1dkq Citations

Crystal structures of Escherichia coli phytase and its complex with phytate.

Nat Struct Biol 7 108-13 (2000)
Related entries: 1dkl, 1dkm, 1dkn, 1dko, 1dkp

Cited: 77 times
EuropePMC logo PMID: 10655611

Abstract

Phytases catalyze the hydrolysis of phytate and are able to improve the nutritional quality of phytate-rich diets. Escherichia coli phytase, a member of the histidine acid phosphatase family has the highest specific activity of all phytases characterized. The crystal structure of E. coli phytase has been determined by a two-wavelength anomalous diffraction method using the exceptionally strong anomalous scattering of tungsten. Despite a lack of sequence similarity, the structure closely resembles the overall fold of other histidine acid phosphatases. The structure of E. coli phytase in complex with phytate, the preferred substrate, reveals the binding mode and substrate recognition. The binding is also accompanied by conformational changes which suggest that substrate binding enhances catalysis by increasing the acidity of the general acid.

Articles - 1dkq mentioned but not cited (9)

  1. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB. Protein Sci 16 1368-1378 (2007)
  2. Mechanism of protein kinetic stabilization by engineered disulfide crosslinks. Sanchez-Romero I, Ariza A, Wilson KS, Skjøt M, Vind J, De Maria L, Skov LK, Sanchez-Ruiz JM. PLoS One 8 e70013 (2013)
  3. Degradation of phytate by the 6-phytase from Hafnia alvei: a combined structural and solution study. Ariza A, Moroz OV, Blagova EV, Turkenburg JP, Waterman J, Roberts SM, Vind J, Sjøholm C, Lassen SF, De Maria L, Glitsoe V, Skov LK, Wilson KS. PLoS One 8 e65062 (2013)
  4. Structure of Debaryomyces castellii CBS 2923 phytase. Ragon M, Hoh F, Aumelas A, Chiche L, Moulin G, Boze H. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 321-326 (2009)
  5. Substrate binding in protein-tyrosine phosphatase-like inositol polyphosphatases. Gruninger RJ, Dobing S, Smith AD, Bruder LM, Selinger LB, Wieden HJ, Mosimann SC. J Biol Chem 287 9722-9730 (2012)
  6. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  7. Insights to the Structural Basis for the Stereospecificity of the Escherichia coli Phytase, AppA. Acquistapace IM, Thompson EJ, Kühn I, Bedford MR, Brearley CA, Hemmings AM. Int J Mol Sci 23 6346 (2022)
  8. Identification of potential modulators of IFITM3 by in-silico modeling and virtual screening. Tiwari V, Viswanath S. Sci Rep 12 15952 (2022)
  9. Phytate-Induced Dose-Response Auto-Activation of Enzyme in Commercial Recombinant Phytase From Escherichia coli. Naghdi E, Moosavi-Nejad Z, Gholamhossein Goudarzi B, Soudi MR. Iran J Biotechnol 21 e3315 (2023)


Reviews citing this publication (5)

  1. Production, purification and properties of microbial phytases. Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT. Bioresour Technol 77 203-214 (2001)
  2. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Gupta RK, Gangoliya SS, Singh NK. J Food Sci Technol 52 676-684 (2015)
  3. Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Rao DE, Rao KV, Reddy TP, Reddy VD. Crit Rev Biotechnol 29 182-198 (2009)
  4. Phytases: crystal structures, protein engineering and potential biotechnological applications. Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. J Appl Microbiol 112 1-14 (2012)
  5. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Environ Microbiol Rep 14 3-24 (2022)

Articles citing this publication (63)

  1. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Rodriguez E, Wood ZA, Karplus PA, Lei XG. Arch Biochem Biophys 382 105-112 (2000)
  2. Enzyme mechanism and catalytic property of beta propeller phytase. Shin S, Ha NC, Oh BC, Oh TK, Oh BH. Structure 9 851-858 (2001)
  3. The oxidase DsbA folds a protein with a nonconsecutive disulfide. Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L. J Biol Chem 282 31302-31307 (2007)
  4. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL, Wang AH. Structure 12 2015-2024 (2004)
  5. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Golovan SP, Hayes MA, Phillips JP, Forsberg CW. Nat Biotechnol 19 429-433 (2001)
  6. A novel phytase with preferable characteristics from Yersinia intermedia. Huang H, Luo H, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B. Biochem Biophys Res Commun 350 884-889 (2006)
  7. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Kim MS, Lei XG. Appl Microbiol Biotechnol 79 69-75 (2008)
  8. Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. Xiang T, Liu Q, Deacon AM, Koshy M, Kriksunov IA, Lei XG, Hao Q, Thiel DJ. J Mol Biol 339 437-445 (2004)
  9. Effect of a novel phytase on growth performance, bone ash, and mineral digestibility in nursery and grower-finisher pigs. Braña DV, Ellis M, Castañeda EO, Sands JS, Baker DH. J Anim Sci 84 1839-1849 (2006)
  10. Directed evolution of a highly active Yersinia mollaretii phytase. Shivange AV, Serwe A, Dennig A, Roccatano D, Haefner S, Schwaneberg U. Appl Microbiol Biotechnol 95 405-418 (2012)
  11. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Wu SE, Hashimoto-Hill S, Woo V, Eshleman EM, Whitt J, Engleman L, Karns R, Denson LA, Haslam DB, Alenghat T. Nature 586 108-112 (2020)
  12. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, van Loon AP, Pasamontes L. Protein Sci 9 1304-1311 (2000)
  13. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. Tomschy A, Wyss M, Kostrewa D, Vogel K, Tessier M, Höfer S, Bürgin H, Kronenberger A, Rémy R, van Loon AP, Pasamontes L. FEBS Lett 472 169-172 (2000)
  14. Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Singh B, Satyanarayana T. Bioresour Technol 100 2046-2051 (2009)
  15. Cumulative improvements of thermostability and pH-activity profile of Aspergillus niger PhyA phytase by site-directed mutagenesis. Zhang W, Lei XG. Appl Microbiol Biotechnol 77 1033-1040 (2008)
  16. Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. Zinin NV, Serkina AV, Gelfand MS, Shevelev AB, Sineoky SP. FEMS Microbiol Lett 236 283-290 (2004)
  17. Crystal structure of Klebsiella sp. ASR1 phytase suggests substrate binding to a preformed active site that meets the requirements of a plant rhizosphere enzyme. Böhm K, Herter T, Müller JJ, Borriss R, Heinemann U. FEBS J 277 1284-1296 (2010)
  18. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Kim MS, Weaver JD, Lei XG. Appl Microbiol Biotechnol 79 751-758 (2008)
  19. Exchanging the active site between phytases for altering the functional properties of the enzyme. Lehmann M, Lopez-Ulibarri R, Loch C, Viarouge C, Wyss M, van Loon AP. Protein Sci 9 1866-1872 (2000)
  20. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. Zeng YF, Ko TP, Lai HL, Cheng YS, Wu TH, Ma Y, Chen CC, Yang CS, Cheng KJ, Huang CH, Guo RT, Liu JR. J Mol Biol 409 214-224 (2011)
  21. Diet shapes the ability of human intestinal microbiota to degrade phytate--in vitro studies. Markiewicz LH, Honke J, Haros M, Świątecka D, Wróblewska B. J Appl Microbiol 115 247-259 (2013)
  22. The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus spp. Greiner R, Farouk A, Alminger ML, Carlsson NG. Can J Microbiol 48 986-994 (2002)
  23. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Huang H, Luo H, Wang Y, Fu D, Shao N, Wang G, Yang P, Yao B. Appl Microbiol Biotechnol 80 417-426 (2008)
  24. Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. Liu Q, Huang Q, Lei XG, Hao Q. Structure 12 1575-1583 (2004)
  25. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH. Biotechnol Lett 35 1669-1676 (2013)
  26. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, Qiao D, Cao Y. J Ind Microbiol Biotechnol 40 457-464 (2013)
  27. Comparative studies on the in vitro properties of phytases from various microbial origins. Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O. Arch Tierernahr 53 353-373 (2000)
  28. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. Appl Microbiol Biotechnol 100 2225-2241 (2016)
  29. Glucose-1-phosphatase (AgpE) from Enterobacter cloacae displays enhanced phytase activity. Herter T, Berezina OV, Zinin NV, Velikodvorskaya GA, Greiner R, Borriss R. Appl Microbiol Biotechnol 70 60-64 (2006)
  30. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. Wu TH, Chen CC, Cheng YS, Ko TP, Lin CY, Lai HL, Huang TY, Liu JR, Guo RT. J Biotechnol 175 1-6 (2014)
  31. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697. Tamayo-Ramos JA, Sanz-Penella JM, Yebra MJ, Monedero V, Haros M. Appl Environ Microbiol 78 5013-5015 (2012)
  32. Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Ciofalo V, Barton N, Kretz K, Baird J, Cook M, Shanahan D. Regul Toxicol Pharmacol 37 286-292 (2003)
  33. Multivariate phase combination improves automated crystallographic model building. Skubák P, Waterreus WJ, Pannu NS. Acta Crystallogr D Biol Crystallogr 66 783-788 (2010)
  34. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Shivange AV, Roccatano D, Schwaneberg U. Appl Microbiol Biotechnol 100 227-242 (2016)
  35. Site-directed mutagenesis improves the thermostability and catalytic efficiency of Aspergillus niger N25 phytase mutated by I44E and T252R. Liao Y, Li CM, Chen H, Wu Q, Shan Z, Han XY. Appl Biochem Biotechnol 171 900-915 (2013)
  36. Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Mullaney EJ, Locovare H, Sethumadhavan K, Boone S, Lei XG, Ullah AH. Appl Microbiol Biotechnol 87 1367-1372 (2010)
  37. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Fu D, Huang H, Meng K, Wang Y, Luo H, Yang P, Yuan T, Yao B. Biotechnol Bioeng 103 857-864 (2009)
  38. Inositol phosphatase activity of the Escherichia coli agp-encoded acid glucose-1-phosphatase. Cottrill MA, Golovan SP, Phillips JP, Forsberg CW. Can J Microbiol 48 801-809 (2002)
  39. Trehalose hydrogels for stabilization of enzymes to heat. Lee J, Ko JH, Lin EW, Wallace P, Ruch F, Maynard HD. Polym Chem 6 3443-3448 (2015)
  40. Dynamics of phosphorus and phytate-utilizing bacteria during aerobic degradation of dairy cattle dung. Fuentes B, Jorquera M, Mora Mde L. Chemosphere 74 325-331 (2009)
  41. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Fu D, Li Z, Huang H, Yuan T, Shi P, Luo H, Meng K, Yang P, Yao B. Appl Microbiol Biotechnol 90 1295-1302 (2011)
  42. Conformational dynamics of active site loop in Escherichia coli phytase. Shivange AV, Schwaneberg U, Roccatano D. Biopolymers 93 994-1002 (2010)
  43. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6. Li J, Dong Y, Lü X, Wang L, Peng W, Zhang XC, Rao Z. Protein Cell 4 548-561 (2013)
  44. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Niu C, Yang P, Luo H, Huang H, Wang Y, Yao B. Sci Rep 7 42133 (2017)
  45. AppA C-terminal plays an important role in its thermostability in Escherichia coli. Fei B, Cao Y, Xu H, Li X, Song T, Fei Z, Qiao D, Cao Y. Curr Microbiol 66 374-378 (2013)
  46. The effectiveness of an Escherichia coli phytase in improving phosphorus and calcium bioavailabilities in poultry and young pigs. Igbasan FA, Simon O, Miksch G, Männer K. Arch Tierernahr 54 117-126 (2001)
  47. High affinity association of myo-inositol trisphosphates with phytase and its effect upon the catalytic potential of the enzyme. Padmanabhan U, Dasgupta S, Biswas BB, Dasgupta D. J Biol Chem 276 43635-43644 (2001)
  48. Regulation of Raoultella terrigena comb.nov. phytase expression. Zamudio M, González A, Bastarrachea F. Can J Microbiol 48 71-81 (2002)
  49. Structure of a cereal purple acid phytase provides new insights to phytate degradation in plants. Faba-Rodriguez R, Gu Y, Salmon M, Dionisio G, Brinch-Pedersen H, Brearley CA, Hemmings AM. Plant Commun 3 100305 (2022)
  50. Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Navone L, Vogl T, Luangthongkam P, Blinco JA, Luna-Flores C, Chen X, von Hellens J, Speight R. Microb Cell Fact 20 8 (2021)
  51. An integrated approach to the degradation of phytates in the corn wet milling process. Noureddini H, Dang J. Bioresour Technol 101 9106-9113 (2010)
  52. Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH. Körfer G, Novoa C, Kern J, Balla E, Grütering C, Davari MD, Martinez R, Vojcic L, Schwaneberg U, Schwaneberg U. Appl Microbiol Biotechnol 102 9607-9620 (2018)
  53. Perspective: Plant-based Whole-Grain Foods for Chronic Kidney Disease: The Phytate-Phosphorus Conundrum. Calvo MS, Uribarri J. Adv Nutr 12 2056-2067 (2021)
  54. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin. Wang X, Du J, Zhang ZY, Fu YJ, Wang WM, Liang AH. Appl Microbiol Biotechnol 102 9647-9656 (2018)
  55. Determining the phosphorus release curve for Smizyme TS G5 2,500 phytase from 500 to 2,500 FTU/kg in nursery pig diets. Gaffield KN, Williams HR, Becker LL, DeRouchey JM, Woodworth JC, Tokach MD, Goodband RD, Gebhardt JT, Faser JM. Transl Anim Sci 7 txad090 (2023)
  56. Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris. Navone L, Vogl T, Luangthongkam P, Blinco JA, Luna-Flores CH, Chen X, von Hellens J, Mahler S, Speight R. Biotechnol Biofuels 14 80 (2021)
  57. Enhancing co-translational folding of heterologous protein by deleting non-essential ribosomal proteins in Pichia pastoris. Liao X, Zhao J, Liang S, Jin J, Li C, Xiao R, Li L, Guo M, Zhang G, Lin Y. Biotechnol Biofuels 12 38 (2019)
  58. Improved sensitivity, accuracy and prediction provided by a high-performance liquid chromatography screen for the isolation of phytase-harbouring organisms from environmental samples. Rix GD, Todd JD, Neal AL, Brearley CA. Microb Biotechnol 14 1409-1421 (2021)
  59. Microbiota-mediated phytate metabolism activates HDAC3 to contribute intestinal homeostasis. Li X, Lau HCH, Yu J. Signal Transduct Target Ther 5 211 (2020)
  60. Safety evaluation of phytase 50104 enzyme preparation (also known as VR003), expressed in Pseudomonas fluorescens, intended for increasing digestibility of phytate in monogastrics. Krygier S, Solbak A, Shanahan D, Ciofalo V. Regul Toxicol Pharmacol 70 545-554 (2014)
  61. Snapshots during the catalytic cycle of a histidine acid phytase reveal an induced-fit structural mechanism. Acquistapace IM, Zi Etek MA, Li AWH, Salmon M, Kühn I, Bedford MR, Brearley CA, Hemmings AM. J Biol Chem 295 17724-17737 (2020)
  62. Structure-Function Relationship Study of a Secretory Amoebic Phosphatase: A Computational-Experimental Approach. Terán-Ramírez C, Mares-Alejandre RE, Estrada-González AL, Muñoz-Muñoz PLA, Ramos-Ibarra MA. Int J Mol Sci 22 (2021)
  63. Thermostability enhancement of Escherichia coli phytase by error-prone polymerase chain reaction (epPCR) and site-directed mutagenesis. Xing H, Wang P, Yan X, Yang Y, Li X, Liu R, Zhou Z. Front Bioeng Biotechnol 11 1167530 (2023)


Related citations provided by authors (2)