1dwx Citations

Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.

Biochemistry 39 4608-21 (2000)
Related entries: 1df1, 1dwv, 1dww, 1noc, 1nod, 1nos, 1qom, 2nod, 2nos, 3nod

Cited: 50 times
EuropePMC logo PMID: 10769116

Abstract

Nitric oxide synthases (NOSs) catalyze two mechanistically distinct, tetrahydrobiopterin (H(4)B)-dependent, heme-based oxidations that first convert L-arginine (L-Arg) to N(omega)-hydroxy-L-arginine (NHA) and then NHA to L-citrulline and nitric oxide. Structures of the murine inducible NOS oxygenase domain (iNOS(ox)) complexed with NHA indicate that NHA and L-Arg both bind with the same conformation adjacent to the heme iron and neither interacts directly with it nor with H(4)B. Steric restriction of dioxygen binding to the heme in the NHA complex suggests either small conformational adjustments in the ternary complex or a concerted reaction of dioxygen with NHA and the heme iron. Interactions of the NHA hydroxyl with active center beta-structure and the heme ring polarize and distort the hydroxyguanidinium to increase substrate reactivity. Steric constraints in the active center rule against superoxo-iron accepting a hydrogen atom from the NHA hydroxyl in their initial reaction, but support an Fe(III)-peroxo-NHA radical conjugate as an intermediate. However, our structures do not exclude an oxo-iron intermediate participating in either L-Arg or NHA oxidation. Identical binding modes for active H(4)B, the inactive quinonoid-dihydrobiopterin (q-H(2)B), and inactive 4-amino-H(4)B indicate that conformational differences cannot explain pterin inactivity. Different redox and/or protonation states of q-H(2)B and 4-amino-H(4)B relative to H(4)B likely affect their ability to electronically influence the heme and/or undergo redox reactions during NOS catalysis. On the basis of these structures, we propose a testable mechanism where neutral H(4)B transfers both an electron and a 3,4-amide proton to the heme during the first step of NO synthesis.

Articles - 1dwx mentioned but not cited (1)

  1. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase. Kabir M, Sudhamsu J, Crane BR, Yeh SR, Rousseau DL. Biochemistry 47 12389-12397 (2008)


Reviews citing this publication (13)

  1. Nitric oxide synthases: structure, function and inhibition. Alderton WK, Cooper CE, Knowles RG. Biochem J 357 593-615 (2001)
  2. High-valent iron in chemical and biological oxidations. Groves JT. J Inorg Biochem 100 434-447 (2006)
  3. The bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Groves JT. Proc Natl Acad Sci U S A 100 3569-3574 (2003)
  4. Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Werner ER, Gorren AC, Heller R, Werner-Felmayer G, Mayer B. Exp Biol Med (Maywood) 228 1291-1302 (2003)
  5. Nitric oxide synthesis in the kidney: isoforms, biosynthesis, and functions in health. Kone BC. Semin Nephrol 24 299-315 (2004)
  6. Nitric oxide synthase in plants: Where do we stand? Santolini J, André F, Jeandroz S, Wendehenne D. Nitric Oxide 63 30-38 (2017)
  7. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. Santolini J. J Inorg Biochem 105 127-141 (2011)
  8. Is survival possible without arachidonate metabolites in the brain during systemic infection? Zhang J, Rivest S. News Physiol Sci 18 137-142 (2003)
  9. Flavin-containing heme enzymes. Mowat CG, Gazur B, Campbell LP, Chapman SK. Arch Biochem Biophys 493 37-52 (2010)
  10. Alternative nitric oxide-producing substrates for NO synthases. Mansuy D, Boucher JL. Free Radic Biol Med 37 1105-1121 (2004)
  11. Protein-protein interactions involving inducible nitric oxide synthase. Zhang W, Kuncewicz T, Yu ZY, Zou L, Xu X, Kone BC. Acta Physiol Scand 179 137-142 (2003)
  12. Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase. Nishida CR, Knudsen G, Straub W, Ortiz de Montellano PR. Drug Metab Rev 34 479-501 (2002)
  13. Hunting oxygen complexes of nitric oxide synthase at low temperature and high pressure. Marchal S, Gorren AC, Andersson KK, Lange R. Biochem Biophys Res Commun 338 529-535 (2005)

Articles citing this publication (36)

  1. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED. Nat Chem Biol 4 700-707 (2008)
  2. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III. Panda K, Rosenfeld RJ, Ghosh S, Meade AL, Getzoff ED, Stuehr DJ. J Biol Chem 277 31020-31030 (2002)
  3. Molecular architecture of mammalian nitric oxide synthases. Campbell MG, Smith BC, Potter CS, Carragher B, Marletta MA. Proc Natl Acad Sci U S A 111 E3614-23 (2014)
  4. Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Smith BC, Underbakke ES, Kulp DW, Schief WR, Marletta MA. Proc Natl Acad Sci U S A 110 E3577-86 (2013)
  5. Inhibition of human arginase I by substrate and product analogues. Di Costanzo L, Ilies M, Thorn KJ, Christianson DW. Arch Biochem Biophys 496 101-108 (2010)
  6. Structural studies of constitutive nitric oxide synthases with diatomic ligands bound. Li H, Igarashi J, Jamal J, Yang W, Poulos TL. J Biol Inorg Chem 11 753-768 (2006)
  7. Crystal structures of cyanide complexes of P450cam and the oxygenase domain of inducible nitric oxide synthase-structural models of the short-lived oxygen complexes. Fedorov R, Ghosh DK, Schlichting I. Arch Biochem Biophys 409 25-31 (2003)
  8. Electrochemistry of pterin cofactors and inhibitors of nitric oxide synthase. Gorren AC, Kungl AJ, Schmidt K, Werner ER, Mayer B. Nitric Oxide 5 176-186 (2001)
  9. Nitric-oxide synthase forms N-NO-pterin and S-NO-cys: implications for activity, allostery, and regulation. Rosenfeld RJ, Bonaventura J, Szymczyna BR, MacCoss MJ, Arvai AS, Yates JR, Tainer JA, Getzoff ED. J Biol Chem 285 31581-31589 (2010)
  10. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Biochem J 358 201-208 (2001)
  11. Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Smith BC, Fernhoff NB, Marletta MA. Biochemistry 51 1028-1040 (2012)
  12. Conformationally restricted dipeptide amides as potent and selective neuronal nitric oxide synthase inhibitors. Ji H, Gómez-Vidal JA, Martasek P, Roman LJ, Silverman RB. J Med Chem 49 6254-6263 (2006)
  13. Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation. Giroud C, Moreau M, Mattioli TA, Balland V, Boucher JL, Xu-Li Y, Stuehr DJ, Santolini J. J Biol Chem 285 7233-7245 (2010)
  14. Single crystal structural and absorption spectral characterizations of nitric oxide synthase complexed with N(omega)-hydroxy-L-arginine and diatomic ligands. Doukov T, Li H, Soltis M, Poulos TL. Biochemistry 48 10246-10254 (2009)
  15. New anti-inflammatory thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles with antioxidant properties as potential iNOS inhibitors. Tiperciuc B, Pârvu A, Tamaian R, Nastasă C, Ionuţ I, Oniga O. Arch Pharm Res 36 702-714 (2013)
  16. Interactions between substrates and the haem-bound nitric oxide of ferric and ferrous bacterial nitric oxide synthases. Chartier FJ, Couture M. Biochem J 401 235-245 (2007)
  17. Rational design of a fluorescent NADPH derivative imaging constitutive nitric-oxide synthases upon two-photon excitation. Li Y, Wang H, Tarus B, Perez MR, Morellato L, Henry E, Berka V, Tsai AL, Ramassamy B, Dhimane H, Dessy C, Tauc P, Boucher JL, Deprez E, Slama-Schwok A. Proc Natl Acad Sci U S A 109 12526-12531 (2012)
  18. Roles of the heme proximal side residues tryptophan409 and tryptophan421 of neuronal nitric oxide synthase in the electron transfer reaction. Yumoto T, Sagami I, Daff S, Shimizu T. J Inorg Biochem 82 163-170 (2000)
  19. XAS characterization of end-on and side-on peroxoiron(III) complexes of the neutral pentadentate N-donor ligand N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine. Koehntop KD, Rohde JU, Costas M, Que L. Dalton Trans 3191-3198 (2004)
  20. Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase. Wang ZQ, Tejero J, Wei CC, Haque MM, Santolini J, Fadlalla M, Biswas A, Stuehr DJ. J Inorg Biochem 108 203-215 (2012)
  21. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T, Sagami I, Daff S, Shimizu T. Biochem Biophys Res Commun 282 1092-1097 (2001)
  22. Theoretical studies on the binding of rhenium(I) complexes to inducible nitric oxide synthase. Oliveira BL, Moreira IS, Fernandes PA, Ramos MJ, Santos I, Correia JD. J Mol Graph Model 45 13-25 (2013)
  23. Identification of a flavin mononucleotide module residue critical for activity of inducible nitrite oxide synthase. Liu XD, Mazumdar T, Xu Y, Getzoff ED, Eissa NT. J Immunol 183 5977-5982 (2009)
  24. Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: studies on the nature and mechanism of tight pterin binding. Heine CL, Kolesnik B, Schmidt R, Werner ER, Mayer B, Gorren AC. Biochemistry 53 1284-1295 (2014)
  25. Tetrahydrobiopterin redox cycling in nitric oxide synthase: evidence supports a through-heme electron delivery. Ramasamy S, Haque MM, Gangoda M, Stuehr DJ. FEBS J 283 4491-4501 (2016)
  26. Cavity scaling: automated refinement of cavity-aware motifs in protein function prediction. Chen BY, Bryant DH, Fofanov VY, Kristensen DM, Cruess AE, Kimmel M, Lichtarge O, Kavraki LE. J Bioinform Comput Biol 5 353-382 (2007)
  27. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. Lefèvre-Groboillot D, Boucher JL, Mansuy D, Stuehr DJ. FEBS J 273 180-191 (2006)
  28. Relationship between the structure of guanidines and N-hydroxyguanidines, their binding to inducible nitric oxide synthase (iNOS) and their iNOS-catalysed oxidation to NO. Lefèvre-Groboillot D, Boucher JL, Stuehr DJ, Mansuy D. FEBS J 272 3172-3183 (2005)
  29. Unusual role of Tyr588 of neuronal nitric oxide synthase in controlling substrate specificity and electron transfer. Sato Y, Sagami I, Matsui T, Shimizu T. Biochem Biophys Res Commun 281 621-626 (2001)
  30. The role of tetrahydrobiopterin in catalysis by nitric oxide synthase. Morao I, Periyasamy G, Hillier IH, Joule JA. Chem Commun (Camb) 3525-3527 (2006)
  31. Oxygen activation in neuronal NO synthase: resolving the consecutive mono-oxygenation steps. Papale D, Bruckmann C, Gazur B, Miles CS, Mowat CG, Daff S. Biochem J 443 505-514 (2012)
  32. Probing heme coordination states of inducible nitric oxide synthase with a ReI(imidazole-alkyl-nitroarginine) sensitizer-wire. Le Nguyen YH, Winkler JR, Gray HB. J Phys Chem B 111 6628-6633 (2007)
  33. Elucidating the toxicity mechanism of AFM2 and the protective role of quercetin in albino mice. Onur M, Yalçın E, Çavuşoğlu K, Acar A. Sci Rep 13 1237 (2023)
  34. Catalytic mechanism of DcsB: Arginase framework used for hydrolyzing its inhibitor. Oda K, Sakaguchi T, Matoba Y. Protein Sci 31 e4338 (2022)
  35. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. Horn M, Nienhaus K, Nienhaus GU. F1000Res 3 290 (2014)
  36. Importance of Val567 on heme environment and substrate recognition of neuronal nitric oxide synthase. Olsbu IK, Zoppellaro G, Andersson KK, Boucher JL, Hersleth HP. FEBS Open Bio 8 1553-1566 (2018)


Related citations provided by authors (4)

  1. N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.. Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff ED EMBO J 18 6271-81 (1999)
  2. Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.. Ghosh DK, Crane BR, Ghosh S, Wolan D, Gachhui R, Crooks C, Presta A, Tainer JA, Getzoff ED, Stuehr DJ EMBO J 18 6260-70 (1999)
  3. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate.. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA Science 279 2121-6 (1998)
  4. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes.. Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA Science 278 425-31 (1997)