1f4f Citations

Site-directed ligand discovery.

Proc Natl Acad Sci U S A 97 9367-72 (2000)
Related entries: 1f4b, 1f4c, 1f4d, 1f4e, 1f4g

Cited: 219 times
EuropePMC logo PMID: 10944209

Abstract

We report a strategy (called "tethering") to discover low molecular weight ligands ( approximately 250 Da) that bind weakly to targeted sites on proteins through an intermediary disulfide tether. A native or engineered cysteine in a protein is allowed to react reversibly with a small library of disulfide-containing molecules ( approximately 1,200 compounds) at concentrations typically used in drug screening (10 to 200 microM). The cysteine-captured ligands, which are readily identified by MS, are among the most stable complexes, even though in the absence of the covalent tether the ligands may bind very weakly. This method was applied to generate a potent inhibitor for thymidylate synthase, an essential enzyme in pyrimidine metabolism with therapeutic applications in cancer and infectious diseases. The affinity of the untethered ligand (K(i) approximately 1 mM) was improved 3,000-fold by synthesis of a small set of analogs with the aid of crystallographic structures of the tethered complex. Such site-directed ligand discovery allows one to nucleate drug design from a spatially targeted lead fragment.

Articles - 1f4f mentioned but not cited (3)

  1. Site-directed ligand discovery. Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA. Proc Natl Acad Sci U S A 97 9367-9372 (2000)
  2. Preference of small molecules for local minimum conformations when binding to proteins. Wang Q, Pang YP. PLoS One 2 e820 (2007)
  3. Synthesis, fungicidal evaluation and 3D-QSAR studies of novel 1,3,4-thiadiazole xylofuranose derivatives. Zong G, Yan X, Bi J, Jiang R, Qin Y, Yuan H, Lu H, Dong Y, Jin S, Zhang J. PLoS One 12 e0181646 (2017)


Reviews citing this publication (69)

  1. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Arkin MR, Wells JA. Nat Rev Drug Discov 3 301-317 (2004)
  2. Unraveling hot spots in binding interfaces: progress and challenges. DeLano WL. Curr Opin Struct Biol 12 14-20 (2002)
  3. Molecular dynamics: survey of methods for simulating the activity of proteins. Adcock SA, McCammon JA. Chem Rev 106 1589-1615 (2006)
  4. Hot spots--a review of the protein-protein interface determinant amino-acid residues. Moreira IS, Fernandes PA, Ramos MJ. Proteins 68 803-812 (2007)
  5. Fragment-based lead discovery. Rees DC, Congreve M, Murray CW, Carr R. Nat Rev Drug Discov 3 660-672 (2004)
  6. Structural biology of insulin and IGF1 receptors: implications for drug design. De Meyts P, Whittaker J. Nat Rev Drug Discov 1 769-783 (2002)
  7. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Scott DE, Bayly AR, Abell C, Skidmore J. Nat Rev Drug Discov 15 533-550 (2016)
  8. Strategies for targeting protein-protein interactions with synthetic agents. Yin H, Hamilton AD. Angew Chem Int Ed Engl 44 4130-4163 (2005)
  9. Tethering: fragment-based drug discovery. Erlanson DA, Wells JA, Braisted AC. Annu Rev Biophys Biomol Struct 33 199-223 (2004)
  10. In situ click chemistry: probing the binding landscapes of biological molecules. Mamidyala SK, Finn MG. Chem Soc Rev 39 1252-1261 (2010)
  11. Theory of free energy and entropy in noncovalent binding. Zhou HX, Gilson MK. Chem Rev 109 4092-4107 (2009)
  12. The pharmacological landscape and therapeutic potential of serine hydrolases. Bachovchin DA, Cravatt BF. Nat Rev Drug Discov 11 52-68 (2012)
  13. Between a rock and a hard place? Whitty A, Kumaravel G. Nat Chem Biol 2 112-118 (2006)
  14. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Herrmann A. Chem Soc Rev 43 1899-1933 (2014)
  15. Targeting protein-protein interactions: lessons from p53/MDM2. Murray JK, Gellman SH. Biopolymers 88 657-686 (2007)
  16. Structural biology and drug discovery of difficult targets: the limits of ligandability. Surade S, Blundell TL. Chem Biol 19 42-50 (2012)
  17. Chemical genetic approaches for the elucidation of signaling pathways. Alaimo PJ, Shogren-Knaak MA, Shokat KM. Curr Opin Chem Biol 5 360-367 (2001)
  18. From fragment to clinical candidate--a historical perspective. Chessari G, Woodhead AJ. Drug Discov Today 14 668-675 (2009)
  19. Hit discovery and hit-to-lead approaches. Keseru GM, Makara GM. Drug Discov Today 11 741-748 (2006)
  20. Protein-protein interactions as druggable targets: recent technological advances. Higueruelo AP, Jubb H, Blundell TL. Curr Opin Pharmacol 13 791-796 (2013)
  21. Transforming fragments into candidates: small becomes big in medicinal chemistry. de Kloe GE, Bailey D, Leurs R, de Esch IJ. Drug Discov Today 14 630-646 (2009)
  22. Fine-tuning multiprotein complexes using small molecules. Thompson AD, Dugan A, Gestwicki JE, Mapp AK. ACS Chem Biol 7 1311-1320 (2012)
  23. Protein-protein interfaces: mimics and inhibitors. Cochran AG. Curr Opin Chem Biol 5 654-659 (2001)
  24. Complexity and simplicity of ligand-macromolecule interactions: the energy landscape perspective. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Freer ST, Rose PW. Curr Opin Struct Biol 12 197-203 (2002)
  25. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Hughes D. Nat Rev Genet 4 432-441 (2003)
  26. 20 years of DNA-encoded chemical libraries. Mannocci L, Leimbacher M, Wichert M, Scheuermann J, Neri D. Chem Commun (Camb) 47 12747-12753 (2011)
  27. Systematic Targeting of Protein-Protein Interactions. Modell AE, Blosser SL, Arora PS. Trends Pharmacol Sci 37 702-713 (2016)
  28. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Q Rev Biophys 45 383-426 (2012)
  29. Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery. Cheeseman JD, Corbett AD, Gleason JL, Kazlauskas RJ. Chemistry 11 1708-1716 (2005)
  30. Protein flexibility and computer-aided drug design. Wong CF, McCammon JA. Annu Rev Pharmacol Toxicol 43 31-45 (2003)
  31. Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Geoghegan KF, Kelly MA. Mass Spectrom Rev 24 347-366 (2005)
  32. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Koyama FC, Chakrabarti D, Garcia CR. Mol Biochem Parasitol 165 1-7 (2009)
  33. Targeting biomolecules with reversible covalent chemistry. Bandyopadhyay A, Gao J. Curr Opin Chem Biol 34 110-116 (2016)
  34. Motif mediated protein-protein interactions as drug targets. Corbi-Verge C, Kim PM. Cell Commun Signal 14 8 (2016)
  35. Covalent targeting of acquired cysteines in cancer. Visscher M, Arkin MR, Dansen TB. Curr Opin Chem Biol 30 61-67 (2016)
  36. Structure-based design of small-molecule protein-protein interaction modulators: the story so far. Falchi F, Caporuscio F, Recanatini M. Future Med Chem 6 343-357 (2014)
  37. Structure-based screening and design in drug discovery. van Dongen M, Weigelt J, Uppenberg J, Schultz J, Wikström M. Drug Discov Today 7 471-478 (2002)
  38. DNA-encoded chemical libraries: a tool for drug discovery and for chemical biology. Scheuermann J, Neri D. Chembiochem 11 931-937 (2010)
  39. Direct and Propagated Effects of Small Molecules on Protein-Protein Interaction Networks. Cesa LC, Mapp AK, Gestwicki JE. Front Bioeng Biotechnol 3 119 (2015)
  40. Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Erlanson DA, Hansen SK. Curr Opin Chem Biol 8 399-406 (2004)
  41. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides. Pang YP, Brimijoin S, Ragsdale DW, Zhu KY, Suranyi R. Curr Drug Targets 13 471-482 (2012)
  42. Dynamic template-assisted strategies in fragment-based drug discovery. Schmidt MF, Rademann J. Trends Biotechnol 27 512-521 (2009)
  43. Reactive-cysteine profiling for drug discovery. Maurais AJ, Weerapana E. Curr Opin Chem Biol 50 29-36 (2019)
  44. New insights into the kinetic target-guided synthesis of protein ligands. Oueis E, Sabot C, Renard PY. Chem Commun (Camb) 51 12158-12169 (2015)
  45. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery. Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Angew Chem Int Ed Engl 56 7358-7378 (2017)
  46. The ways and means of fragment-based drug design. Doak BC, Norton RS, Scanlon MJ. Pharmacol Ther 167 28-37 (2016)
  47. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery. Hallenbeck KK, Turner DM, Renslo AR, Arkin MR. Curr Top Med Chem 17 4-15 (2017)
  48. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Miller RM, Taunton J. Methods Enzymol 548 93-116 (2014)
  49. Therapeutic approaches to preventing cell death in Huntington disease. Kaplan A, Stockwell BR. Prog Neurobiol 99 262-280 (2012)
  50. Kinase Atlas: Druggability Analysis of Potential Allosteric Sites in Kinases. Yueh C, Rettenmaier J, Xia B, Hall DR, Alekseenko A, Porter KA, Barkovich K, Keseru G, Whitty A, Wells JA, Vajda S, Kozakov D. J Med Chem 62 6512-6524 (2019)
  51. Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Knoverek CR, Amarasinghe GK, Bowman GR. Trends Biochem Sci 44 351-364 (2019)
  52. Irreversibly binding anti-metal chelate antibodies: Artificial receptors for pretargeting. Corneillie TM, Whetstone PA, Meares CF. J Inorg Biochem 100 882-890 (2006)
  53. Module assembly for designing multivalent mid-sized inhibitors of protein-protein interactions. Ohkanda J. Chem Rec 13 561-575 (2013)
  54. NMR-Fragment Based Virtual Screening: A Brief Overview. Singh M, Tam B, Akabayov B. Molecules 23 (2018)
  55. Protein recognition using synthetic surface-targeted agents. Jain R, Ernst JT, Kutzki O, Park HS, Hamilton AD. Mol Divers 8 89-100 (2004)
  56. Biased and unbiased strategies to identify biologically active small molecules. Abet V, Mariani A, Truscott FR, Britton S, Rodriguez R. Bioorg Med Chem 22 4474-4489 (2014)
  57. Tailored therapeutics based on 1,2,3-1H-triazoles: a mini review. Prasher P, Sharma M. Medchemcomm 10 1302-1328 (2019)
  58. Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol. Hartman AM, Gierse RM, Hirsch AKH. European J Org Chem 2019 3581-3590 (2019)
  59. Visualizing and trapping transient oligomers in amyloid assembly pathways. Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Biophys Chem 268 106505 (2021)
  60. Allosteric inhibition of LRRK2, where are we now. Soliman A, Cankara FN, Kortholt A. Biochem Soc Trans 48 2185-2194 (2020)
  61. Recent applications of covalent chemistries in protein-protein interaction inhibitors. Chan AM, Goodis CC, Pommier EG, Fletcher S. RSC Med Chem 13 921-928 (2022)
  62. Targeting Methyltransferases in Human Pathogenic Bacteria: Insights into Thymidylate Synthase (TS) and Flavin-Dependent TS (FDTS). Pozzi C, Lopresti L, Tassone G, Mangani S. Molecules 24 (2019)
  63. Advances in covalent drug discovery. Boike L, Henning NJ, Nomura DK. Nat Rev Drug Discov 21 881-898 (2022)
  64. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. Koperniku A, Garcia AA, Mochly-Rosen D. J Med Chem 65 4403-4423 (2022)
  65. Fragment-based covalent ligand discovery. Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. RSC Chem Biol 2 354-367 (2021)
  66. Recent Advances about the Applications of Click Reaction in Chemical Proteomics. Yao T, Xu X, Huang R. Molecules 26 (2021)
  67. Recent advances in DNA-encoded dynamic libraries. Shi B, Zhou Y, Li X. RSC Chem Biol 3 407-419 (2022)
  68. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Signal Transduct Target Ther 8 335 (2023)
  69. Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Shetu SA, Bandyopadhyay D. Int J Mol Sci 23 3706 (2022)

Articles citing this publication (147)

  1. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. Nature 503 548-551 (2013)
  2. A 'rule of three' for fragment-based lead discovery? Congreve M, Carr R, Murray C, Jhoti H. Drug Discov Today 8 876-877 (2003)
  3. Proteome-wide covalent ligand discovery in native biological systems. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF. Nature 534 570-574 (2016)
  4. Binding of small molecules to an adaptive protein-protein interface. Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC. Proc Natl Acad Sci U S A 100 1603-1608 (2003)
  5. Discovery of an allosteric site in the caspases. Hardy JA, Lam J, Nguyen JT, O'Brien T, Wells JA. Proc Natl Acad Sci U S A 101 12461-12466 (2004)
  6. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French JM, Thornton CA, Disney MD. J Am Chem Soc 131 9767-9779 (2009)
  7. A common allosteric site and mechanism in caspases. Scheer JM, Romanowski MJ, Wells JA. Proc Natl Acad Sci U S A 103 7595-7600 (2006)
  8. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Bowman GR, Geissler PL. Proc Natl Acad Sci U S A 109 11681-11686 (2012)
  9. The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. Lin JH, Perryman AL, Schames JR, McCammon JA. Biopolymers 68 47-62 (2003)
  10. Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Cristian L, Lear JD, DeGrado WF. Proc Natl Acad Sci U S A 100 14772-14777 (2003)
  11. In situ assembly of enzyme inhibitors using extended tethering. Erlanson DA, Lam JW, Wiesmann C, Luong TN, Simmons RL, DeLano WL, Choong IC, Burdett MT, Flanagan WM, Lee D, Gordon EM, O'Brien T. Nat Biotechnol 21 308-314 (2003)
  12. Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein-protein interface. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A. Chem Biol 19 1300-1312 (2012)
  13. Computational de novo design, and characterization of an A(2)B(2) diiron protein. Summa CM, Rosenblatt MM, Hong JK, Lear JD, DeGrado WF. J Mol Biol 321 923-938 (2002)
  14. Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2. Lee MM, Pushechnikov A, Disney MD. ACS Chem Biol 4 345-355 (2009)
  15. Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry. Bhat VT, Caniard AM, Luksch T, Brenk R, Campopiano DJ, Greaney MF. Nat Chem 2 490-497 (2010)
  16. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA. Proc Natl Acad Sci U S A 108 6056-6061 (2011)
  17. Electrophilic fragment-based design of reversible covalent kinase inhibitors. Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. J Am Chem Soc 135 5298-5301 (2013)
  18. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. Murray CW, Verdonk ML. J Comput Aided Mol Des 16 741-753 (2002)
  19. In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Mocharla VP, Colasson B, Lee LV, Röper S, Sharpless KB, Wong CH, Kolb HC. Angew Chem Int Ed Engl 44 116-120 (2004)
  20. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Bowman GR, Bolin ER, Hart KM, Maguire BC, Marqusee S. Proc Natl Acad Sci U S A 112 2734-2739 (2015)
  21. A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases. Kathman SG, Xu Z, Statsyuk AV. J Med Chem 57 4969-4974 (2014)
  22. Using a fragment-based approach to target protein-protein interactions. Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M. Chembiochem 14 332-342 (2013)
  23. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. Carter PH, Scherle PA, Muckelbauer JK, Voss ME, Liu RQ, Thompson LA, Tebben AJ, Solomon KA, Lo YC, Li Z, Strzemienski P, Yang G, Falahatpisheh N, Xu M, Wu Z, Farrow NA, Ramnarayan K, Wang J, Rideout D, Yalamoori V, Domaille P, Underwood DJ, Trzaskos JM, Friedman SM, Newton RC, Decicco CP. Proc Natl Acad Sci U S A 98 11879-11884 (2001)
  24. Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Guo W, Wisniewski JA, Ji H. Bioorg Med Chem Lett 24 2546-2554 (2014)
  25. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Silvestre HL, Blundell TL, Abell C, Ciulli A. Proc Natl Acad Sci U S A 110 12984-12989 (2013)
  26. Reversible, allosteric small-molecule inhibitors of regulator of G protein signaling proteins. Blazer LL, Roman DL, Chung A, Larsen MJ, Greedy BM, Husbands SM, Neubig RR. Mol Pharmacol 78 524-533 (2010)
  27. Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria: target-accelerated combinatorial synthesis. Nicolaou KC, Hughes R, Cho SY, Winssinger N, Labischinski H, Endermann R. Chemistry 7 3824-3843 (2001)
  28. An integrated microfluidic device for large-scale in situ click chemistry screening. Wang Y, Lin WY, Liu K, Lin RJ, Selke M, Kolb HC, Zhang N, Zhao XZ, Phelps ME, Shen CK, Faull KF, Tseng HR. Lab Chip 9 2281-2285 (2009)
  29. Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. J Am Chem Soc 130 3900-3914 (2008)
  30. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Resnick E, Bradley A, Gan J, Douangamath A, Krojer T, Sethi R, Geurink PP, Aimon A, Amitai G, Bellini D, Bennett J, Fairhead M, Fedorov O, Gabizon R, Gan J, Guo J, Plotnikov A, Reznik N, Ruda GF, Díaz-Sáez L, Straub VM, Szommer T, Velupillai S, Zaidman D, Zhang Y, Coker AR, Dowson CG, Barr HM, Wang C, Huber KVM, Brennan PE, Ovaa H, von Delft F, London N. J Am Chem Soc 141 8951-8968 (2019)
  31. Integrated Microfluidic Reactors. Lin WY, Wang Y, Wang S, Tseng HR. Nano Today 4 470-481 (2009)
  32. In situ click chemistry: a powerful means for lead discovery. Sharpless KB, Manetsch R. Expert Opin Drug Discov 1 525-538 (2006)
  33. Disulfide trapping to localize small-molecule agonists and antagonists for a G protein-coupled receptor. Buck E, Wells JA. Proc Natl Acad Sci U S A 102 2719-2724 (2005)
  34. Integrated microfluidics for parallel screening of an in situ click chemistry library. Wang J, Sui G, Mocharla VP, Lin RJ, Phelps ME, Kolb HC, Tseng HR. Angew Chem Int Ed Engl 45 5276-5281 (2006)
  35. Ordering a dynamic protein via a small-molecule stabilizer. Wang N, Majmudar CY, Pomerantz WC, Gagnon JK, Sadowsky JD, Meagher JL, Johnson TK, Stuckey JA, Brooks CL, Wells JA, Mapp AK. J Am Chem Soc 135 3363-3366 (2013)
  36. Allosteric inhibition of the NS2B-NS3 protease from dengue virus. Yildiz M, Ghosh S, Bell JA, Sherman W, Hardy JA. ACS Chem Biol 8 2744-2752 (2013)
  37. Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry. Cancilla MT, He MM, Viswanathan N, Simmons RL, Taylor M, Fung AD, Cao K, Erlanson DA. Bioorg Med Chem Lett 18 3978-3981 (2008)
  38. Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites. Johnson JL, Cusack B, Hughes TF, McCullough EH, Fauq A, Romanovskis P, Spatola AF, Rosenberry TL. J Biol Chem 278 38948-38955 (2003)
  39. Peptide library approach with a disulfide tether to refine the Tom20 recognition motif in mitochondrial presequences. Obita T, Muto T, Endo T, Kohda D. J Mol Biol 328 495-504 (2003)
  40. Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Erlanson DA, Arndt JW, Cancilla MT, Cao K, Elling RA, English N, Friedman J, Hansen SK, Hession C, Joseph I, Kumaravel G, Lee WC, Lind KE, McDowell RS, Miatkowski K, Nguyen C, Nguyen TB, Park S, Pathan N, Penny DM, Romanowski MJ, Scott D, Silvian L, Simmons RL, Tangonan BT, Yang W, Sun L. Bioorg Med Chem Lett 21 3078-3083 (2011)
  41. Engineered streptavidin monomer and dimer with improved stability and function. Lim KH, Huang H, Pralle A, Park S. Biochemistry 50 8682-8691 (2011)
  42. Structure-activity relationships in the binding of chemically derivatized CD4 to gp120 from human immunodeficiency virus. Xie H, Ng D, Savinov SN, Dey B, Kwong PD, Wyatt R, Smith AB, Hendrickson WA. J Med Chem 50 4898-4908 (2007)
  43. A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry. Scott DE, Dawes GJ, Ando M, Abell C, Ciulli A. Chembiochem 10 2772-2779 (2009)
  44. Triggering protein folding within the GroEL-GroES complex. Madan D, Lin Z, Rye HS. J Biol Chem 283 32003-32013 (2008)
  45. Unraveling hidden regulatory sites in structurally homologous metalloproteases. Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, Melikian M, Toccafondi M, Berezovsky IN, Luchinat C, Sagi I. J Mol Biol 425 2330-2346 (2013)
  46. A modular minimal cell model: purine and pyrimidine transport and metabolism. Castellanos M, Wilson DB, Shuler ML. Proc Natl Acad Sci U S A 101 6681-6686 (2004)
  47. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Bandyopadhyay A, McCarthy KA, Kelly MA, Gao J. Nat Commun 6 6561 (2015)
  48. Novel acetylcholinesterase target site for malaria mosquito control. Pang YP. PLoS One 1 e58 (2006)
  49. Dissecting allosteric effects of activator-coactivator complexes using a covalent small molecule ligand. Wang N, Lodge JM, Fierke CA, Mapp AK. Proc Natl Acad Sci U S A 111 12061-12066 (2014)
  50. Methods of using click chemistry in the discovery of enzyme inhibitors. Srinivasan R, Li J, Ng SL, Kalesh KA, Yao SQ. Nat Protoc 2 2655-2664 (2007)
  51. Systems-based design of bi-ligand inhibitors of oxidoreductases: filling the chemical proteomic toolbox. Sem DS, Bertolaet B, Baker B, Chang E, Costache AD, Coutts S, Dong Q, Hansen M, Hong V, Huang X, Jack RM, Kho R, Lang H, Ma CT, Meininger D, Pellecchia M, Pierre F, Villar H, Yu L. Chem Biol 11 185-194 (2004)
  52. Covalent capture: merging covalent and noncovalent synthesis. Prins LJ, Scrimin P. Angew Chem Int Ed Engl 48 2288-2306 (2009)
  53. Kinetic template-guided tethering of fragments. Nonoo RH, Armstrong A, Mann DJ. ChemMedChem 7 2082-2086 (2012)
  54. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, Brandão-Neto J, Pearce NM, von Delft F, Wells JA, Fraser JS. Elife 7 (2018)
  55. Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. Ulrich S, Dumy P. Chem Commun (Camb) 50 5810-5825 (2014)
  56. Site-specific disulfide capture of agonist and antagonist peptides on the C5a receptor. Buck E, Bourne H, Wells JA. J Biol Chem 280 4009-4012 (2005)
  57. Bivalent enzyme inhibitors discovered using dynamic covalent chemistry. Clipson AJ, Bhat VT, McNae I, Caniard AM, Campopiano DJ, Greaney MF. Chemistry 18 10562-10570 (2012)
  58. Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. Pang YP, Xu K, Kollmeyer TM, Perola E, McGrath WJ, Green DT, Mangel WF. FEBS Lett 502 93-97 (2001)
  59. Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human-safe insecticides. Pang YP, Singh SK, Gao Y, Lassiter TL, Mishra RK, Zhu KY, Brimijoin S. PLoS One 4 e4349 (2009)
  60. Covalent Tethering of Fragments For Covalent Probe Discovery. Kathman SG, Statsyuk AV. Medchemcomm 7 576-585 (2016)
  61. Exploring key orientations at protein-protein interfaces with small molecule probes. Ko E, Raghuraman A, Perez LM, Ioerger TR, Burgess K. J Am Chem Soc 135 167-173 (2013)
  62. FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions. Lodge JM, Rettenmaier TJ, Wells JA, Pomerantz WC, Mapp AK. Medchemcomm 5 370-375 (2014)
  63. Species marker for developing novel and safe pesticides. Pang YP. Bioorg Med Chem Lett 17 197-199 (2007)
  64. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. Methods Enzymol 544 215-249 (2014)
  65. A high-throughput TNP-ATP displacement assay for screening inhibitors of ATP-binding in bacterial histidine kinases. Guarnieri MT, Blagg BS, Zhao R. Assay Drug Dev Technol 9 174-183 (2011)
  66. Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. Morell M, Nguyen Duc T, Willis AL, Syed S, Lee J, Deu E, Deng Y, Xiao J, Turk BE, Jessen JR, Weiss SJ, Bogyo M. J Am Chem Soc 135 9139-9148 (2013)
  67. Discovery of high-affinity protein binding ligands--backwards. Diehnelt CW, Shah M, Gupta N, Belcher PE, Greving MP, Stafford P, Johnston SA. PLoS One 5 e10728 (2010)
  68. Exploiting neighboring-group interactions for the self-selection of a catalytic unit. Gasparini G, Prins LJ, Scrimin P. Angew Chem Int Ed Engl 47 2475-2479 (2008)
  69. From Fuzzy to Function: The New Frontier of Protein-Protein Interactions. Pricer R, Gestwicki JE, Mapp AK. Acc Chem Res 50 584-589 (2017)
  70. In vitro screening and structural characterization of inhibitors of the S100B-p53 interaction. Wilder PT, Charpentier TH, Liriano MA, Gianni K, Varney KM, Pozharski E, Coop A, Toth EA, Mackerell AD, Weber DJ. Int J High Throughput Screen 2010 109-126 (2010)
  71. Mapping of ligand-binding cavities in proteins. Andersson CD, Chen BY, Linusson A. Proteins 78 1408-1422 (2010)
  72. Electrophilic affibodies forming covalent bonds to protein targets. Holm L, Moody P, Howarth M. J Biol Chem 284 32906-32913 (2009)
  73. High-throughput screen for inhibitors of protein-protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. Taylor IR, Dunyak BM, Komiyama T, Shao H, Ran X, Assimon VA, Kalyanaraman C, Rauch JN, Jacobson MP, Zuiderweg ERP, Gestwicki JE. J Biol Chem 293 4014-4025 (2018)
  74. Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Becker D, Kaczmarska Z, Arkona C, Schulz R, Tauber C, Wolber G, Hilgenfeld R, Coll M, Rademann J. Nat Commun 7 12761 (2016)
  75. Overcoming the limitations of fragment merging: rescuing a strained merged fragment series targeting Mycobacterium tuberculosis CYP121. Hudson SA, Surade S, Coyne AG, McLean KJ, Leys D, Munro AW, Abell C. ChemMedChem 8 1451-1456 (2013)
  76. Structural model of the p14/SF3b155 · branch duplex complex. Schellenberg MJ, Dul EL, MacMillan AM. RNA 17 155-165 (2011)
  77. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. Chen X, Qin S, Chen S, Li J, Li L, Wang Z, Wang Q, Lin J, Yang C, Shui W. Sci Rep 5 8361 (2015)
  78. Dynamic thiol exchange with β-sulfido-α,β-unsaturated carbonyl compounds and dithianes. Joshi G, Anslyn EV. Org Lett 14 4714-4717 (2012)
  79. A fragment-based in situ combinatorial approach to identify high-affinity ligands for unknown binding sites. Shelke SV, Cutting B, Jiang X, Koliwer-Brandl H, Strasser DS, Schwardt O, Kelm S, Ernst B. Angew Chem Int Ed Engl 49 5721-5725 (2010)
  80. Chemical ligation of epoxide-containing fusicoccins and peptide fragments guided by 14-3-3 protein. Maki T, Kawamura A, Kato N, Ohkanda J. Mol Biosyst 9 940-943 (2013)
  81. Improved mapping of protein binding sites. Kortvelyesi T, Silberstein M, Dennis S, Vajda S. J Comput Aided Mol Des 17 173-186 (2003)
  82. Exo-mechanism proximity-accelerated alkylations: investigations of linkers, electrophiles and surface mutations in engineered cyclophilin-cyclosporin systems. Levitsky K, Boersma MD, Ciolli CJ, Belshaw PJ. Chembiochem 6 890-899 (2005)
  83. Tethering identifies fragment that yields potent inhibitors of human caspase-1. Fahr BT, O'Brien T, Pham P, Waal ND, Baskaran S, Raimundo BC, Lam JW, Sopko MM, Purkey HE, Romanowski MJ. Bioorg Med Chem Lett 16 559-562 (2006)
  84. A novel protocol to accelerate dynamic combinatorial chemistry via isolation of ligand-target adducts from dynamic combinatorial libraries: a case study identifying competitive inhibitors of lysozyme. Fang Z, He W, Li X, Li Z, Chen B, Ouyang P, Guo K. Bioorg Med Chem Lett 23 5174-5177 (2013)
  85. Diazinones as P2 replacements for pyrazole-based cathepsin S inhibitors. Ameriks MK, Bembenek SD, Burdett MT, Choong IC, Edwards JP, Gebauer D, Gu Y, Karlsson L, Purkey HE, Staker BL, Sun S, Thurmond RL, Zhu J. Bioorg Med Chem Lett 20 4060-4064 (2010)
  86. Letter Identification of specific tethered inhibitors for caspase-5. Gao J, Wells JA. Chem Biol Drug Des 79 209-215 (2012)
  87. Advances in fragment-based drug discovery platforms. Orita M, Warizaya M, Amano Y, Ohno K, Niimi T. Expert Opin Drug Discov 4 1125-1144 (2009)
  88. Mapping the surface of Escherichia coli peptide deformylase by NMR with organic solvents. Byerly DW, McElroy CA, Foster MP. Protein Sci 11 1850-1853 (2002)
  89. A minimalist approach to fragment-based ligand design using common rings and linkers: application to kinase inhibitors. Aronov AM, Bemis GW. Proteins 57 36-50 (2004)
  90. Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. Henderson AR, Henley MJ, Foster NJ, Peiffer AL, Beyersdorf MS, Stanford KD, Sturlis SM, Linhares BM, Hill ZB, Wells JA, Cierpicki T, Brooks CL, Fierke CA, Mapp AK. Proc Natl Acad Sci U S A 115 8960-8965 (2018)
  91. Directed discovery of bivalent peptide ligands to an SH3 domain. Ferguson MR, Fan X, Mukherjee M, Luo J, Khan R, Ferreon JC, Hilser VJ, Shope RE, Fox RO. Protein Sci 13 626-632 (2004)
  92. Insect-specific irreversible inhibitors of acetylcholinesterase in pests including the bed bug, the eastern yellowjacket, German and American cockroaches, and the confused flour beetle. Polsinelli GA, Singh SK, Mishra RK, Suranyi R, Ragsdale DW, Pang YP, Brimijoin S. Chem Biol Interact 187 142-147 (2010)
  93. Limitations of the "tethering" strategy for the detection of a weak noncovalent interaction. Gasparini G, Martin M, Prins LJ, Scrimin P. Chem Commun (Camb) 1340-1342 (2007)
  94. Drug search for leishmaniasis: a virtual screening approach by grid computing. Ochoa R, Watowich SJ, Flórez A, Mesa CV, Robledo SM, Muskus C. J Comput Aided Mol Des 30 541-552 (2016)
  95. Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering. Wolter M, Valenti D, Cossar PJ, Levy LM, Hristeva S, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. Angew Chem Int Ed Engl 59 21520-21524 (2020)
  96. Stereo- and regioselective azide/alkyne cycloadditions in carbonic anhydrase II via tethering, monitored by crystallography and mass spectrometry. Wischeler JS, Sun D, Sandner NU, Linne U, Heine A, Koert U, Klebe G. Chemistry 17 5842-5851 (2011)
  97. The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation. Wong EL, Nawrotzky E, Arkona C, Kim BG, Beligny S, Wang X, Wagner S, Lisurek M, Carstanjen D, Rademann J. Nat Commun 10 66 (2019)
  98. 2'-O-Appended polyamines that increase triple-helix-forming oligonucleotide affinity are selected by dynamic combinatorial chemistry. Azéma L, Bathany K, Rayner B. Chembiochem 11 2513-2516 (2010)
  99. Cysteinylated protein as reactive disulfide: an alternative route to affinity labeling. Miao Z, McCoy MR, Singh DD, Barrios B, Hsu OL, Cheal SM, Meares CF. Bioconjug Chem 19 15-19 (2008)
  100. Discovery of N-(1-Acryloylazetidin-3-yl)-2-(1H-indol-1-yl)acetamides as Covalent Inhibitors of KRASG12C. Shin Y, Jeong JW, Wurz RP, Achanta P, Arvedson T, Bartberger MD, Campuzano IDG, Fucini R, Hansen SK, Ingersoll J, Iwig JS, Lipford JR, Ma V, Kopecky DJ, McCarter J, San Miguel T, Mohr C, Sabet S, Saiki AY, Sawayama A, Sethofer S, Tegley CM, Volak LP, Yang K, Lanman BA, Erlanson DA, Cee VJ. ACS Med Chem Lett 10 1302-1308 (2019)
  101. A Liquid Chromatography/Mass Spectrometry Method for Screening Disulfide Tethering Fragments. Hallenbeck KK, Davies JL, Merron C, Ogden P, Sijbesma E, Ottmann C, Renslo AR, Wilson C, Arkin MR. SLAS Discov 23 183-192 (2018)
  102. Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. Veselovsky AV, Zharkova MS, Poroikov VV, Nicklaus MC. SAR QSAR Environ Res 25 457-471 (2014)
  103. Identification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. Harvey EP, Hauseman ZJ, Cohen DT, Rettenmaier TJ, Lee S, Huhn AJ, Wales TE, Seo HS, Luccarelli J, Newman CE, Guerra RM, Bird GH, Dhe-Paganon S, Engen JR, Wells JA, Walensky LD. Cell Chem Biol 27 647-656.e6 (2020)
  104. Auto In Silico Ligand Directing Evolution to Facilitate the Rapid and Efficient Discovery of Drug Lead. Wu F, Zhuo L, Wang F, Huang W, Hao G, Yang G. iScience 23 101179 (2020)
  105. Discovery of Bivalent Kinase Inhibitors via Enzyme-Templated Fragment Elaboration. Kwarcinski FE, Steffey ME, Fox CC, Soellner MB. ACS Med Chem Lett 6 898-901 (2015)
  106. Docking and scoring: applications to drug discovery in the interactomics era. Grosdidier S, Fernández-Recio J. Expert Opin Drug Discov 4 673-686 (2009)
  107. Modeling functional changes to Escherichia coli thymidylate synthase upon single residue replacements: a structure-based approach. Masso M. PeerJ 3 e721 (2015)
  108. Redox priming promotes Aurora A activation during mitosis. Lim DC, Joukov V, Rettenmaier TJ, Kumagai A, Dunphy WG, Wells JA, Yaffe MB. Sci Signal 13 (2020)
  109. Specific modulation of protein activity by using a bioorthogonal reaction. Warner JB, Muthusamy AK, Petersson EJ. Chembiochem 15 2508-2514 (2014)
  110. News A tale of two necessities: breakaway technology versus diabetes. Brown M. Drug Discov Today 8 561-562 (2003)
  111. Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy. Emileh A, Duffy C, Holmes AP, Rosemary Bastian A, Aneja R, Tuzer F, Rajagopal S, Li H, Abrams CF, Chaiken IM. Biochemistry 53 3403-3414 (2014)
  112. Dynamic covalent capture of hydrazides by a phosphonate-target immobilized on resin. Gasparini G, Rastrelli F, Prins LJ. Org Biomol Chem 11 6580-6587 (2013)
  113. Fluorescence Anisotropy-Based Tethering for Discovery of Protein-Protein Interaction Stabilizers. Sijbesma E, Somsen BA, Miley GP, Leijten-van de Gevel IA, Brunsveld L, Arkin MR, Ottmann C. ACS Chem Biol 15 3143-3148 (2020)
  114. Genetic selection for peptide inhibitors of angiogenin. Smith BD, Raines RT. Protein Eng Des Sel 21 289-294 (2008)
  115. Increase of enzyme activity through specific covalent modification with fragments. Darby JF, Atobe M, Firth JD, Bond P, Davies GJ, O'Brien P, Hubbard RE. Chem Sci 8 7772-7779 (2017)
  116. Indirect optical analysis of a dynamic chemical system. Gasparini G, Bettin F, Scrimin P, Prins LJ. Angew Chem Int Ed Engl 48 4546-4550 (2009)
  117. Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules. Cawood EE, Guthertz N, Ebo JS, Karamanos TK, Radford SE, Wilson AJ. J Am Chem Soc 142 20845-20854 (2020)
  118. Proteintemplat-gesteuerte Fragmentligationen - von der molekularen Erkennung zur Wirkstofffindung. Jaegle M, Wong EL, Tauber C, Nawrotzky E, Arkona C, Rademann J. Angew Chem Weinheim Bergstr Ger 129 7464-7485 (2017)
  119. Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach. Somsen BA, Schellekens RJC, Verhoef CJA, Arkin MR, Ottmann C, Cossar PJ, Brunsveld L. J Am Chem Soc 145 6741-6752 (2023)
  120. Ribonuclease S redux. Watkins RW, Arnold U, Raines RT. Chem Commun (Camb) 47 973-975 (2011)
  121. Use of "tethering" for the identification of a small molecule that binds to a dynamic hot spot on the interleukin-2 surface. Berg T. Chembiochem 5 1051-1053 (2004)
  122. Active site labeling of fatty acid and polyketide acyl-carrier protein transacylases. Davis TD, Michaud JM, Burkart MD. Org Biomol Chem 17 4720-4724 (2019)
  123. Computational approach to site-directed ligand discovery. Tóth G, Mukhyala K, Wells JA. Proteins 68 551-560 (2007)
  124. Covalent Chemical Cochaperones of the p300/CBP GACKIX Domain. Lodge JM, Majmudar CY, Clayton J, Mapp AK. Chembiochem 19 1907-1912 (2018)
  125. Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Meng B, Lan K, Xie J, Lerner RA, Wilson IA, Yang B. Proc Natl Acad Sci U S A 117 13499-13508 (2020)
  126. Multicomponent reaction-derived covalent inhibitor space. Sutanto F, Shaabani S, Neochoritis CG, Zarganes-Tzitzikas T, Patil P, Ghonchepour E, Dömling A. Sci Adv 7 (2021)
  127. Mutate and Conjugate: A Method to Enable Rapid In-Cell Target Validation. Thomas AM, Serafini M, Grant EK, Coombs EAJ, Bluck JP, Schiedel M, McDonough MA, Reynolds JK, Lee B, Platt M, Sharlandjieva V, Biggin PC, Duarte F, Milne TA, Bush JT, Conway SJ. ACS Chem Biol 18 2405-2417 (2023)
  128. The Search for Covalently Ligandable Proteins in Biological Systems. Badshah SL, Mabkhot YN. Molecules 21 (2016)
  129. Towards identification of protein-protein interaction stabilizers via inhibitory peptide-fragment hybrids using templated fragment ligation. Srdanović S, Hegedüs Z, Warriner SL, Wilson AJ. RSC Chem Biol 3 546-550 (2022)
  130. Vinyl sulfonamide synthesis for irreversible tethering via a novel α-selenoether protection strategy. Craven GB, Affron DP, Raymond PN, Mann DJ, Armstrong A. Medchemcomm 10 158-163 (2019)
  131. A snare for the weak Nat Biotechnol 18 1025 (2000)
  132. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Nat Chem Biol (2021)
  133. An electrophilic fragment screening for the development of small molecules targeting caspase-2. Cuellar ME, Yang M, Karavadhi S, Zhang YQ, Zhu H, Sun H, Shen M, Hall MD, Patnaik S, Ashe KH, Walters MA, Pockes S. Eur J Med Chem 259 115632 (2023)
  134. Bioorthogonal Tethering Enhances Drug Fragment Affinity for G Protein-Coupled Receptors in Live Cells. Mattheisen JM, Limberakis C, Ruggeri RB, Dowling MS, Am Ende CW, Ceraudo E, Huber T, McClendon CL, Sakmar TP. J Am Chem Soc 145 11173-11184 (2023)
  135. Chemoproteomic methods for covalent drug discovery. Chan WC, Sharifzadeh S, Buhrlage SJ, Marto JA. Chem Soc Rev 50 8361-8381 (2021)
  136. Covalent inhibition of pro-apoptotic BAX. McHenry MW, Shi P, Camara CM, Cohen DT, Rettenmaier TJ, Adhikary U, Gygi MA, Yang K, Gygi SP, Wales TE, Engen JR, Wells JA, Walensky LD. Nat Chem Biol (2024)
  137. Covalent simulations of covalent/irreversible enzyme inhibition in drug discovery: a reliable technical protocol. Khan S, Bjij I, Olotu FA, Agoni C, Adeniji E, S Soliman ME. Future Med Chem 10 2265-2275 (2018)
  138. Destabilizers of the thymidylate synthase homodimer accelerate its proteasomal degradation and inhibit cancer growth. Costantino L, Ferrari S, Santucci M, Salo-Ahen OMH, Carosati E, Franchini S, Lauriola A, Pozzi C, Trande M, Gozzi G, Saxena P, Cannazza G, Losi L, Cardinale D, Venturelli A, Quotadamo A, Linciano P, Tagliazucchi L, Moschella MG, Guerrini R, Pacifico S, Luciani R, Genovese F, Henrich S, Alboni S, Santarem N, da Silva Cordeiro A, Giovannetti E, Peters GJ, Pinton P, Rimessi A, Cruciani G, Stroud RM, Wade RC, Mangani S, Marverti G, D'Arca D, Ponterini G, Costi MP. Elife 11 e73862 (2022)
  139. Engaging a Non-catalytic Cysteine Residue Drives Potent and Selective Inhibition of Caspase-6. Van Horn KS, Wang D, Medina-Cleghorn D, Lee PS, Bryant C, Altobelli C, Jaishankar P, Leung KK, Ng RA, Ambrose AJ, Tang Y, Arkin MR, Renslo AR. J Am Chem Soc 145 10015-10021 (2023)
  140. In vitro selection of proteins that undergo covalent labeling with small molecules by thiol-disulfide exchange by using ribosome display. Yanagida H, Matsuura T, Kazuta Y, Yomo T. Chembiochem 12 962-969 (2011)
  141. Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery. Modell AE, Marrone F, Panigrahi NR, Zhang Y, Arora PS. J Am Chem Soc 144 1198-1204 (2022)
  142. Proteome-Wide Fragment-Based Ligand and Target Discovery. Forrest I, Parker CG. Isr J Chem 63 e202200098 (2023)
  143. Quantitative Irreversible Tethering (qIT) for Target-directed Covalent Fragment Screening. Craven GB, Armstrong A, Mann DJ. Bio Protoc 10 e3855 (2020)
  144. Small molecules targeting the NEDD8·NAE protein-protein interaction. Lin CM, Jiang Z, Gao Z, Arancillo M, Burgess K. Chem Sci 12 1535-1543 (2020)
  145. Structural and Functional Characterization of the Human Thymidylate Synthase (hTS) Interface Variant R175C, New Perspectives for the Development of hTS Inhibitors. Pozzi C, Ferrari S, Luciani R, Costi MP, Mangani S. Molecules 24 (2019)
  146. Target-Directed Self-Assembly of Homodimeric Drugs Against β-Tryptase. Giardina SF, Werner DS, Pingle M, Foreman KW, Bergstrom DE, Arnold LD, Barany F. ACS Med Chem Lett 9 827-831 (2018)
  147. Tethering in RNA: an RNA-binding fragment discovery tool. Tran K, Arkin MR, Beal PA. Molecules 20 4148-4161 (2015)