1e8b Citations

The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding.

EMBO J 20 1519-29 (2001)
Cited: 54 times
EuropePMC logo PMID: 11285216

Abstract

The solution structure of the (6)F1(1)F2(2)F2 fragment from the gelatin-binding region of fibronectin has been determined (Protein Data Bank entry codes 1e88 and 1e8b). The structure reveals an extensive hydrophobic interface between the non-contiguous (6)F1 and (2)F2 modules. The buried surface area between (6)F1 and (2)F2 ( approximately 870 A(2)) is the largest intermodule interface seen in fibronectin to date. The dissection of (6)F1(1)F2(2)F2 into the (6)F1(1)F2 pair and (2)F2 results in near-complete loss of gelatin-binding activity. The hairpin topology of (6)F1(1)F2(2)F2 may facilitate intramolecular contact between the matrix assembly regions flanking the gelatin-binding domain. This is the first high-resolution study to reveal a compact, globular arrangement of modules in fibronectin. This arrangement is not consistent with the view that fibronectin is simply a linear 'string of beads'.

Articles - 1e8b mentioned but not cited (3)

  1. The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. Pickford AR, Smith SP, Staunton D, Boyd J, Campbell ID. EMBO J. 20 1519-1529 (2001)
  2. Protein structure similarity from Principle Component Correlation analysis. Zhou X, Chou J, Wong ST. BMC Bioinformatics 7 40 (2006)
  3. A Novel In Silico Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery. Perera DDBD, Perera KML, Peiris DC. Biology (Basel) 10 1113 (2021)


Reviews citing this publication (9)

  1. Mammalian collagen receptors. Leitinger B, Hohenester E. Matrix Biol. 26 146-155 (2007)
  2. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. Henderson B, Nair S, Pallas J, Williams MA. FEMS Microbiol. Rev. 35 147-200 (2011)
  3. Domain structure and organisation in extracellular matrix proteins. Hohenester E, Engel J. Matrix Biol. 21 115-128 (2002)
  4. Survey of the year 2001 commercial optical biosensor literature. Rich RL, Myszka DG. J. Mol. Recognit. 15 352-376 (2002)
  5. SEL1L a multifaceted protein playing a role in tumor progression. Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, Barberis M, Pupa SM, Scarpa A, Ménard S. J. Cell. Physiol. 208 23-38 (2006)
  6. Fibronectin Mechanobiology Regulates Tumorigenesis. Wang K, Seo BR, Fischbach C, Gourdon D. Cell Mol Bioeng 9 1-11 (2016)
  7. Dynamic structure of plasma fibronectin. Maurer LM, Ma W, Mosher DF. Crit. Rev. Biochem. Mol. Biol. 51 213-227 (2015)
  8. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. Addi C, Murschel F, De Crescenzo G. Tissue Eng Part B Rev 23 163-182 (2017)
  9. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Dalton CJ, Lemmon CA. Cells 10 2443 (2021)

Articles citing this publication (42)

  1. Structural basis of integrin activation by talin. Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID. Cell 128 171-182 (2007)
  2. Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Höök M, Campbell ID, Potts JR. Nature 423 177-181 (2003)
  3. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. To WS, Midwood KS. Fibrogenesis Tissue Repair 4 21 (2011)
  4. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, Lowe E, Mahoney DJ, Tammi MI, Kahmann JD, Campbell ID, Day AJ, Jackson DG. Mol. Cell 13 483-496 (2004)
  5. Fibrillin assembly requires fibronectin. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP. Mol. Biol. Cell 20 846-858 (2009)
  6. Structure of three tandem filamin domains reveals auto-inhibition of ligand binding. Lad Y, Kiema T, Jiang P, Pentikäinen OT, Coles CH, Campbell ID, Calderwood DA, Ylänne J. EMBO J. 26 3993-4004 (2007)
  7. Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Wienke D, MacFadyen JR, Isacke CM. Mol. Biol. Cell 14 3592-3604 (2003)
  8. Sperm coating mechanism from the 1.8 A crystal structure of PDC-109-phosphorylcholine complex. Wah DA, Fernández-Tornero C, Sanz L, Romero A, Calvete JJ. Structure 10 505-514 (2002)
  9. Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Erat MC, Slatter DA, Lowe ED, Millard CJ, Farndale RW, Campbell ID, Vakonakis I. Proc. Natl. Acad. Sci. U.S.A. 106 4195-4200 (2009)
  10. Complement regulation at the molecular level: the structure of decay-accelerating factor. Lukacik P, Roversi P, White J, Esser D, Smith GP, Billington J, Williams PA, Rudd PM, Wormald MR, Harvey DJ, Crispin MD, Radcliffe CM, Dwek RA, Evans DJ, Morgan BP, Smith RA, Lea SM. Proc. Natl. Acad. Sci. U.S.A. 101 1279-1284 (2004)
  11. The link module from ovulation- and inflammation-associated protein TSG-6 changes conformation on hyaluronan binding. Blundell CD, Mahoney DJ, Almond A, DeAngelis PL, Kahmann JD, Teriete P, Pickford AR, Campbell ID, Day AJ. J. Biol. Chem. 278 49261-49270 (2003)
  12. NMR structure of the LCCL domain and implications for DFNA9 deafness disorder. Liepinsh E, Trexler M, Kaikkonen A, Weigelt J, Bányai L, Patthy L, Otting G. EMBO J. 20 5347-5353 (2001)
  13. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. Maurer LM, Tomasini-Johansson BR, Ma W, Annis DS, Eickstaedt NL, Ensenberger MG, Satyshur KA, Mosher DF. J. Biol. Chem. 285 41087-41099 (2010)
  14. Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Napper CE, Drickamer K, Taylor ME. Biochem. J. 395 579-586 (2006)
  15. Motogenic sites in human fibronectin are masked by long range interactions. Vakonakis I, Staunton D, Ellis IR, Sarkies P, Flanagan A, Schor AM, Schor SL, Campbell ID. J. Biol. Chem. 284 15668-15675 (2009)
  16. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3. Ifon ET, Pang AL, Johnson W, Cashman K, Zimmerman S, Muralidhar S, Chan WY, Casey J, Rosenthal LJ. Cancer Cell Int. 5 19 (2005)
  17. Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. Erat MC, Sladek B, Campbell ID, Vakonakis I. J. Biol. Chem. 288 17441-17450 (2013)
  18. GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Pol-Fachin L, Fernandes CL, Verli H. Carbohydr. Res. 344 491-500 (2009)
  19. Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. Kvansakul M, Hopf M, Ries A, Timpl R, Hohenester E. EMBO J. 20 5342-5346 (2001)
  20. Adsorption-induced fibronectin aggregation and fibrillogenesis. Pellenc D, Berry H, Gallet O. J Colloid Interface Sci 298 132-144 (2006)
  21. Combinatorial design of an Anticalin directed against the extra-domain b for the specific targeting of oncofetal fibronectin. Gebauer M, Schiefner A, Matschiner G, Skerra A. J. Mol. Biol. 425 780-802 (2013)
  22. Cooperative binding and activation of fibronectin by a bacterial surface protein. Marjenberg ZR, Ellis IR, Hagan RM, Prabhakaran S, Höök M, Talay SR, Potts JR, Staunton D, Schwarz-Linek U. J. Biol. Chem. 286 1884-1894 (2011)
  23. Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding. Graille M, Pagano M, Rose T, Ravaux MR, van Tilbeurgh H. Structure 18 710-718 (2010)
  24. Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI. Erat MC, Schwarz-Linek U, Pickford AR, Farndale RW, Campbell ID, Vakonakis I. J. Biol. Chem. 285 33764-33770 (2010)
  25. The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin--a tale with a twist. Rudiño-Piñera E, Ravelli RB, Sheldrick GM, Nanao MH, Korostelev VV, Werner JM, Schwarz-Linek U, Potts JR, Garman EF. J. Mol. Biol. 368 833-844 (2007)
  26. Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. Ohashi T, Erickson HP. J. Biol. Chem. 286 39188-39199 (2011)
  27. The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains. Gehrmann M, Briknarová K, Bányai L, Patthy L, Llinás M. Biol. Chem. 383 137-148 (2002)
  28. Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. Millard CJ, Campbell ID, Pickford AR. FEBS Lett. 579 4529-4534 (2005)
  29. The streptococcal binding site in the gelatin-binding domain of fibronectin is consistent with a non-linear arrangement of modules. Atkin KE, Brentnall AS, Harris G, Bingham RJ, Erat MC, Millard CJ, Schwarz-Linek U, Staunton D, Vakonakis I, Campbell ID, Potts JR. J. Biol. Chem. 285 36977-36983 (2010)
  30. Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins. Pol-Fachin L, Verli H, Lins RD. J Comput Chem 35 2087-2095 (2014)
  31. A ligand-induced conformational change in apolipoprotein(a) enhances covalent Lp(a) formation. Becker L, Webb BA, Chitayat S, Nesheim ME, Koschinsky ML. J. Biol. Chem. 278 14074-14081 (2003)
  32. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A(2) receptor 1 modulate binding and migratory responses to collagen. Takahashi S, Watanabe K, Watanabe Y, Fujioka D, Nakamura T, Nakamura K, Obata JE, Kugiyama K. FEBS Lett. 589 829-835 (2015)
  33. SAXS models of TGFBIp reveal a trimeric structure and show that the overall shape is not affected by the Arg124His mutation. Basaiawmoit RV, Oliveira CL, Runager K, Sørensen CS, Behrens MA, Jonsson BH, Kristensen T, Klintworth GK, Enghild JJ, Pedersen JS, Otzen DE. J. Mol. Biol. 408 503-513 (2011)
  34. High-level expression of a soluble and functional fibronectin type II domain from MMP-2 in the Escherichia coli cytoplasm for solution NMR studies. Peisley AA, Gooley PR. Protein Expr. Purif. 53 124-131 (2007)
  35. Fibronectin in cell adhesion and migration via N-glycosylation. Hsiao CT, Cheng HW, Huang CM, Li HR, Ou MH, Huang JR, Khoo KH, Yu HW, Chen YQ, Wang YK, Chiou A, Kuo JC. Oncotarget 8 70653-70668 (2017)
  36. Co-purified gelatinases alter the stability and biological activities of human plasma fibronectin preparations. Pal S, Chen Z, Xu X, Mikhailova M, Steffensen B. J. Periodont. Res. 45 292-295 (2010)
  37. A structural network associated with the kallikrein-kinin and renin-angiotensin systems. Stoka V, Turk V. Biol. Chem. 391 443-454 (2010)
  38. Gelatin functionalised porous titanium alloy implants for orthopaedic applications. Vanderleyden E, Van Bael S, Chai YC, Kruth JP, Schrooten J, Dubruel P. Mater Sci Eng C Mater Biol Appl 42 396-404 (2014)
  39. Molecular Dissection of the Campylobacter jejuni CadF and FlpA Virulence Proteins in Binding to Host Cell Fibronectin. Talukdar PK, Negretti NM, Turner KL, Konkel ME. Microorganisms 8 (2020)
  40. Fibronectin structure: a new piece of the puzzle emerges. Bingham RJ, Potts JR. Structure 18 660-661 (2010)
  41. Insights into Collagen Uptake by C-type Mannose Receptors from the Crystal Structure of Endo180 Domains 1-4. Paracuellos P, Briggs DC, Carafoli F, Lončar T, Hohenester E. Structure 23 2133-2142 (2015)
  42. The collagen receptor uPARAP/Endo180 regulates collectins through unique structural elements in its FNII domain. Nørregaard KS, Krigslund O, Behrendt N, Engelholm LH, Jürgensen HJ. J Biol Chem 295 9157-9170 (2020)