1dms Citations

Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution.

J Mol Biol 263 53-69 (1996)
Cited: 85 times
EuropePMC logo PMID: 8890912

Abstract

The periplasmic dimethyl sulfoxide reductase (DMSOR) from the photosynthetic purple bacterium Rhodobacter capsulatus functions as the terminal electron acceptor in its respiratory chain. The enzyme catalyzes the reduction of highly oxidized substrates like dimethyl sulfoxide to dimethyl sulfide. At a molybdenum redox center, two single electrons are transferred from cytochrome C556 to the substrate dimethyl sulfoxide, generating dimethyl sulfide and (with two protons) water. The enzyme was purified and crystallized in space group P4(1)2(1)2 with unit cell dimensions of a = b = 80.7 A and c = 229.2 A. The crystals diffract beyond 1.8 A with synchrotron radiation. The three-dimensional structure was solved by a combination of multiple isomorphous replacement and molecular replacement techniques. The atomic model was refined to an R-factor of 0.169 for 57,394 independent reflections. The spherical protein consists of four domains with a funnel-like cavity that leads to the freely accessible metal-ion redox center. The bis(molybdopterin guanine dinucleotide) molybdenum cofactor (1541 Da) of the single chain protein (85,033 Da) has the molybdenum ion bound to the cis-dithiolene group of only one molybdopterin guanine dinucleotide molecule. Three additional ligands, two oxo groups and the oxygen of a serine side-chain, are bound to the molybdenum ion. The second molybdopterin system is not part of the ligand sphere of the metal center with its sulfur atoms at distances of 3.5 A and 3.8 A away. It might be involved in electron shuttling from the protein surface to the molybdenum center.

Articles - 1dms mentioned but not cited (2)

  1. Modeling of loops in proteins: a multi-method approach. Jamroz M, Kolinski A. BMC Struct Biol 10 5 (2010)
  2. Active site architecture reveals coordination sphere flexibility and specificity determinants in a group of closely related molybdoenzymes. Struwe MA, Kalimuthu P, Luo Z, Zhong Q, Ellis D, Yang J, Khadanand KC, Harmer JR, Kirk ML, McEwan AG, Clement B, Bernhardt PV, Kobe B, Kappler U. J Biol Chem 296 100672 (2021)


Reviews citing this publication (20)

  1. Cell biology and molecular basis of denitrification. Zumft WG. Microbiol Mol Biol Rev 61 533-616 (1997)
  2. The mononuclear molybdenum enzymes. Hille R, Hall J, Basu P. Chem Rev 114 3963-4038 (2014)
  3. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker C, Schindelin H, Rees DC. Annu Rev Biochem 66 233-267 (1997)
  4. Molybdenum and tungsten in biology. Hille R. Trends Biochem Sci 27 360-367 (2002)
  5. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials. Bentley R, Chasteen TG. Chemosphere 55 291-317 (2004)
  6. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. Moura JJ, Brondino CD, Trincão J, Romão MJ. J Biol Inorg Chem 9 791-799 (2004)
  7. A structural comparison of molybdenum cofactor-containing enzymes. Kisker C, Schindelin H, Baas D, Rétey J, Meckenstock RU, Kroneck PM. FEMS Microbiol Rev 22 503-521 (1998)
  8. The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A. Biochim Biophys Acta 1827 1048-1085 (2013)
  9. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Romão MJ. Dalton Trans 4053-4068 (2009)
  10. The molybdenum oxotransferases and related enzymes. Hille R. Dalton Trans 42 3029-3042 (2013)
  11. Structure and function of molybdopterin containing enzymes. Romão MJ, Knäblein J, Huber R, Moura JJ. Prog Biophys Mol Biol 68 121-144 (1997)
  12. Mechanistic aspects of molybdenum-containing enzymes. Hille R, Rétey J, Bartlewski-Hof U, Reichenbecher W. FEMS Microbiol Rev 22 489-501 (1998)
  13. Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Workun GJ, Moquin K, Rothery RA, Weiner JH. Microbiol Mol Biol Rev 72 228-48, table of contents (2008)
  14. Structural and mechanistic insights on nitrate reductases. Coelho C, Romão MJ. Protein Sci 24 1901-1911 (2015)
  15. The active sites of molybdenum- and tungsten-containing enzymes. McMaster J, Enemark JH. Curr Opin Chem Biol 2 201-207 (1998)
  16. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. Rothery RA, Weiner JH. J Biol Inorg Chem 20 349-372 (2015)
  17. Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Majumder EL, King JD, Blankenship RE. Biochim Biophys Acta 1827 1383-1391 (2013)
  18. The suitability of Ta6Br12(2+) for phasing in protein crystallography. Neuefeind T, Bergner A, Schneider F, Messerschmidt A, Knablein J. Biol Chem 378 219-221 (1997)
  19. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes. Kirk ML, Lepluart J, Yang J. J Inorg Biochem 235 111907 (2022)
  20. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Maia LB. Molecules 28 5819 (2023)

Articles citing this publication (63)

  1. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. Santini CL, Ize B, Chanal A, Müller M, Giordano G, Wu LF. EMBO J 17 101-112 (1998)
  2. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. Nat Struct Biol 10 681-687 (2003)
  3. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Ellis PJ, Conrads T, Hille R, Kuhn P. Structure 9 125-132 (2001)
  4. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJ, Moura I, Romão MJ. Structure 7 65-79 (1999)
  5. Molybdoproteomes and evolution of molybdenum utilization. Zhang Y, Gladyshev VN. J Mol Biol 379 881-899 (2008)
  6. Application of the PM6 method to modeling proteins. Stewart JJ. J Mol Model 15 765-805 (2009)
  7. Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Jormakka M, Richardson D, Byrne B, Iwata S. Structure 12 95-104 (2004)
  8. Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Kloer DP, Hagel C, Heider J, Schulz GE. Structure 14 1377-1388 (2006)
  9. Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ. Structure 10 1261-1272 (2002)
  10. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. Müller JA, DasSarma S. J Bacteriol 187 1659-1667 (2005)
  11. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. Czjzek M, Dos Santos JP, Pommier J, Giordano G, Méjean V, Haser R. J Mol Biol 284 435-447 (1998)
  12. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. Mol Microbiol 44 1575-1587 (2002)
  13. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. Dos Santos JP, Iobbi-Nivol C, Couillault C, Giordano G, Méjean V. J Mol Biol 284 421-433 (1998)
  14. Structural and biochemical identification of a novel bacterial oxidoreductase. Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, Weiner JH, Strynadka NC. J Biol Chem 279 50391-50400 (2004)
  15. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Leimkühler S, Kern M, Solomon PS, McEwan AG, Schwarz G, Mendel RR, Klipp W. Mol Microbiol 27 853-869 (1998)
  16. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. Gon S, Giudici-Orticoni MT, Méjean V, Iobbi-Nivol C. J Biol Chem 276 11545-11551 (2001)
  17. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T, Leimkühler S. FEBS J 280 6083-6096 (2013)
  18. The high resolution crystal structure of DMSO reductase in complex with DMSO. McAlpine AS, McEwan AG, Bailey S. J Mol Biol 275 613-623 (1998)
  19. Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Buc J, Santini CL, Giordani R, Czjzek M, Wu LF, Giordano G. Mol Microbiol 32 159-168 (1999)
  20. Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. Leimkühler S, Klipp W. J Bacteriol 181 2745-2751 (1999)
  21. Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. Krafft T, Bowen A, Theis F, Macy JM. DNA Seq 10 365-377 (2000)
  22. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. Stewart LJ, Bailey S, Bennett B, Charnock JM, Garner CD, McAlpine AS. J Mol Biol 299 593-600 (2000)
  23. ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. Anderson LA, McNairn E, Lubke T, Pau RN, Boxer DH. J Bacteriol 182 7035-7043 (2000)
  24. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. Lake MW, Temple CA, Rajagopalan KV, Schindelin H. J Biol Chem 275 40211-40217 (2000)
  25. Ta6Br(2+)12, a tool for phase determination of large biological assemblies by X-ray crystallography. Knäblein J, Neuefeind T, Schneider F, Bergner A, Messerschmidt A, Löwe J, Steipe B, Huber R. J Mol Biol 270 1-7 (1997)
  26. Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PM. Proc Natl Acad Sci U S A 101 11571-11576 (2004)
  27. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria. Brondino CD, Passeggi MC, Caldeira J, Almendra MJ, Feio MJ, Moura JJ, Moura I. J Biol Inorg Chem 9 145-151 (2004)
  28. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis. Leimkühler S, Angermüller S, Schwarz G, Mendel RR, Klipp W. J Bacteriol 181 5930-5939 (1999)
  29. Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Bursakov SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJ. Biochem Biophys Res Commun 239 816-822 (1997)
  30. Aerobic degradation of mercaptosuccinate by the gram-negative bacterium Variovorax paradoxus strain B4. Carbajal-Rodríguez I, Stöveken N, Satola B, Wübbeler JH, Steinbüchel A. J Bacteriol 193 527-539 (2011)
  31. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Butler CS, Charnock JM, Garner CD, Thomson AJ, Ferguson SJ, Berks BC, Richardson DJ. Biochem J 352 Pt 3 859-864 (2000)
  32. Knowledge-based selection of targets for structural genomics. Frishman D. Protein Eng 15 169-183 (2002)
  33. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Butler CS, Fairhurst SA, Ferguson SJ, Thomson AJ, Berks BC, Richardson DJ, Lowe DJ. Biochem J 363 817-823 (2002)
  34. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa. Noriega C, Hassett DJ, Rowe JJ. Curr Microbiol 51 419-424 (2005)
  35. Molecular oxygen activation by a molybdenum(IV) monooxo bis(beta-ketiminato) complex. Lyashenko G, Saischek G, Pal A, Herbst-Irmer R, Mösch-Zanetti NC. Chem Commun (Camb) 701-703 (2007)
  36. Genome-guided insights into the versatile metabolic capabilities of the mercaptosuccinate-utilizing β-proteobacterium Variovorax paradoxus strain B4. Brandt U, Hiessl S, Schuldes J, Thürmer A, Wübbeler JH, Daniel R, Steinbüchel A. Environ Microbiol 16 3370-3386 (2014)
  37. Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration. Tomiki T, Saitou N. J Mol Evol 59 158-176 (2004)
  38. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes. Thapper A, Lorber C, Fryxelius J, Behrens A, Nordlander E. J Inorg Biochem 79 67-74 (2000)
  39. Isolation and characterisation of bacterial strains containing enantioselective DMSO reductase activity: application to the kinetic resolution of racemic sulfoxides. Luckarift HR, Dalton H, Sharma ND, Boyd DR, Holt RA. Appl Microbiol Biotechnol 65 678-685 (2004)
  40. Cloning, sequencing and heterologous expression of pyrogallol-phloroglucinol transhydroxylase from Pelobacter acidigallici. Baas D, Rétey J. Eur J Biochem 265 896-901 (1999)
  41. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Kirk ML, Kc K. Met Ions Life Sci 20 /books/9783110589757/9783110589757-015/97831105897 (2020)
  42. The critical role of tryptophan-116 in the catalytic cycle of dimethylsulfoxide reductase from Rhodobacter capsulatus. Ridge JP, Aguey-Zinsou KF, Bernhardt PV, Hanson GR, McEwan AG. FEBS Lett 563 197-202 (2004)
  43. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor. Leimkühler S, Klipp W. FEMS Microbiol Lett 174 239-246 (1999)
  44. Biotin sulfoxide reductase: Tryptophan 90 is required for efficient substrate utilization. Pollock VV, Conover RC, Johnson MK, Barber MJ. Arch Biochem Biophys 409 315-326 (2003)
  45. Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway. Dow JM, Gabel F, Sargent F, Palmer T. Biochem J 452 57-66 (2013)
  46. Interaction of product analogues with the active site of rhodobacter sphaeroides dimethyl sulfoxide reductase. George GN, Nelson KJ, Harris HH, Doonan CJ, Rajagopalan KV. Inorg Chem 46 3097-3104 (2007)
  47. Mediated electrochemistry of dimethyl sulfoxide reductase from Rhodobacter capsulatus. Chen KI, McEwan AG, Bernhardt PV. J Biol Inorg Chem 14 409-419 (2009)
  48. Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. Butler CS, Ferguson SJ, Berks BC, Thomson AJ, Cheesman MR, Richardson DJ. FEBS Lett 500 71-74 (2001)
  49. Characterisation of the mob locus from Rhodobacter sphaeroides required for molybdenum cofactor biosynthesis. Palmer T, Goodfellow IP, Sockett RE, McEwan AG, Boxer DH. Biochim Biophys Acta 1395 135-140 (1998)
  50. Generation and biomimetic chemistry of tungsten-dithiolene complexes containing the hydrotris(3,5-dimethylpyrazol-1-yl)borate ligand. Eagle AA, George GN, Tiekink ER, Young CG. J Inorg Biochem 76 39-45 (1999)
  51. Spectroscopic studies of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Thermococcus litoralis. Dhawan IK, Roy R, Koehler BP, Mukund S, Adams MW, Johnson MK. J Biol Inorg Chem 5 313-327 (2000)
  52. Synthesis and characterization of molybdenum oxo complexes of two tripodal ligands: reactivity studies of a functional model for molybdenum oxotransferases. Thapper A, Behrens A, Fryxelius J, Johansson MH, Prestopino F, Czaun M, Rehder D, Nordlander E. Dalton Trans 3566-3571 (2005)
  53. Addressing Serine Lability in a Paramagnetic Dimethyl Sulfoxide Reductase Catalytic Intermediate. Kc K, Yang J, Kirk ML. Inorg Chem 60 9233-9237 (2021)
  54. Cobalt hexaamine mediated electrocatalytic voltammetry of dimethyl sulfoxide reductase: driving force effects on catalysis. Chen KI, McEwan AG, Bernhardt PV. J Biol Inorg Chem 16 227-234 (2011)
  55. Methane, arsenic, selenium and the origins of the DMSO reductase family. Wells M, Kanmanii NJ, Al Zadjali AM, Janecka JE, Basu P, Oremland RS, Stolz JF. Sci Rep 10 10946 (2020)
  56. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Solomon PS, Lane I, Hanson GR, McEwan AG. Eur J Biochem 246 200-203 (1997)
  57. Low-temperature, high yield synthesis, and convenient isolation of the high-electron-density cluster compound Ta6Br14.8H2O for use in biomacromolecular crystallographic phase determination. Hay DN, Messerle L. J Struct Biol 139 147-151 (2002)
  58. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Tiedemann K, Iobbi-Nivol C, Leimkühler S. Molecules 27 2993 (2022)
  59. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Wells M, Kim M, Akob DM, Basu P, Stolz JF. Microbiol Spectr e0414522 (2023)
  60. Replacement of Molybdenum by Tungsten in a Biomimetic Complex Leads to an Increase in Oxygen Atom Transfer Catalytic Activity. Ćorović MZ, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Inorg Chem 61 12415-12424 (2022)
  61. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus. Knäblein J, Dobbek H, Ehlert S, Schneider F. Biol Chem 378 293-302 (1997)
  62. Organization of the DMSO respiratory operon of Rhodobacter capsulatus and its consequences for homologous expression of DMSOR/TMAOR. Knäblein J, Dobbek H, Schneider F. Biol Chem 378 303-308 (1997)
  63. Resorcinol Hydroxylase of Azoarcus anaerobius: Molybdenum Dependence, Activity, and Heterologous Expression. Darley PI, Hellstern J, Schink B, Philipp B. Curr Microbiol 77 3385-3396 (2020)