1f0j Citations

Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity.

Abstract

Cyclic nucleotides are second messengers that are essential in vision, muscle contraction, neurotransmission, exocytosis, cell growth, and differentiation. These molecules are degraded by a family of enzymes known as phosphodiesterases, which serve a critical function by regulating the intracellular concentration of cyclic nucleotides. We have determined the three-dimensional structure of the catalytic domain of phosphodiesterase 4B2B to 1.77 angstrom resolution. The active site has been identified and contains a cluster of two metal atoms. The structure suggests the mechanism of action and basis for specificity and will provide a framework for structure-assisted drug design for members of the phosphodiesterase family.

Articles - 1f0j mentioned but not cited (10)

  1. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, Adams DR, Houslay MD. Biochem J 398 23-36 (2006)
  2. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  3. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Fox D, Burgin AB, Gurney ME. Cell Signal 26 657-663 (2014)
  4. Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Cedervall P, Aulabaugh A, Geoghegan KF, McLellan TJ, Pandit J. Proc Natl Acad Sci U S A 112 E1414-22 (2015)
  5. Characterization of a catalytic ligand bridging metal ions in phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations. Xiong Y, Lu HT, Li Y, Yang GF, Zhan CG. Biophys J 91 1858-1867 (2006)
  6. CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Trifilieff A, Keller TH, Press NJ, Howe T, Gedeck P, Beer D, Walker C. Br J Pharmacol 144 1002-1010 (2005)
  7. The HD-Domain Metalloprotein Superfamily: An Apparent Common Protein Scaffold with Diverse Chemistries. Langton M, Sun S, Ueda C, Markey M, Chen J, Paddy I, Jiang P, Chin N, Milne A, Pandelia ME. Catalysts 10 1191 (2020)
  8. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  9. Elucidating arsenic-bound proteins in the protein data bank: data mining and amino acid cross-validation through Raman spectroscopy. Nayek U, Acharya S, Abdul Salam AA. RSC Adv 13 36261-36279 (2023)
  10. Low potency toxins reveal dense interaction networks in metabolism. Bains W. BMC Syst Biol 10 19 (2016)


Reviews citing this publication (37)

  1. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Conti M, Beavo J. Annu Rev Biochem 76 481-511 (2007)
  2. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Lugnier C. Pharmacol Ther 109 366-398 (2006)
  3. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Houslay MD, Adams DR. Biochem J 370 1-18 (2003)
  4. Keynote review: phosphodiesterase-4 as a therapeutic target. Houslay MD, Schafer P, Zhang KY. Drug Discov Today 10 1503-1519 (2005)
  5. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Francis SH, Blount MA, Corbin JD. Physiol Rev 91 651-690 (2011)
  6. Cyclic nucleotide phosphodiesterases. Essayan DM. J Allergy Clin Immunol 108 671-680 (2001)
  7. cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Houslay MD, Baillie GS, Maurice DH. Circ Res 100 950-966 (2007)
  8. Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). O'Donnell JM, Zhang HT. Trends Pharmacol Sci 25 158-163 (2004)
  9. PDE4 inhibitors: current status. Spina D. Br J Pharmacol 155 308-315 (2008)
  10. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Mehats C, Andersen CB, Filopanti M, Jin SL, Conti M. Trends Endocrinol Metab 13 29-35 (2002)
  11. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Li H, Zuo J, Tang W. Front Pharmacol 9 1048 (2018)
  12. Phototransduction: crystal clear. Ridge KD, Abdulaev NG, Sousa M, Palczewski K. Trends Biochem Sci 28 479-487 (2003)
  13. Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Cote RH. Int J Impot Res 16 Suppl 1 S28-33 (2004)
  14. Phosphodiesterase-4 inhibitors in the treatment of inflammatory lung disease. Spina D. Drugs 63 2575-2594 (2003)
  15. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Conti M. Mol Endocrinol 14 1317-1327 (2000)
  16. Ribozyme catalysis: not different, just worse. Doudna JA, Lorsch JR. Nat Struct Mol Biol 12 395-402 (2005)
  17. Selective PDE inhibitors as novel treatments for respiratory diseases. Page CP, Spina D. Curr Opin Pharmacol 12 275-286 (2012)
  18. Targeting Metalloenzymes for Therapeutic Intervention. Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Chem Rev 119 1323-1455 (2019)
  19. The next generation of PDE4 inhibitors. Huang Z, Ducharme Y, Macdonald D, Robichaud A. Curr Opin Chem Biol 5 432-438 (2001)
  20. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Castro A, Jerez MJ, Gil C, Martinez A. Med Res Rev 25 229-244 (2005)
  21. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Goraya TA, Cooper DM. Cell Signal 17 789-797 (2005)
  22. PDE4 inhibitors: a review of current developments (2005 - 2009). Pagès L, Gavaldà A, Lehner MD. Expert Opin Ther Pat 19 1501-1519 (2009)
  23. Phosphodiesterase-4 as a potential drug target. Zhang KY, Ibrahim PN, Gillette S, Bollag G. Expert Opin Ther Targets 9 1283-1305 (2005)
  24. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Knott EP, Assi M, Rao SN, Ghosh M, Pearse DD. Int J Mol Sci 18 E696 (2017)
  25. A fascinating tail: cGMP activation of aquaporin-1 ion channels. Boassa D, Yool AJ. Trends Pharmacol Sci 23 558-562 (2002)
  26. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Halpin DM. Int J Chron Obstruct Pulmon Dis 3 543-561 (2008)
  27. G protein signaling: insights from new structures. Preininger AM, Hamm HE. Sci STKE 2004 re3 (2004)
  28. cAMP signalling in Trypanosoma brucei. Seebeck T, Gong K, Kunz S, Schaub R, Shalaby T, Zoraghi R. Int J Parasitol 31 491-498 (2001)
  29. GAF domains: cyclic nucleotides come full circle. Hurley JH. Sci STKE 2003 PE1 (2003)
  30. Selective Phosphodiesterase 4B Inhibitors: A Review. Azam MA, Tripuraneni NS. Sci Pharm 82 453-481 (2014)
  31. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders. Wu C, Rajagopalan S. Obes Rev 17 429-441 (2016)
  32. Phosphodiesterase-4 inhibitors: a review of current developments (2010 - 2012). Gavaldà A, Roberts RS. Expert Opin Ther Pat 23 997-1016 (2013)
  33. Guidelines for the successful generation of protein-ligand complex crystals. Müller I. Acta Crystallogr D Struct Biol 73 79-92 (2017)
  34. Implications of PDE4 structure on inhibitor selectivity across PDE families. Ke H. Int J Impot Res 16 Suppl 1 S24-7 (2004)
  35. Regulation of cyclic nucleotides in the urinary tract. Wheeler MA, Ayyagari RR, Wheeler GL, Weiss RM. J Smooth Muscle Res 41 1-21 (2005)
  36. Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. Cote RH, Gupta R, Irwin MJ, Wang X. Adv Exp Med Biol 1371 33-59 (2022)
  37. Clinical pharmacology of Cilomilast. Down G, Siederer S, Lim S, Daley-Yates P. Clin Pharmacokinet 45 217-233 (2006)

Articles citing this publication (138)

  1. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD. EMBO J 20 1921-1930 (2001)
  2. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD. Proc Natl Acad Sci U S A 100 940-945 (2003)
  3. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. Cell 117 57-68 (2004)
  4. Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, Laliberté F, Liu S, Huang Z, Conti M, Chan CC. J Clin Invest 110 1045-1052 (2002)
  5. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). MacKenzie SJ, Baillie GS, McPhee I, MacKenzie C, Seamons R, McSorley T, Millen J, Beard MB, van Heeke G, Houslay MD. Br J Pharmacol 136 421-433 (2002)
  6. Structural basis for the activity of drugs that inhibit phosphodiesterases. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structure 12 2233-2247 (2004)
  7. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM. Nature 425 98-102 (2003)
  8. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. Mol Cell 15 279-286 (2004)
  9. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Chang B, Grau T, Dangel S, Hurd R, Jurklies B, Sener EC, Andreasson S, Dollfus H, Baumann B, Bolz S, Artemyev N, Kohl S, Heckenlively J, Wissinger B. Proc Natl Acad Sci U S A 106 19581-19586 (2009)
  10. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD. J Biol Chem 278 33351-33363 (2003)
  11. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Nat Biotechnol 23 201-207 (2005)
  12. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Proc Natl Acad Sci U S A 106 18225-18230 (2009)
  13. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H. J Biol Chem 281 21469-21479 (2006)
  14. Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. Tchigvintsev A, Xu X, Singer A, Chang C, Brown G, Proudfoot M, Cui H, Flick R, Anderson WF, Joachimiak A, Galperin MY, Savchenko A, Yakunin AF. J Mol Biol 402 524-538 (2010)
  15. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, Park C, Choy HE, Kim JH, Jeon YH, Chung J. Nat Struct Mol Biol 17 1188-1194 (2010)
  16. Crystal structure of phosphodiesterase 4D and inhibitor complex(1). Lee ME, Markowitz J, Lee JO, Lee H. FEBS Lett 530 53-58 (2002)
  17. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Glavas NA, Ostenson C, Schaefer JB, Vasta V, Beavo JA. Proc Natl Acad Sci U S A 98 6319-6324 (2001)
  18. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT. J Mol Biol 337 355-365 (2004)
  19. Molecular organization of bovine rod cGMP-phosphodiesterase 6. Kameni Tcheudji JF, Lebeau L, Virmaux N, Maftei CG, Cote RH, Lugnier C, Schultz P. J Mol Biol 310 781-791 (2001)
  20. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). Richter W, Conti M. J Biol Chem 277 40212-40221 (2002)
  21. Phosphodiesterase 7A-deficient mice have functional T cells. Yang G, McIntyre KW, Townsend RM, Shen HH, Pitts WJ, Dodd JH, Nadler SG, McKinnon M, Watson AJ. J Immunol 171 6414-6420 (2003)
  22. Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. Vasta V, Shimizu-Albergine M, Beavo JA. Proc Natl Acad Sci U S A 103 19925-19930 (2006)
  23. Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism. Brown PM, Caradoc-Davies TT, Dickson JM, Cooper GJ, Loomes KM, Baker EN. Proc Natl Acad Sci U S A 103 15032-15037 (2006)
  24. Preferential inhibition of T helper 1, but not T helper 2, cytokines in vitro by L-826,141 [4-[2-(3,4-Bisdifluromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-phenyl]-ethyl]3-methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor. Claveau D, Chen SL, O'Keefe S, Zaller DM, Styhler A, Liu S, Huang Z, Nicholson DW, Mancini JA. J Pharmacol Exp Ther 310 752-760 (2004)
  25. Structural insight into substrate specificity of phosphodiesterase 10. Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H. Proc Natl Acad Sci U S A 104 5782-5787 (2007)
  26. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. Wang H, Peng MS, Chen Y, Geng J, Robinson H, Houslay MD, Cai J, Ke H. Biochem J 408 193-201 (2007)
  27. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Huai Q, Wang H, Sun Y, Kim HY, Liu Y, Ke H. Structure 11 865-873 (2003)
  28. 3',5' Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Richter W. Proteins 46 278-286 (2002)
  29. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Huai Q, Wang H, Zhang W, Colman RW, Robinson H, Ke H. Proc Natl Acad Sci U S A 101 9624-9629 (2004)
  30. Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M. J Mol Biol 365 211-225 (2007)
  31. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A. J Mol Biol 358 289-309 (2006)
  32. Molecular docking of competitive phosphodiesterase inhibitors. Dym O, Xenarios I, Ke H, Colicelli J. Mol Pharmacol 61 20-25 (2002)
  33. Cyclic nucleotide phosphodiesterases in Drosophila melanogaster. Day JP, Dow JA, Houslay MD, Davies SA. Biochem J 388 333-342 (2005)
  34. Pnicogen-π complexes: theoretical study and biological implications. Bauzá A, Quiñonero D, Deyà PM, Frontera A. Phys Chem Chem Phys 14 14061-14066 (2012)
  35. Structural basis for the catalytic mechanism of human phosphodiesterase 9. Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, Lemotte PK, Menniti FS. Proc Natl Acad Sci U S A 105 13309-13314 (2008)
  36. The inhibitory gamma subunit of the rod cGMP phosphodiesterase binds the catalytic subunits in an extended linear structure. Guo LW, Muradov H, Hajipour AR, Sievert MK, Artemyev NO, Ruoho AE. J Biol Chem 281 15412-15422 (2006)
  37. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors. Wang H, Yan Z, Geng J, Kunz S, Seebeck T, Ke H. Mol Microbiol 66 1029-1038 (2007)
  38. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. Rascón A, Soderling SH, Schaefer JB, Beavo JA. Proc Natl Acad Sci U S A 99 4714-4719 (2002)
  39. Regulation of T-cell activation by phosphodiesterase 4B2 requires its dynamic redistribution during immunological synapse formation. Arp J, Kirchhof MG, Baroja ML, Nazarian SH, Chau TA, Strathdee CA, Ball EH, Madrenas J. Mol Cell Biol 23 8042-8057 (2003)
  40. Oxidative stress employs phosphatidyl inositol 3-kinase and ERK signalling pathways to activate cAMP phosphodiesterase-4D3 (PDE4D3) through multi-site phosphorylation at Ser239 and Ser579. Hill EV, Sheppard CL, Cheung YF, Gall I, Krause E, Houslay MD. Cell Signal 18 2056-2069 (2006)
  41. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10. Li N, Chen X, Zhu B, Ramírez-Alcántara V, Canzoneri JC, Lee K, Sigler S, Gary B, Li Y, Zhang W, Moyer MP, Salter EA, Wierzbicki A, Keeton AB, Piazza GA. Oncotarget 6 27403-27415 (2015)
  42. Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Kranz M, Wall M, Evans B, Miah A, Ballantine S, Delves C, Dombroski B, Gross J, Schneck J, Villa JP, Neu M, Somers DO. Bioorg Med Chem 17 5336-5341 (2009)
  43. Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. Kajimura N, Yamazaki M, Morikawa K, Yamazaki A, Mayanagi K. J Struct Biol 139 27-38 (2002)
  44. A new insulin-mimetic bis(allixinato)zinc(II) complex: structure-activity relationship of zinc(II) complexes. Adachi Y, Yoshida J, Kodera Y, Kato A, Yoshikawa Y, Kojima Y, Sakurai H. J Biol Inorg Chem 9 885-893 (2004)
  45. Inhibitor binding to type 4 phosphodiesterase (PDE4) assessed using [3H]piclamilast and [3H]rolipram. Zhao Y, Zhang HT, O'Donnell JM. J Pharmacol Exp Ther 305 565-572 (2003)
  46. In vivo genetic dissection of O2-evoked cGMP dynamics in a Caenorhabditis elegans gas sensor. Couto A, Oda S, Nikolaev VO, Soltesz Z, de Bono M. Proc Natl Acad Sci U S A 110 E3301-10 (2013)
  47. Conformational variations of both phosphodiesterase-5 and inhibitors provide the structural basis for the physiological effects of vardenafil and sildenafil. Wang H, Ye M, Robinson H, Francis SH, Ke H. Mol Pharmacol 73 104-110 (2008)
  48. Effect of Zn...Zn separation on the hydrolytic activity of model dizinc phosphodiesterases. Bauer-Siebenlist B, Meyer F, Farkas E, Vidovic D, Dechert S. Chemistry 11 4349-4360 (2005)
  49. Experimental and mathematical analysis of cAMP nanodomains. Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR, Lohse MJ, Bauer WR. PLoS One 12 e0174856 (2017)
  50. Identification of a novel type of cGMP phosphodiesterase that is defective in the chemotactic stmF mutants. Meima ME, Biondi RM, Schaap P. Mol Biol Cell 13 3870-3877 (2002)
  51. Occupancy of the catalytic site of the PDE4A4 cyclic AMP phosphodiesterase by rolipram triggers the dynamic redistribution of this specific isoform in living cells through a cyclic AMP independent process. Terry R, Cheung YF, Praestegaard M, Baillie GS, Huston E, Gall I, Adams DR, Houslay MD. Cell Signal 15 955-971 (2003)
  52. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. Zoraghi R, Corbin JD, Francis SH. J Biol Chem 281 5553-5558 (2006)
  53. News Putting the lid on phosphodiesterase 4. Houslay MD, Adams DR. Nat Biotechnol 28 38-40 (2010)
  54. Analysis of PDE6 function using chimeric PDE5/6 catalytic domains. Muradov H, Boyd KK, Artemyev NO. Vision Res 46 860-868 (2006)
  55. Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi. Susuki-Miyata S, Miyata M, Lee BC, Xu H, Kai H, Yan C, Li JD. Proc Natl Acad Sci U S A 112 E1800-9 (2015)
  56. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. Long T, Rojo-Arreola L, Shi D, El-Sakkary N, Jarnagin K, Rock F, Meewan M, Rascón AA, Lin L, Cunningham KA, Lemieux GA, Podust L, Abagyan R, Ashrafi K, McKerrow JH, Caffrey CR. PLoS Negl Trop Dis 11 e0005680 (2017)
  57. TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei. Kunz S, Kloeckner T, Essen LO, Seebeck T, Boshart M. Eur J Biochem 271 637-647 (2004)
  58. Identification of a new variant of PDE1A calmodulin-stimulated cyclic nucleotide phosphodiesterase expressed in mouse sperm. Vasta V, Sonnenburg WK, Yan C, Soderling SH, Shimizu-Albergine M, Beavo JA. Biol Reprod 73 598-609 (2005)
  59. Origin of exopolyphosphatase processivity: Fusion of an ASKHA phosphotransferase and a cyclic nucleotide phosphodiesterase homolog. Alvarado J, Ghosh A, Janovitz T, Jauregui A, Hasson MS, Sanders DA. Structure 14 1263-1272 (2006)
  60. Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion. Flueck C, Drought LG, Jones A, Patel A, Perrin AJ, Walker EM, Nofal SD, Snijders AP, Blackman MJ, Baker DA. PLoS Biol 17 e3000154 (2019)
  61. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F. Sci Rep 6 39232 (2016)
  62. Computational determination of binding structures and free energies of phosphodiesterase-2 with benzo[1,4]diazepin-2-one derivatives. Yang B, Hamza A, Chen G, Wang Y, Zhan CG. J Phys Chem B 114 16020-16028 (2010)
  63. Identification of a multifunctional docking site on the catalytic unit of phosphodiesterase-4 (PDE4) that is utilised by multiple interaction partners. Houslay KF, Christian F, MacLeod R, Adams DR, Houslay MD, Baillie GS. Biochem J 474 597-609 (2017)
  64. 3D-QSAR studies on thieno[3,2-d]pyrimidines as phosphodiesterase IV inhibitors. Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A. Bioorg Med Chem Lett 13 1403-1408 (2003)
  65. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Furlan V, Bren U. Biomolecules 11 479 (2021)
  66. Adenylyl cyclase Rv0386 from Mycobacterium tuberculosis H37Rv uses a novel mode for substrate selection. Castro LI, Hermsen C, Schultz JE, Linder JU. FEBS J 272 3085-3092 (2005)
  67. Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4. Richter W, Unciuleac L, Hermsdorf T, Kronbach T, Dettmer D. Cell Signal 13 287-297 (2001)
  68. In vitro PKA phosphorylation-mediated human PDE4A4 activation. Laliberté F, Liu S, Gorseth E, Bobechko B, Bartlett A, Lario P, Gresser MJ, Huang Z. FEBS Lett 512 205-208 (2002)
  69. Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. Campbell SL, van Groen T, Kadish I, Smoot LHM, Bolger GB. BMC Neurosci 18 77 (2017)
  70. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B. Zhang W, Ke H, Tretiakova AP, Jameson B, Colman RW. Protein Sci 10 1481-1489 (2001)
  71. 3D-QSAR studies of indole derivatives as phosphodiesterase IV inhibitors. Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A. Eur J Med Chem 38 975-982 (2003)
  72. Discovery of a substituted 8-arylquinoline series of PDE4 inhibitors: structure-activity relationship, optimization, and identification of a highly potent, well tolerated, PDE4 inhibitor. Macdonald D, Mastracchio A, Perrier H, Dubé D, Gallant M, Lacombe P, Deschênes D, Roy B, Scheigetz J, Bateman K, Li C, Trimble LA, Day S, Chauret N, Nicoll-Griffith DA, Silva JM, Huang Z, Laliberté F, Liu S, Ethier D, Pon D, Muise E, Boulet L, Chan CC, Styhler A, Charleson S, Mancini J, Masson P, Claveau D, Nicholson D, Turner M, Young RN, Girard Y. Bioorg Med Chem Lett 15 5241-5246 (2005)
  73. Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene. Johnston LA, Erdogan S, Cheung YF, Sullivan M, Barber R, Lynch MJ, Baillie GS, Van Heeke G, Adams DR, Huston E, Houslay MD. Biochem J 380 371-384 (2004)
  74. Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4. Chen X, Zhao X, Xiong Y, Liu J, Zhan CG. J Phys Chem B 115 12208-12219 (2011)
  75. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Wang L, Feng Y, Yan D, Qin L, Grati M, Mittal R, Li T, Sundhari AK, Liu Y, Chapagain P, Blanton SH, Liao S, Liu X. Hum Genet 137 437-446 (2018)
  76. Discovery of a highly potent series of oxazole-based phosphodiesterase 4 inhibitors. Kuang R, Shue HJ, Blythin DJ, Shih NY, Gu D, Chen X, Schwerdt J, Lin L, Ting PC, Zhu X, Aslanian R, Piwinski JJ, Xiao L, Prelusky D, Wu P, Zhang J, Zhang X, Celly CS, Minnicozzi M, Billah M, Wang P. Bioorg Med Chem Lett 17 5150-5154 (2007)
  77. Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors. Skoumbourdis AP, Leclair CA, Stefan E, Turjanski AG, Maguire W, Titus SA, Huang R, Auld DS, Inglese J, Austin CP, Michnick SW, Xia M, Thomas CJ. Bioorg Med Chem Lett 19 3686-3692 (2009)
  78. In vivo selective binding of (R)-[11C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues. Kenk M, Greene M, Thackeray J, deKemp RA, Lortie M, Thorn S, Beanlands RS, DaSilva JN. Nucl Med Biol 34 71-77 (2007)
  79. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. Tripuraneni NS, Azam MA. J Biomol Struct Dyn 34 2481-2492 (2016)
  80. Crystal structure and computational analyses provide insights into the catalytic mechanism of 2,4-diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens. He YX, Huang L, Xue Y, Fei X, Teng YB, Rubin-Pitel SB, Zhao H, Zhou CZ. J Biol Chem 285 4603-4611 (2010)
  81. Identification of a potent new chemotype for the selective inhibition of PDE4. Skoumbourdis AP, Huang R, Southall N, Leister W, Guo V, Cho MH, Inglese J, Nirenberg M, Austin CP, Xia M, Thomas CJ. Bioorg Med Chem Lett 18 1297-1303 (2008)
  82. Cloning of dog heart PDE1A - a first detailed characterization at the molecular level in this species. Clapham JC, Wilderspin AF. Gene 268 165-171 (2001)
  83. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Richter W, Unciuleac L, Hermsdorf T, Kronbach T, Dettmer D. Cell Signal 13 159-167 (2001)
  84. Methodology and problems of protein-ligand docking: case study of dihydroorotate dehydrogenase, thymidine kinase, and phosphodiesterase 4. Pospisil P, Kuoni T, Scapozza L, Folkers G. J Recept Signal Transduct Res 22 141-154 (2002)
  85. Syntheses and evaluation of pyrido[2,3-dlpyrimidine-2,4-diones as PDE 4 inhibitors. Nam G, Yoon CM, Kim E, Rhee CK, Kim JH, Shin JH, Kim SH. Bioorg Med Chem Lett 11 611-614 (2001)
  86. Fragment-based screening for inhibitors of PDE4A using enthalpy arrays and X-ray crystallography. Recht MI, Sridhar V, Badger J, Hernandez L, Chie-Leon B, Nienaber V, Torres FE. J Biomol Screen 17 469-480 (2012)
  87. Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations. Wong KY, Gao J. FEBS J 278 2579-2595 (2011)
  88. Phosphodiesterase isozymes involved in regulation of HCO3- secretion in isolated mouse duodenum in vitro. Hayashi M, Kita K, Ohashi Y, Aihara E, Takeuchi K. Biochem Pharmacol 74 1507-1513 (2007)
  89. Purification and characterization of the human PDE4A catalytic domain (PDE4A330-723) expressed in Sf9 cells. Lario PI, Bobechko B, Bateman K, Kelly J, Vrielink A, Huang Z. Arch Biochem Biophys 394 54-60 (2001)
  90. Interaction of caspase-3 with the cyclic GMP binding cyclic GMP specific phosphodiesterase (PDE5a1). Frame MJ, Tate R, Adams DR, Morgan KM, Houslay MD, Vandenabeele P, Pyne NJ. Eur J Biochem 270 962-970 (2003)
  91. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Oliveira FG, Sant'Anna CM, Caffarena ER, Dardenne LE, Barreiro EJ. Bioorg Med Chem 14 6001-6011 (2006)
  92. News A view into the catalytic pocket of cyclic nucleotide phosphodiesterases. Conti M. Nat Struct Mol Biol 11 809-810 (2004)
  93. Discover natural compounds as potential phosphodiesterase-4B inhibitors via computational approaches. Li J, Zhou N, Liu W, Li J, Feng Y, Wang X, Wu C, Bao J. J Biomol Struct Dyn 34 1101-1112 (2016)
  94. Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase. Huai Q, Sun Y, Wang H, Macdonald D, Aspiotis R, Robinson H, Huang Z, Ke H. J Med Chem 49 1867-1873 (2006)
  95. Orally active PDE4 inhibitors with therapeutic potential. Ochiai H, Ohtani T, Ishida A, Kishikawa K, Obata T, Nakai H, Toda M. Bioorg Med Chem Lett 14 1323-1327 (2004)
  96. Reactions of phosphate and phosphorothiolate diesters with nucleophiles: comparison of transition state structures. Ye JD, Barth CD, Anjaneyulu PS, Tuschl T, Piccirilli JA. Org Biomol Chem 5 2491-2497 (2007)
  97. Refolding and purification of recombinant human PDE7A expressed in Escherichia coli as inclusion bodies. Richter W, Hermsdorf T, Kronbach T, Dettmer D. Protein Expr Purif 25 138-148 (2002)
  98. Design and synthesis of pyrrolobenzodiazepine-gallic hybrid agents as p53-dependent and -independent apoptogenic signaling in melanoma cells. Chou YW, Senadi GC, Chen CY, Kuo KK, Lin YT, Wang JJ, Lee JH, Wang YC, Hu WP. Eur J Med Chem 109 59-74 (2016)
  99. Novel 5,6-dihydropyrazolo[3,4-E][1,4]diazepin-4 (1H)-one derivatives for the treatment of asthma and chronic obstructive pulmonary disease. Dyke HJ. Expert Opin Ther Pat 17 1183-1189 (2007)
  100. Pharmacological and molecular dynamics analyses of differences in inhibitor binding to human and nematode PDE4: Implications for management of parasitic nematodes. Schuster KD, Mohammadi M, Cahill KB, Matte SL, Maillet AD, Vashisth H, Cote RH. PLoS One 14 e0214554 (2019)
  101. Synthesis and biological evaluation of neutrophilic inflammation inhibitors. Bruno O, Brullo C, Arduino N, Schenone S, Ranise A, Bondavalli F, Ottonello L, Dapino P, Dallegri F. Farmaco 59 223-235 (2004)
  102. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design. Howard BL, Thompson PE, Manallack DT. J Comput Aided Mol Des 25 753-762 (2011)
  103. Expression, refolding, and purification of recombinant human phosphodiesterase 3B: definition of the N-terminus of the catalytic core. Varnerin JP, Chung CC, Patel SB, Scapin G, Parmee ER, Morin NR, MacNeil DJ, Cully DF, Van der Ploeg LH, Tota MR. Protein Expr Purif 35 225-236 (2004)
  104. Production and characterization of pharmacologically active recombinant human phosphodiesterase 4B in Dictyostelium discoideum. Arya R, Aslam S, Gupta S, Bora RS, Vijayakrishnan L, Gulati P, Naithani S, Mukherjee S, Dastidar S, Bhattacharya A, Saini KS. Biotechnol J 3 938-947 (2008)
  105. Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. Moulos P, Alexandratos A, Nellas I, Dedos SG. BMC Genomics 19 537 (2018)
  106. Synthesis and assessment of catechol diether compounds as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1). Woodring JL, Bland ND, Ochiana SO, Campbell RK, Pollastri MP. Bioorg Med Chem Lett 23 5971-5974 (2013)
  107. The role of tryptophan 1072 in human PDE3B inhibitor binding. Chung C, Varnerin JP, Morin NR, MacNeil DJ, Singh SB, Patel S, Scapin G, Van der Ploeg LH, Tota MR. Biochem Biophys Res Commun 307 1045-1050 (2003)
  108. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA, Wei T, Cao Z, Tu Y. Sci Signal 13 eaax0273 (2020)
  109. CoMFA and CoMSIA 3D-quantitative structure-activity relationship model on benzodiazepine derivatives, inhibitors of phosphodiesterase IV. Ducrot P, Andrianjara CR, Wrigglesworth R. J Comput Aided Mol Des 15 767-785 (2001)
  110. Crystal structure of virulence factor CJ0248 from Campylobacter jejuni at 2.25 A resolution reveals a new fold. Xu Q, Schwarzenbacher R, McMullan D, Abdubek P, Agarwalla S, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Koesema E, Kreusch A, Kuhn P, Lesley SA, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Rife C, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, White A, Wolf G, Hodgson KO, Wooley J, Wilson IA. Proteins 62 292-296 (2006)
  111. Design, synthesis, and biological evaluation of new phosphodiesterase type 4 inhibitors. Ochiai H, Odagaki Y, Ohtani T, Ishida A, Kusumi K, Kishikawa K, Yamamoto S, Takeda H, Obata T, Kobayashi K, Nakai H, Toda M. Bioorg Med Chem 12 5063-5078 (2004)
  112. Detergents stabilize the conformation of phosphodiesterase 6. Baker BY, Palczewski K. Biochemistry 50 9520-9531 (2011)
  113. Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Al-Nema M, Gaurav A, Lee VS. Heliyon 6 e04856 (2020)
  114. Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Bolger GB, Smoot LHM, van Groen T. Int J Mol Sci 21 E5704 (2020)
  115. Identification of lead BAY60-7550 analogues as potential inhibitors that utilize the hydrophobic groove in PDE2A: a molecular dynamics simulation study. Kumar J, Umar T, Kausar T, Mobashir M, Nayeem SM, Hoda N. J Mol Model 23 7 (2017)
  116. In Search of Monocot Phosphodiesterases: Identification of a Calmodulin Stimulated Phosphodiesterase from Brachypodium distachyon. Kwiatkowski M, Wong A, Kozakiewicz-Piekarz A, Gehring C, Jaworski K. Int J Mol Sci 22 9654 (2021)
  117. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors. Tripuraneni NS, Azam MA. J Theor Biol 394 117-126 (2016)
  118. Phosphodiesterase isozymes involved in regulation of formula secretion in isolated mouse stomach in vitro. Kita K, Takahashi K, Ohashi Y, Takasuka H, Aihara E, Takeuchi K. J Pharmacol Exp Ther 326 889-896 (2008)
  119. Refolding and kinetic characterization of the phosphodiesterase-8A catalytic domain. Yan Z, Wang H, Cai J, Ke H. Protein Expr Purif 64 82-88 (2009)
  120. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. Xing M, Akowuah GA, Gautam V, Gaurav A. J Biomol Struct Dyn 35 2910-2924 (2017)
  121. Synthesis and phosphodiesterase 5 inhibitory activity of new sildenafil analogues containing a phosphonate group in the 5(')-sulfonamide moiety of phenyl ring. Kim DK, Young Lee J, Park HJ, Minh Thai K. Bioorg Med Chem Lett 14 2099-2103 (2004)
  122. Nitrogen-bridged substituted 8-arylquinolines as potent PDE IV inhibitors. Lacombe P, Deschênes D, Dubé D, Dubé L, Gallant M, Macdonald D, Mastracchio A, Perrier H, Charleson S, Huang Z, Laliberté F, Liu S, Mancini JA, Masson P, Salem M, Styhler A, Girard Y. Bioorg Med Chem Lett 16 2608-2612 (2006)
  123. Phthalazine PDE4 inhibitors. Part 3: the synthesis and in vitro evaluation of derivatives with a hydrogen bond acceptor. Napoletano M, Norcini G, Pellacini F, Marchini F, Morazzoni G, Fattori R, Ferlenga P, Pradella L. Bioorg Med Chem Lett 12 5-8 (2002)
  124. Structural determinants of phosphodiesterase 6 response on binding catalytic site inhibitors. Simon A, Barabás P, Kardos J. Neurochem Int 49 215-222 (2006)
  125. A new nonhydrolyzable reactive cAMP analog, (Sp)-adenosine-3',5'-cyclic-S-(4-bromo-2,3-dioxobutyl)monophosphorothioate irreversibly inactivates human platelet cGMP-inhibited cAMP phosphodiesterase. Hung SH, Madhusoodanan KS, Beres JA, Boyd RL, Baldwin JL, Zhang W, Colman RW, Colman RF. Bioorg Chem 30 16-31 (2002)
  126. Assessing protein-ligand binding modes with computational tools: the case of PDE4B. Çifci G, Aviyente V, Akten ED, Monard G. J Comput Aided Mol Des 31 563-575 (2017)
  127. Expression of Phosphodiesterase 4B cAMP-Specific Gene in Subjects With Cryptorchidism and Down's Syndrome. Salemi M, Condorelli RA, La Vignera S, Castiglione R, Salluzzo MG, Bonaccorso CM, Vinci M, Bosco P, Romano C, Campagna C, Romano C, Calogero AE. J Clin Lab Anal 30 196-199 (2016)
  128. Molecular and Biological Investigation of Isolated Marine Fungal Metabolites as Anticancer Agents: A Multi-Target Approach. Bogari HA, Elhady SS, Darwish KM, Refaey MS, Mohamed RA, Abdelhameed RFA, Almalki AJ, Aldurdunji MM, Lashkar MO, Alshehri SO, Malatani RT, Yamada K, Khedr AIM. Metabolites 13 162 (2023)
  129. Mononuclear and dinuclear mechanisms for catalysis of phosphodiester cleavage by alkaline earth metal ions in aqueous solution. Kirk BA, Cusack CL, Laager E, Rochlis E, Thomas T, Cassano AG. J Inorg Biochem 104 207-210 (2010)
  130. Pharmacophore modeling, 3D-QSAR, and docking study of pyrozolo[1,5-a]pyridine/4,4-dimethylpyrazolone analogues as PDE4 selective inhibitors. Tripuraneni NS, Azam MA. J Mol Model 21 289 (2015)
  131. Alkyl-bridged substituted 8-arylquinolines as highly potent PDE IV inhibitors. Lacombe P, Chauret N, Claveau D, Day S, Deschênes D, Dubé D, Gallant M, Girard Y, Huang Z, Laliberté F, Lévesque JF, Liu S, Macdonald D, Mancini JA, Masson P, Nicholson DW, Nicoll-Griffith DA, Salem M, Styhler A, Young RN. Bioorg Med Chem Lett 19 5266-5269 (2009)
  132. An update view on the substrate recognition mechanism of phosphodiesterases: a computational study of PDE10 and PDE4 bound with cyclic nucleotides. Lau JK, Cheng YK. Biopolymers 97 910-922 (2012)
  133. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha. Hayashida Y, Yamamoto C, Takahashi F, Shibata A, Kasahara M. J Plant Res 135 137-144 (2022)
  134. Insulin increased cAMP phosphodiesterase activity antagonizing metabolic actions of glucagon in rat hepatocytes cultured with herbimycin A. Ishibashi K, Fujioka T, Ui M. Eur J Pharmacol 409 109-121 (2000)
  135. Investigation of Potential cGMP-Specific PDE V and Aminopeptidase N Inhibitors of Allium ampeloprasum L. and Its Bioactive Components: Kinetic and Molecular Docking Studies. Choi JH, Park SM, Kim S. Int J Mol Sci 24 13319 (2023)
  136. Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Le VTT, Hung HV, Ha NX, Le CH, Minh PTH, Lam DT. Molecules 28 7253 (2023)
  137. To Target or Not to Target Schistosoma mansoni Cyclic Nucleotide Phosphodiesterase 4A? Zheng Y, Schroeder S, Kanev GK, Botros SS, William S, Sabra AA, Maes L, Caljon G, Gil C, Martinez A, Salado IG, Augustyns K, Edink E, Sijm M, de Heuvel E, de Esch IJP, van der Meer T, Siderius M, Sterk GJ, Brown D, Leurs R. Int J Mol Sci 24 6817 (2023)
  138. Virtual Screening-Accelerated Discovery of a Phosphodiesterase 9 Inhibitor with Neuroprotective Effects in the Kainate Toxicity In Vitro Model. Landucci E, Ribaudo G, Anyanwu M, Oselladore E, Giannangeli M, Mazzantini C, Lana D, Giovannini MG, Memo M, Pellegrini-Giampietro DE, Gianoncelli A. ACS Chem Neurosci 14 3826-3838 (2023)