Biol Inorg Chem 11 351-358 (2006)
  38. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase. de Seny D, Prosperi-Meys C, Bebrone C, Rossolini GM, Page MI, Noel P, Frère JM, Galleni M. Biochem J 363 687-696 (2002)
  39. 3-mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Faridoon, Hussein WM, Vella P, Islam NU, Ollis DL, Schenk G, McGeary RP. Bioorg Med Chem Lett 22 380-386 (2012)
  40. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila. Horsfall LE, Garau G, Liénard BM, Dideberg O, Schofield CJ, Frère JM, Galleni M. Antimicrob Agents Chemother 51 2136-2142 (2007)
  41. Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R, Amicosante G, Perilli M. J Antimicrob Chemother 63 901-908 (2009)
  42. New leads of metallo-beta-lactamase inhibitors from structure-based pharmacophore design. Olsen L, Jost S, Adolph HW, Pettersson I, Hemmingsen L, Jørgensen FS. Bioorg Med Chem 14 2627-2635 (2006)
  43. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R. J Comput Chem 23 1281-1296 (2002)
  44. Structural and kinetic studies on metallo-β-lactamase IMP-1. Griffin DH, Richmond TK, Sanchez C, Moller AJ, Breece RM, Tierney DL, Bennett B, Crowder MW. Biochemistry 50 9125-9134 (2011)
  45. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. Borra PS, Leiros HK, Ahmad R, Spencer J, Leiros I, Walsh TR, Sundsfjord A, Samuelsen O. J Mol Biol 411 174-189 (2011)
  46. Differential binding of Co(II) and Zn(II) to metallo-beta-lactamase Bla2 from Bacillus anthracis. Hawk MJ, Breece RM, Hajdin CE, Bender KM, Hu Z, Costello AL, Bennett B, Tierney DL, Crowder MW. J Am Chem Soc 131 10753-10762 (2009)
  47. Hydroxyl groups in the (beta)beta sandwich of metallo-beta-lactamases favor enzyme activity: a computational protein design study. Oelschlaeger P, Mayo SL. J Mol Biol 350 395-401 (2005)
  48. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. Wang JF, Chou KC. PLoS One 6 e18414 (2011)
  49. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis. Elkins JM, Clifton IJ, Hernández H, Doan LX, Robinson CV, Schofield CJ, Hewitson KS. Biochem J 366 423-434 (2002)
  50. Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1. Brown NG, Horton LB, Huang W, Vongpunsawad S, Palzkill T. Antimicrob Agents Chemother 55 5696-5702 (2011)
  51. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry. Antony J, Piquemal JP, Gresh N. J Comput Chem 26 1131-1147 (2005)
  52. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. Suárez D, Díaz N, Merz KM. J Comput Chem 23 1587-1600 (2002)
  53. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW. BMC Biochem 3 4 (2002)
  54. Azolylthioacetamide: A Highly Promising Scaffold for the Development of Metallo-β-lactamase Inhibitors. Yang SK, Kang JS, Oelschlaeger P, Yang KW. ACS Med Chem Lett 6 455-460 (2015)
  55. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O, Balbeur D, Damblon C, Marchot P, De Pauw E, Roberts GC, Frère JM, Matagne A. J Mol Biol 392 1278-1291 (2009)
  56. Triazolylthioacetamide: A Valid Scaffold for the Development of New Delhi Metallo-β-Lactmase-1 (NDM-1) Inhibitors. Zhai L, Zhang YL, Kang JS, Oelschlaeger P, Xiao L, Nie SS, Yang KW. ACS Med Chem Lett 7 413-417 (2016)
  57. Amino Acid Thioester Derivatives: A Highly Promising Scaffold for the Development of Metallo-β-lactamase L1 Inhibitors. Liu XL, Shi Y, Kang JS, Oelschlaeger P, Yang KW. ACS Med Chem Lett 6 660-664 (2015)
  58. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Chiou J, Leung TY, Chen S. Antimicrob Agents Chemother 58 5372-5378 (2014)
  59. Probing, inhibition, and crystallographic characterization of metallo-beta-lactamase (IMP-1) with fluorescent agents containing dansyl and thiol groups. Kurosaki H, Yamaguchi Y, Yasuzawa H, Jin W, Yamagata Y, Arakawa Y. ChemMedChem 1 969-972 (2006)
  60. Characterization of the active-site residues asparagine 167 and lysine 161 of the IMP-1 metallo beta-lactamase. Haruta S, Yamamoto ET, Eriguchi Y, Sawai T. FEMS Microbiol Lett 197 85-89 (2001)
  61. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Sun Q, Law A, Crowder MW, Geysen HM. Bioorg Med Chem Lett 16 5169-5175 (2006)
  62. Over-expression, purification, and characterization of metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Crawford PA, Sharma N, Chandrasekar S, Sigdel T, Walsh TR, Spencer J, Crowder MW. Protein Expr Purif 36 272-279 (2004)
  63. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Stamp AL, Owen P, El Omari K, Nichols CE, Lockyer M, Lamb HK, Charles IG, Hawkins AR, Stammers DK. Protein Sci 19 1897-1905 (2010)
  64. Docking and scoring of metallo-beta-lactamases inhibitors. Olsen L, Pettersson I, Hemmingsen L, Adolph HW, Jørgensen FS. J Comput Aided Mol Des 18 287-302 (2004)
  65. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Skagseth S, Akhter S, Paulsen MH, Muhammad Z, Lauksund S, Samuelsen Ø, Leiros HS, Bayer A. Eur J Med Chem 135 159-173 (2017)
  66. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases. Merino M, Pérez-Llarena FJ, Kerff F, Poza M, Mallo S, Rumbo-Feal S, Beceiro A, Juan C, Oliver A, Bou G. J Antimicrob Chemother 65 1950-1954 (2010)
  67. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus. Dal Peraro M, Vila AJ, Carloni P. Proteins 54 412-423 (2004)
  68. The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams. Badarau A, Damblon C, Page MI. Biochem J 401 197-203 (2007)
  69. beta -Lactamases: which ones are clinically important? Rice LB, Bonomo RA. Drug Resist Updat 3 178-189 (2000)
  70. 1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases. Sevaille L, Gavara L, Bebrone C, De Luca F, Nauton L, Achard M, Mercuri P, Tanfoni S, Borgianni L, Guyon C, Lonjon P, Turan-Zitouni G, Dzieciolowski J, Becker K, Bénard L, Condon C, Maillard L, Martinez J, Frère JM, Dideberg O, Galleni M, Docquier JD, Hernandez JF. ChemMedChem 12 972-985 (2017)
  71. Loss of enzyme activity during turnover of the Bacillus cereus beta-lactamase catalysed hydrolysis of beta-lactams due to loss of zinc ion. Badarau A, Page MI. J Biol Inorg Chem 13 919-928 (2008)
  72. Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-beta-lactamase. Vessillier S, Docquier JD, Rival S, Frere JM, Galleni M, Amicosante G, Rossolini GM, Franceschini N. Antimicrob Agents Chemother 46 1921-1927 (2002)
  73. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid. Karsisiotis AI, Damblon CF, Roberts GC. Biochem J 456 397-407 (2013)
  74. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Rudgers GW, Huang W, Palzkill T. Antimicrob Agents Chemother 45 3279-3286 (2001)
  75. Inactivation of Aeromonas hydrophila metallo-beta-lactamase by cephamycins and moxalactam. Zervosen A, Valladares MH, Devreese B, Prosperi-Meys C, Adolph HW, Mercuri PS, Vanhove M, Amicosante G, van Beeumen J, Frère JM, Galleni M. Eur J Biochem 268 3840-3850 (2001)
  76. Comparative study of the inhibition of metallo-beta-lactamases (IMP-1 and VIM-2) by thiol compounds that contain a hydrophobic group. Jin W, Arakawa Y, Yasuzawa H, Taki T, Hashiguchi R, Mitsutani K, Shoga A, Yamaguchi Y, Kurosaki H, Shibata N, Ohta M, Goto M. Biol Pharm Bull 27 851-856 (2004)
  77. Probing the specificity of the subclass B3 FEZ-1 metallo-beta-lactamase by site-directed mutagenesis. Mercuri PS, García-Sáez I, De Vriendt K, Thamm I, Devreese B, Van Beeumen J, Dideberg O, Rossolini GM, Frère JM, Galleni M. J Biol Chem 279 33630-33638 (2004)
  78. Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. McGeary RP, Tan DTC, Selleck C, Monteiro Pedroso M, Sidjabat HE, Schenk G. Eur J Med Chem 137 351-364 (2017)
  79. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Beharry Z, Chen H, Gadhachanda VR, Buynak JD, Palzkill T. Biochem Biophys Res Commun 313 541-545 (2004)
  80. Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Salsbury FR, Crowder MW, Kingsmore SF, Kingsmore SF, Huntley JJ. J Mol Model 15 133-145 (2009)
  81. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site. Horton LB, Shanker S, Mikulski R, Brown NG, Phillips KJ, Lykissa E, Venkataram Prasad BV, Palzkill T. Antimicrob Agents Chemother 56 5667-5677 (2012)
  82. Conformational dynamics of metallo-β-lactamase CcrA during catalysis investigated by using DEER spectroscopy. Aitha M, Moritz L, Sahu ID, Sanyurah O, Roche Z, McCarrick R, Lorigan GA, Bennett B, Crowder MW. J Biol Inorg Chem 20 585-594 (2015)
  83. Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila. Simona F, Magistrato A, Vera DM, Garau G, Vila AJ, Carloni P. Proteins 69 595-605 (2007)
  84. An Update on the Status of Potent Inhibitors of Metallo-β-Lactamases. Faridoon, Ul Islam N. Sci Pharm 81 309-327 (2013)
  85. His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7. Leiros HK, Skagseth S, Edvardsen KS, Lorentzen MS, Bjerga GE, Leiros I, Samuelsen Ø. Antimicrob Agents Chemother 58 4826-4836 (2014)
  86. Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive. Abriata LA, González LJ, Llarrull LI, Tomatis PE, Myers WK, Costello AL, Tierney DL, Vila AJ. Biochemistry 47 8590-8599 (2008)
  87. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid. Oelschlaeger P, Pleiss J. J Mol Biol 366 316-329 (2007)
  88. Mechanistic Investigations of Metallo-β-lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition*. Wade N, Tehrani KHME, Brüchle NC, van Haren MJ, Mashayekhi V, Martin NI. ChemMedChem 16 1651-1659 (2021)
  89. Promiscuous metallo-β-lactamases: MIM-1 and MIM-2 may play an essential role in quorum sensing networks. Miraula M, Schenk G, Mitić N. J Inorg Biochem 162 366-375 (2016)
  90. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time-Resolved Luminescence Studies. Herath ID, Breen C, Hewitt SH, Berki TR, Kassir AF, Dodson C, Judd M, Jabar S, Cox N, Otting G, Butler SJ. Chemistry 27 13009-13023 (2021)
  91. Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants. Cheng Z, Bethel CR, Thomas PW, Shurina BA, Alao JP, Thomas CA, Yang K, Marshall SH, Zhang H, Sturgill AM, Kravats AN, Page RC, Fast W, Bonomo RA, Crowder MW. Antimicrob Agents Chemother 65 e01714-20 (2021)
  92. Conformational changes in the metallo-beta-lactamase ImiS during the catalytic reaction: an EPR spectrokinetic study of Co(II)-spin label interactions. Sharma N, Hu Z, Crowder MW, Bennett B. J Am Chem Soc 130 8215-8222 (2008)
  93. Detection of a metallo-beta-lactamase (IMP-1) by fluorescent probes having dansyl and thiol groups. Kurosaki H, Yasuzawa H, Yamaguchi Y, Jin W, Arakawa Y, Goto M. Org Biomol Chem 1 17-20 (2003)
  94. Suppression of β-Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo-β-Lactamase Target and the Antibiotic Partner. Rotondo CM, Sychantha D, Koteva K, Wright GD. Antimicrob Agents Chemother 64 e01386-19 (2020)
  95. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors. Brindisi M, Brogi S, Giovani S, Gemma S, Lamponi S, De Luca F, Novellino E, Campiani G, Docquier JD, Butini S. J Enzyme Inhib Med Chem 31 98-109 (2016)
  96. The inhibition of metallo-beta-lactamase by thioxo-cephalosporin derivatives. Tsang WY, Dhanda A, Schofield CJ, Frère JM, Galleni M, Page MI. Bioorg Med Chem Lett 14 1737-1739 (2004)
  97. A case study comparing quantitative stability-flexibility relationships across five metallo-β-lactamases highlighting differences within NDM-1. Brown MC, Verma D, Russell C, Jacobs DJ, Livesay DR. Methods Mol Biol 1084 227-238 (2014)
  98. Crystal structure of IMP-2 metallo-β-lactamase from Acinetobacter spp.: comparison of active-site loop structures between IMP-1 and IMP-2. Yamaguchi Y, Matsueda S, Matsunaga K, Takashio N, Toma-Fukai S, Yamagata Y, Shibata N, Wachino J, Shibayama K, Arakawa Y, Kurosaki H. Biol Pharm Bull 38 96-101 (2015)
  99. Functional Profiling and Crystal Structures of Isothiocyanate Hydrolases Found in Gut-Associated and Plant-Pathogenic Bacteria. van den Bosch TJM, Tan K, Joachimiak A, Welte CU. Appl Environ Microbiol 84 e00478-18 (2018)
  100. A demetallation method for IMP-1 metallo-β-lactamase with restored enzymatic activity upon addition of metal ion(s). Yamaguchi Y, Ding S, Murakami E, Imamura K, Fuchigami S, Hashiguchi R, Yutani K, Mori H, Suzuki S, Arakawa Y, Kurosaki H. Chembiochem 12 1979-1983 (2011)
  101. Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems. Bauer-Siebenlist B, Dechert S, Meyer F. Chemistry 11 5343-5352 (2005)
  102. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity. Rasia RM, Ceolín M, Vila AJ. Protein Sci 12 1538-1546 (2003)
  103. Iron(III) located in the dinuclear metallo-β-lactamase IMP-1 by pseudocontact shifts. Carruthers TJ, Carr PD, Loh CT, Jackson CJ, Otting G. Angew Chem Int Ed Engl 53 14269-14272 (2014)
  104. Optimization of amino acid thioesters as inhibitors of metallo-β-lactamase L1. Liu XL, Yang KW, Zhang YJ, Ge Y, Xiang Y, Chang YN, Oelschlaeger P. Bioorg Med Chem Lett 26 4698-4701 (2016)
  105. Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry. Selevsek N, Tholey A, Heinzle E, Liénard BM, Oldham NJ, Schofield CJ, Heinz U, Adolph HW, Frère JM. J Am Soc Mass Spectrom 17 1000-1004 (2006)
  106. 68Zn isotope exchange experiments reveal an unusual kinetic lability of the metal ions in the di-zinc form of IMP-1 metallo-beta-lactamase. Siemann S, Badiei HR, Karanassios V, Viswanatha T, Dmitrienko GI. Chem Commun (Camb) 532-534 (2006)
  107. A Lysine-Targeted Affinity Label for Serine-β-Lactamase Also Covalently Modifies New Delhi Metallo-β-lactamase-1 (NDM-1). Thomas PW, Cammarata M, Brodbelt JS, Monzingo AF, Pratt RF, Fast W. Biochemistry 58 2834-2843 (2019)
  108. Dependence of hydrolysis of beta-lactams with a zinc(II)-beta-lactamase produced from Serratia marcescens (IMP-1) on pH and concentration of zinc(II) ion: dissociation of Zn(II) from IMP-1 in acidic medium. Goto M, Yasuzawa H, Higashi T, Yamaguchi Y, Kawanami A, Mifune S, Mori H, Nakayama H, Harada K, Arakawa Y. Biol Pharm Bull 26 589-594 (2003)
  109. Dilution of dipolar interactions in a spin-labeled, multimeric metalloenzyme for DEER studies. Aitha M, Richmond TK, Hu Z, Hetrick A, Reese R, Gunther A, McCarrick R, Bennett B, Crowder MW. J Inorg Biochem 136 40-46 (2014)
  110. Chelator-facilitated chemical modification of IMP-1 metallo-beta-lactamase and its consequences on metal binding. Gardonio D, Siemann S. Biochem Biophys Res Commun 381 107-111 (2009)
  111. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HS. J Antimicrob Chemother 75 2554-2563 (2020)
  112. Syntheses and Biological Evaluations of Highly Functionalized Hydroxamate Containing and N-Methylthio Monobactams as Anti-Tuberculosis and β-Lactamase Inhibitory Agents. Majewski MW, Watson KD, Cho S, Miller PA, Franzblau SG, Miller MJ. Medchemcomm 7 141-147 (2016)
  113. RNA-hydrolyzing activity of metallo-β-lactamase IMP-1. Kato Y, Takahashi M, Seki M, Nashimoto M, Shimizu-Ibuka A. PLoS One 15 e0241557 (2020)
  114. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GC, Damblon C, Redfield C, Matagne A. J Biol Chem 291 16124-16137 (2016)
  115. Zinc complexes of Ttz(R,Me) with O and S donors reveal differences between Tp and Ttz ligands: acid stability and binding to H or an additional metal (Ttz(R,Me) = tris(3-R-5-methyl-1,2,4-triazolyl)borate; R = Ph, tBu). Kumar M, Papish ET, Zeller M, Hunter AD. Dalton Trans 40 7517-7533 (2011)
  116. Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri. Booth MP, Kosmopoulou M, Poirel L, Nordmann P, Spencer J. PLoS One 10 e0140059 (2015)
  117. Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Skagseth S, Christopeit T, Akhter S, Bayer A, Samuelsen Ø, Leiros HS. Antimicrob Agents Chemother 61 e02602-16 (2017)
  118. The role of CH-π interaction in the charge transfer properties in tris(8-hydroxyquinolinato)aluminium(III). Lin BC, Cheng CP, You ZQ, Hsu CP. Phys Chem Chem Phys 13 20704-20713 (2011)
  119. Cefcapene inactivates chromosome-encoded class C beta-lactamases. Alba J, Ishii Y, Galleni M, Frère JM, Ito M, Yamaguchi K. J Infect Chemother 8 207-210 (2002)
  120. Crystallization and preliminary X-ray analysis of the subclass B3 metallo-β-lactamase SMB-1 that confers carbapenem resistance. Wachino J, Yamaguchi Y, Mori S, Yamagata Y, Arakawa Y, Shibayama K. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 343-346 (2012)
  121. Identification and Validation Novel of VIM-2 Metallo-β-lactamase Tripeptide Inhibitors. Xiao J, Fang M, Shi Y, Chen H, Shen B, Chen J, Lao X, Xu H, Zheng H. Mol Inform 34 559-567 (2015)
  122. Localising individual atoms of tryptophan side chains in the metallo-β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites. Orton HW, Herath ID, Maleckis A, Jabar S, Szabo M, Graham B, Breen C, Topping L, Butler SJ, Otting G. Magn Reson (Gott) 3 1-13 (2022)
  123. Prediction of Phytochemicals for Their Potential to Inhibit New Delhi Metallo β-Lactamase (NDM-1). Bibi Z, Asghar I, Ashraf NM, Zeb I, Rashid U, Hamid A, Ali MK, Hatamleh AA, Al-Dosary MA, Ahmad R, Ali M. Pharmaceuticals (Basel) 16 1404 (2023)