1elq Citations

Crystal structure of the cystine C-S lyase from Synechocystis: stabilization of cysteine persulfide for FeS cluster biosynthesis.

Proc Natl Acad Sci U S A 97 3856-61 (2000)
Cited: 38 times
EuropePMC logo PMID: 10760256

Abstract

FeS clusters are versatile cofactors of a variety of proteins, but the mechanisms of their biosynthesis are still unknown. The cystine C-S lyase from Synechocystis has been identified as a participant in ferredoxin FeS cluster formation. Herein, we report on the crystal structure of the lyase and of a complex with the reaction products of cystine cleavage at 1.8- and 1.55-A resolution, respectively. The sulfur-containing product was unequivocally identified as cysteine persulfide. The reactive persulfide group is fixed by a hydrogen bond to His-114 in the center of a hydrophobic pocket and is thereby shielded from the solvent. Binding and stabilization of the cysteine persulfide represent an alternative to the generation of a protein-bound persulfide by NifS-like proteins and point to the general importance of persulfidic compounds for FeS cluster assembly.

Articles - 1elq mentioned but not cited (3)

  1. Natural history of S-adenosylmethionine-binding proteins. Kozbial PZ, Mushegian AR. BMC Struct Biol 5 19 (2005)
  2. Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5'-phosphate-dependent enzymes. Paiardini A, Bossa F, Pascarella S. Protein Sci 13 2992-3005 (2004)
  3. Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism. Irani S, Naowarojna N, Tang Y, Kathuria KR, Wang S, Dhembi A, Lee N, Yan W, Lyu H, Costello CE, Liu P, Zhang YJ. Cell Chem Biol 25 519-529.e4 (2018)


Reviews citing this publication (10)

  1. Structure, function, and formation of biological iron-sulfur clusters. Johnson DC, Dean DR, Smith AD, Johnson MK. Annu Rev Biochem 74 247-281 (2005)
  2. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Lill R, Kispal G. Trends Biochem Sci 25 352-356 (2000)
  3. Chemical Biology of H2S Signaling through Persulfidation. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem Rev 118 1253-1337 (2018)
  4. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. Kessler D. FEMS Microbiol Rev 30 825-840 (2006)
  5. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Mühlenhoff U, Lill R. Biochim Biophys Acta 1459 370-382 (2000)
  6. Chemical aspects of hydrogen sulfide measurements in physiological samples. Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A. Biochim Biophys Acta 1840 876-891 (2014)
  7. A tribute to sulfur. Beinert H. Eur J Biochem 267 5657-5664 (2000)
  8. Nifs and Sufs in malaria. Ellis KE, Clough B, Saldanha JW, Wilson RJ. Mol Microbiol 41 973-981 (2001)
  9. Biological chemistry of hydrogen sulfide and persulfides. Cuevasanta E, Möller MN, Alvarez B. Arch Biochem Biophys 617 9-25 (2017)
  10. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Das M, Dewan A, Shee S, Singh A. Antioxidants (Basel) 10 (2021)

Articles citing this publication (25)

  1. Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. Mühlenhoff U, Gerber J, Richhardt N, Lill R. EMBO J 22 4815-4825 (2003)
  2. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. J Biol Chem 278 38352-38359 (2003)
  3. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ. J Mol Biol 331 643-652 (2003)
  4. Analysis of the E. coli NifS CsdB protein at 2.0 A reveals the structural basis for perselenide and persulfide intermediate formation. Lima CD. J Mol Biol 315 1199-1208 (2002)
  5. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine {beta}-synthase. Koutmos M, Kabil O, Smith JL, Banerjee R. Proc Natl Acad Sci U S A 107 20958-20963 (2010)
  6. Biogenesis of iron-sulfur proteins in eukaryotes: components, mechanism and pathology. Gerber J, Lill R. Mitochondrion 2 71-86 (2002)
  7. Structure and catalytic mechanism of eukaryotic selenocysteine synthase. Ganichkin OM, Xu XM, Carlson BA, Mix H, Hatfield DL, Gladyshev VN, Wahl MC. J Biol Chem 283 5849-5865 (2008)
  8. Two structures of alliinase from Alliium sativum L.: apo form and ternary complex with aminoacrylate reaction intermediate covalently bound to the PLP cofactor. Shimon LJ, Rabinkov A, Shin I, Miron T, Mirelman D, Wilchek M, Frolow F. J Mol Biol 366 611-625 (2007)
  9. Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi. Numoto N, Nakagawa T, Kita A, Sasayama Y, Fukumori Y, Miki K. Proc Natl Acad Sci U S A 102 14521-14526 (2005)
  10. Structural changes during cysteine desulfurase CsdA and sulfur acceptor CsdE interactions provide insight into the trans-persulfuration. Kim S, Park S. J Biol Chem 288 27172-27180 (2013)
  11. Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase. Omi R, Kurokawa S, Mihara H, Hayashi H, Goto M, Miyahara I, Kurihara T, Hirotsu K, Esaki N. J Biol Chem 285 12133-12139 (2010)
  12. Reactions of isolated persulfides provide insights into the interplay between H2S and persulfide reactivity. Bailey TS, Pluth MD. Free Radic Biol Med 89 662-667 (2015)
  13. Purification and characterization of the aromatic desulfinase, 2-(2'-hydroxyphenyl)benzenesulfinate desulfinase. Watkins LM, Rodriguez R, Schneider D, Broderick R, Cruz M, Chambers R, Ruckman E, Cody M, Mrachko GT. Arch Biochem Biophys 415 14-23 (2003)
  14. Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. Itoh Y, Sekine S, Matsumoto E, Akasaka R, Takemoto C, Shirouzu M, Yokoyama S. J Mol Biol 385 1456-1469 (2009)
  15. Characterization of C-S Lyase from C. diphtheriae: a possible target for new antimicrobial drugs. Astegno A, Giorgetti A, Allegrini A, Cellini B, Dominici P. Biomed Res Int 2013 701536 (2013)
  16. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. Blauenburg B, Mielcarek A, Altegoer F, Fage CD, Linne U, Bange G, Marahiel MA. PLoS One 11 e0158749 (2016)
  17. Chemogenomics of pyridoxal 5'-phosphate dependent enzymes. Singh R, Spyrakis F, Cozzini P, Paiardini A, Pascarella S, Mozzarelli A. J Enzyme Inhib Med Chem 28 183-194 (2013)
  18. Crystal structure of Escherichia coli diaminopropionate ammonia-lyase reveals mechanism of enzyme activation and catalysis. Bisht S, Rajaram V, Bharath SR, Kalyani JN, Khan F, Rao AN, Savithri HS, Murthy MR. J Biol Chem 287 20369-20381 (2012)
  19. Slr0077 of Synechocystis has cysteine desulfurase as well as cystine lyase activity. Kessler D. Biochem Biophys Res Commun 320 571-577 (2004)
  20. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase. Astegno A, Allegrini A, Piccoli S, Giorgetti A, Dominici P. Proteins 83 78-90 (2015)
  21. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus. Kezuka Y, Yoshida Y, Nonaka T. Proteins 80 2447-2458 (2012)
  22. Characterisation of the l-Cystine β-Lyase PatB from Phaeobacter inhibens: An Enzyme Involved in the Biosynthesis of the Marine Antibiotic Tropodithietic Acid. Dickschat JS, Rinkel J, Klapschinski T, Petersen J. Chembiochem 18 2260-2267 (2017)
  23. A comparative study of various computational approaches in calculating the structure of pyridoxal 5'-phosphate (PLP)-dependent beta-lyase protein. The importance of protein environment. Prabhakar R, Morokuma K, Musaev DG. J Comput Chem 26 443-446 (2005)
  24. The ABCB7-Like Transporter PexA in Rhodobacter capsulatus Is Involved in the Translocation of Reactive Sulfur Species. Riedel S, Siemiatkowska B, Watanabe M, Müller CS, Schünemann V, Hoefgen R, Leimkühler S. Front Microbiol 10 406 (2019)
  25. Structural and Biochemical Characterization of Staphylococcus aureus Cysteine Desulfurase Complex SufSU. Hudspeth JD, Boncella AE, Sabo ET, Andrews T, Boyd JM, Morrison CN. ACS Omega 7 44124-44133 (2022)