1fgj Citations

The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea.

Nat Struct Biol 4 276-84 (1997)
Cited: 102 times
EuropePMC logo PMID: 9095195

Abstract

The 2.8 A crystal structure of hydroxylamine oxidoreductase of a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea, is described. Twenty-four haems lie in the centre bottom of the trimeric molecule, localized in four clusters within each monomer. The haem clusters within the trimer are aligned to form a ring that has inlet and outlet sites. The inlet is occupied by a novel haem, P460, and there are two possible outlet sites per monomer formed by paired haems lying within a cavity or cleft on the protein surface. The structure suggests pathways by which electron transfer may occur through the precisely arranged haems and provides a framework for the interpretation of previous and future biochemical and genetic observations.

Reviews - 1fgj mentioned but not cited (2)

  1. Multi-heme proteins: nature's electronic multi-purpose tool. Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ. Biochim. Biophys. Acta 1827 938-948 (2013)
  2. Nature's nitrite-to-ammonia expressway, with no stop at dinitrogen. Kroneck PMH. J Biol Inorg Chem 27 1-21 (2022)

Articles - 1fgj mentioned but not cited (11)

  1. The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Clarke TA, Cole JA, Richardson DJ, Hemmings AM. Biochem. J. 406 19-30 (2007)
  2. Structural basis of biological NO generation by octaheme oxidoreductases. Maalcke WJ, Dietl A, Marritt SJ, Butt JN, Jetten MS, Keltjens JT, Barends TR, Kartal B. J. Biol. Chem. 289 1228-1242 (2014)
  3. Electric field stimulates production of highly conductive microbial OmcZ nanowires. Yalcin SE, O'Brien JP, Gu Y, Reiss K, Yi SM, Jain R, Srikanth V, Dahl PJ, Huynh W, Vu D, Acharya A, Chaudhuri S, Varga T, Batista VS, Malvankar NS. Nat Chem Biol 16 1136-1142 (2020)
  4. The crystal structure of cytochrome P460 of Nitrosomonas europaea reveals a novel cytochrome fold and heme-protein cross-link. Pearson AR, Elmore BO, Yang C, Ferrara JD, Hooper AB, Wilmot CM. Biochemistry 46 8340-8349 (2007)
  5. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Front Microbiol 6 439 (2015)
  6. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle. Maalcke WJ, Reimann J, de Vries S, Butt JN, Dietl A, Kip N, Mersdorf U, Barends TR, Jetten MS, Keltjens JT, Kartal B. J. Biol. Chem. 291 17077-17092 (2016)
  7. Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites. Valasatava Y, Andreini C, Rosato A. Sci Rep 5 9486 (2015)
  8. Modular origins of biological electron transfer chains. Raanan H, Pike DH, Moore EK, Falkowski PG, Nanda V. Proc. Natl. Acad. Sci. U.S.A. 115 1280-1285 (2018)
  9. A New Paradigm of Multiheme Cytochrome Evolution by Grafting and Pruning Protein Modules. Soares R, Costa NL, Paquete CM, Andreini C, Louro RO. Mol Biol Evol 39 msac139 (2022)
  10. Crystallization and preliminary X-ray crystallographic analysis of a new crystal form of hydroxylamine oxidoreductase from Nitrosomonas europaea. Cedervall PE, Hooper AB, Wilmot CM. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65 1296-1298 (2009)
  11. Oxidoreductases and metal cofactors in the functioning of the earth. Hay Mele B, Monticelli M, Leone S, Bastoni D, Barosa B, Cascone M, Migliaccio F, Montemagno F, Ricciardelli A, Tonietti L, Rotundi A, Cordone A, Giovannelli D. Essays Biochem 67 653-670 (2023)


Reviews citing this publication (22)

  1. Cell biology and molecular basis of denitrification. Zumft WG. Microbiol. Mol. Biol. Rev. 61 533-616 (1997)
  2. Bacterial respiration: a flexible process for a changing environment. Richardson DJ. Microbiology (Reading, Engl.) 146 ( Pt 3) 551-571 (2000)
  3. Enzymology and bioenergetics of respiratory nitrite ammonification. Simon J. FEMS Microbiol. Rev. 26 285-309 (2002)
  4. Molecular analysis of ammonia oxidation and denitrification in natural environments. Bothe H, Jost G, Schloter M, Ward BB, Witzel K. FEMS Microbiol. Rev. 24 673-690 (2000)
  5. Inorganic nitrogen metabolism in bacteria. Richardson DJ, Watmough NJ. Curr Opin Chem Biol 3 207-219 (1999)
  6. How to make a living from anaerobic ammonium oxidation. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT. FEMS Microbiol. Rev. 37 428-461 (2013)
  7. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Arp DJ, Stein LY. Crit. Rev. Biochem. Mol. Biol. 38 471-495 (2003)
  8. Structure-function relationships in heme-proteins. Paoli M, Marles-Wright J, Smith A. DNA Cell Biol. 21 271-280 (2002)
  9. The chemistry and biochemistry of heme c: functional bases for covalent attachment. Bowman SE, Bren KL. Nat Prod Rep 25 1118-1130 (2008)
  10. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Arp DJ, Chain PS, Klotz MG. Annu. Rev. Microbiol. 61 503-528 (2007)
  11. Still a puzzle: why is haem covalently attached in c-type cytochromes? Barker PD, Ferguson SJ. Structure 7 R281-90 (1999)
  12. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF. Appl. Microbiol. Biotechnol. 85 425-440 (2010)
  13. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. Allen JW, Daltrop O, Stevens JM, Ferguson SJ. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358 255-266 (2003)
  14. Nitrous oxide emissions from wastewater treatment processes. Law Y, Ye L, Pan Y, Yuan Z. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 1265-1277 (2012)
  15. Nitrogen cycle enzymology. Ferguson SJ. Curr Opin Chem Biol 2 182-193 (1998)
  16. Review: studies of ferric heme proteins with highly anisotropic/highly axial low spin (S = 1/2) electron paramagnetic resonance signals with bis-histidine and histidine-methionine axial iron coordination. Zoppellaro G, Bren KL, Ensign AA, Harbitz E, Kaur R, Hersleth HP, Ryde U, Hederstedt L, Andersson KK. Biopolymers 91 1064-1082 (2009)
  17. Energy model and metabolic flux analysis for autotrophic nitrifiers. Poughon L, Dussap CG, Gros JB. Biotechnol. Bioeng. 72 416-433 (2001)
  18. Physiological function and catalytic versatility of bacterial multihaem cytochromes c involved in nitrogen and sulfur cycling. Simon J, Kern M, Hermann B, Einsle O, Butt JN. Biochem. Soc. Trans. 39 1864-1870 (2011)
  19. Isotopocule analysis of biologically produced nitrous oxide in various environments. Toyoda S, Yoshida N, Koba K. Mass Spectrom Rev 36 135-160 (2017)
  20. Octaheme nitrite reductases: structure and properties. Tikhonova TV, Trofimov AA, Popov VO. Biochemistry Mosc. 77 1129-1138 (2012)
  21. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production. Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. Environ. Microbiol. 20 1623-1640 (2018)
  22. Nitric Oxide, Nitric Oxide Formers and Their Physiological Impacts in Bacteria. Chen J, Liu L, Wang W, Gao H. Int J Mol Sci 23 10778 (2022)

Articles citing this publication (67)

  1. Structure of a bacterial cell surface decaheme electron conduit. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ, Wang Z, Watmough NJ, Fredrickson JK, Zachara JM, Butt JN, Richardson DJ. Proc. Natl. Acad. Sci. U.S.A. 108 9384-9389 (2011)
  2. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Klotz MG, Schmid MC, Strous M, op den Camp HJ, Jetten MS, Hooper AB. Environ. Microbiol. 10 3150-3163 (2008)
  3. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu D, Robinson JM, Khouri HM, Eisen JA, Cary SC. PLoS Genet. 5 e1000362 (2009)
  4. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Shimamura M, Nishiyama T, Shigetomo H, Toyomoto T, Kawahara Y, Furukawa K, Fujii T. Appl. Environ. Microbiol. 73 1065-1072 (2007)
  5. Heme proteins--diversity in structural characteristics, function, and folding. Smith LJ, Kahraman A, Thornton JM. Proteins 78 2349-2368 (2010)
  6. In vitro formation of a c-type cytochrome. Daltrop O, Allen JW, Willis AC, Ferguson SJ. Proc. Natl. Acad. Sci. U.S.A. 99 7872-7876 (2002)
  7. Octaheme tetrathionate reductase is a respiratory enzyme with novel heme ligation. Mowat CG, Rothery E, Miles CS, McIver L, Doherty MK, Drewette K, Taylor P, Walkinshaw MD, Chapman SK, Reid GA. Nat. Struct. Mol. Biol. 11 1023-1024 (2004)
  8. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG. FEMS Microbiol. Lett. 322 82-89 (2011)
  9. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Schreiber F, Wunderlin P, Udert KM, Wells GF. Front Microbiol 3 372 (2012)
  10. Crystal structures at atomic resolution reveal the novel concept of "electron-harvesting" as a role for the small tetraheme cytochrome c. Leys D, Meyer TE, Tsapin AS, Nealson KH, Cusanovich MA, Van Beeumen JJ. J. Biol. Chem. 277 35703-35711 (2002)
  11. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Glass JB, Orphan VJ. Front Microbiol 3 61 (2012)
  12. An octaheme c-type cytochrome from Shewanella oneidensis can reduce nitrite and hydroxylamine. Atkinson SJ, Mowat CG, Reid GA, Chapman SK. FEBS Lett. 581 3805-3808 (2007)
  13. High-resolution structural analysis of a novel octaheme cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens. Polyakov KM, Boyko KM, Tikhonova TV, Slutsky A, Antipov AN, Zvyagilskaya RA, Popov AN, Bourenkov GP, Lamzin VS, Popov VO. J. Mol. Biol. 389 846-862 (2009)
  14. Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. Bergmann DJ, Hooper AB, Klotz MG. Appl. Environ. Microbiol. 71 5371-5382 (2005)
  15. A systematic investigation of multiheme c-type cytochromes in prokaryotes. Sharma S, Cavallaro G, Rosato A. J. Biol. Inorg. Chem. 15 559-571 (2010)
  16. Cytochromes P460 and c'-beta; a new family of high-spin cytochromes c. Elmore BO, Bergmann DJ, Klotz MG, Hooper AB. FEBS Lett. 581 911-916 (2007)
  17. The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c. Allen JW, Tomlinson EJ, Hong L, Ferguson SJ. J. Biol. Chem. 277 33559-33563 (2002)
  18. The primary and three-dimensional structures of a nine-haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Matias PM, Coelho R, Pereira IA, Coelho AV, Thompson AW, Sieker LC, Gall JL, Carrondo MA. Structure 7 119-130 (1999)
  19. Multi-heme cytochromes--new structures, new chemistry. Mowat CG, Chapman SK. Dalton Trans 3381-3389 (2005)
  20. Solution-based structural analysis of the decaheme cytochrome, MtrA, by small-angle X-ray scattering and analytical ultracentrifugation. Firer-Sherwood MA, Ando N, Drennan CL, Elliott SJ. J Phys Chem B 115 11208-11214 (2011)
  21. Cytochrome P460 genes from the methanotroph Methylococcus capsulatus bath. Bergmann DJ, Zahn JA, Hooper AB, DiSpirito AA. J. Bacteriol. 180 6440-6445 (1998)
  22. Kinetic and product distribution analysis of NO* reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase. Kostera J, Youngblut MD, Slosarczyk JM, Pacheco AA. J. Biol. Inorg. Chem. 13 1073-1083 (2008)
  23. N2O and NO emissions from a partial nitrification sequencing batch reactor: exploring dynamics, sources and minimization mechanisms. Rodriguez-Caballero A, Pijuan M. Water Res. 47 3131-3140 (2013)
  24. NO reductase activity of the tetraheme cytochrome C554 of Nitrosomonas europaea. Upadhyay AK, Hooper AB, Hendrich MP. J. Am. Chem. Soc. 128 4330-4337 (2006)
  25. PROMISE: a database of bioinorganic motifs. Degtyarenko KN, North AC, Findlay JB. Nucleic Acids Res. 27 233-236 (1999)
  26. The crystal structure of the hexadeca-heme cytochrome Hmc and a structural model of its complex with cytochrome c(3). Czjzek M, ElAntak L, Zamboni V, Morelli X, Dolla A, Guerlesquin F, Bruschi M. Structure 10 1677-1686 (2002)
  27. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Cartron ML, Roldán MD, Ferguson SJ, Berks BC, Richardson DJ. Biochem. J. 368 425-432 (2002)
  28. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R, Hu J. BMC Bioinformatics 12 207 (2011)
  29. Theoretical insight into the hydroxylamine oxidoreductase mechanism. Fernández ML, Estrin DA, Bari SE. J. Inorg. Biochem. 102 1523-1530 (2008)
  30. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, Schmidt M, Pacheco AA. J. Biol. Inorg. Chem. 17 647-662 (2012)
  31. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Ravcheev DA, Thiele I. Front Microbiol 5 674 (2014)
  32. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules. Rathnayake RM, Oshiki M, Ishii S, Segawa T, Satoh H, Okabe S. Bioresour. Technol. 197 15-22 (2015)
  33. Evidence for a crosslink between c-heme and a lysine residue in cytochrome P460 of Nitrosomonas europaea. Arciero DM, Hooper AB. FEBS Lett. 410 457-460 (1997)
  34. Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Zepeda A, Texier AC, Razo-Flores E, Gomez J. Water Res. 40 1643-1649 (2006)
  35. Cytochrome P460 of Nitrosomonas europaea. Formation of the heme-lysine cross-link in a heterologous host and mutagenic conversion to a non-cross-linked cytochrome c'. Bergmann DJ, Hooper AB. Eur. J. Biochem. 270 1935-1941 (2003)
  36. Models of the bis-histidine-coordinated ferricytochromes: Mössbauer and EPR spectroscopic studies of low-spin iron(III) tetrapyrroles of various electronic ground states and axial ligand orientations. Benda R, Schünemann V, Trautwein AX, Cai S, Reddy Polam J, Watson CT, Shokhireva TKh, Walker FA. J. Biol. Inorg. Chem. 8 787-801 (2003)
  37. Spectroscopic investigation and determination of reactivity and structure of the tetraheme cytochrome c3 from Desulfovibrio desulfuricans Essex 6. Einsle O, Foerster S, Mann K, Fritz G, Messerschmidt A, Kroneck PM. Eur. J. Biochem. 268 3028-3035 (2001)
  38. Thermodynamic characterization of a tetrahaem cytochrome isolated from a facultative aerobic bacterium, Shewanella frigidimarina: a putative redox model for flavocytochrome c3. Pessanha M, Louro RO, Correia IJ, Rothery EL, Pankhurst KL, Reid GA, Chapman SK, Turner DL, Salgueiro CA. Biochem. J. 370 489-495 (2003)
  39. The octahaem MccA is a haem c-copper sulfite reductase. Hermann B, Kern M, La Pietra L, Simon J, Einsle O. Nature 520 706-709 (2015)
  40. Membrane tetraheme cytochrome c(m552) of the ammonia-oxidizing nitrosomonas europaea: a ubiquinone reductase. Kim HJ, Zatsman A, Upadhyay AK, Whittaker M, Bergmann D, Hendrich MP, Hooper AB. Biochemistry 47 6539-6551 (2008)
  41. Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase. Kurth JM, Brito JA, Reuter J, Flegler A, Koch T, Franke T, Klein EM, Rowe SF, Butt JN, Denkmann K, Pereira IA, Archer M, Dahl C. J. Biol. Chem. 291 24804-24818 (2016)
  42. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica". Oshiki M, Ali M, Shinyako-Hata K, Satoh H, Okabe S. Environ. Microbiol. 18 3133-3143 (2016)
  43. Comment The remarkable complexity of hydroxylamine oxidoreductase. Prince RC, George GN. Nat. Struct. Biol. 4 247-250 (1997)
  44. Voltammetry of a flavocytochrome c(3): the lowest potential heme modulates fumarate reduction rates. Butt JN, Thornton J, Richardson DJ, Dobbin PS. Biophys. J. 78 1001-1009 (2000)
  45. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium. Irisa T, Hira D, Furukawa K, Fujii T. J. Biosci. Bioeng. 118 616-621 (2014)
  46. Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link. Ferousi C, Schmitz RA, Maalcke WJ, Lindhoud S, Versantvoort W, Jetten MSM, Reimann J, Kartal B. J Biol Chem 296 100476 (2021)
  47. Effect of seed sludge on nitrogen removal in a novel upflow microaerobic sludge reactor for treating piggery wastewater. Meng J, Li J, Li J, Wang C, Deng K, Sun K. Bioresour. Technol. 216 19-27 (2016)
  48. Heme P460: A (Cross) Link to Nitric Oxide. Coleman RE, Lancaster KM. Acc Chem Res 53 2925-2935 (2020)
  49. Identification of c-type heme-containing peptides using nonactivated immobilized metal affinity chromatography resin enrichment and higher-energy collisional dissociation. Zhang H, Yang F, Qian WJ, Brown RN, Wang Y, Merkley ED, Park JH, Monroe ME, Purvine SO, Moore RJ, Shi L, Fredrickson JK, Paša-Tolić L, Smith RD, Lipton MS. Anal. Chem. 83 7260-7268 (2011)
  50. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR). Yuan Y, Liu J, Ma B, Liu Y, Wang B, Peng Y. Bioresour. Technol. 222 326-334 (2016)
  51. Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex. Lockwood C, Butt JN, Clarke TA, Richardson DJ. Biochem. Soc. Trans. 39 263-268 (2011)
  52. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation. Stein N, Love D, Judd ET, Elliott SJ, Bennett B, Pacheco AA. Biochemistry 54 3749-3758 (2015)
  53. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. Song K, Suenaga T, Harper WF, Hori T, Riya S, Hosomi M, Terada A. Environ Sci Pollut Res Int 22 19562-19570 (2015)
  54. Identification and characterization of a novel hydroxylamine oxidase, DnfA, that catalyzes the oxidation of hydroxylamine to N2. Wu MR, Miao LL, Liu Y, Qian XX, Hou TT, Ai GM, Yu L, Ma L, Gao XY, Qin YL, Zhu HZ, Du L, Li SY, Tian CL, Li DF, Liu ZP, Liu SJ. J Biol Chem 298 102372 (2022)
  55. Pyruvic oxime dioxygenase from heterotrophic nitrifier Alcaligenes faecalis is a nonheme Fe(II)-dependent enzyme homologous to class II aldolase. Tsujino S, Uematsu C, Dohra H, Fujiwara T. Sci Rep 7 39991 (2017)
  56. A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Akram M, Dietl A, Mersdorf U, Prinz S, Maalcke W, Keltjens J, Ferousi C, de Almeida NM, Reimann J, Kartal B, Jetten MSM, Parey K, Barends TRM. Sci Adv 5 eaav4310 (2019)
  57. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Chem Rev 120 5252-5307 (2020)
  58. Diversity of the Hydroxylamine Oxidoreductase (HAO) Gene and Its Enzyme Active Site in Agricultural Field Soils. Ohbayashi T, Wang Y, Aoyagi LN, Hara S, Tago K, Hayatsu M. Microbes Environ 38 (2023)
  59. In meso crystal structure of a novel membrane-associated octaheme cytochrome c from the Crenarchaeon Ignicoccus hospitalis. Parey K, Fielding AJ, Sörgel M, Rachel R, Huber H, Ziegler C, Rajendran C. FEBS J. 283 3807-3820 (2016)
  60. Is there a pathway for N2O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria? White CJ, Lehnert N. Proc. Natl. Acad. Sci. U.S.A. 113 14474-14476 (2016)
  61. Isolation and preliminary characterization of new cytochrome c from autotrophic haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. Antipov AN, Tishkov VI. Biochimie 94 2577-2581 (2012)
  62. Juglone, a plant-derived 1,4-naphthoquinone, binds to hydroxylamine oxidoreductase and inhibits the electron transfer to cytochrome c554. Akutsu Y, Fujiwara T, Suzuki R, Nishigaya Y, Yamazaki T. Appl Environ Microbiol 89 e0129123 (2023)
  63. Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily. Speth DR, Yu FB, Connon SA, Lim S, Magyar JS, Peña-Salinas ME, Quake SR, Orphan VJ. ISME J (2022)
  64. One fold, two functions: cytochrome P460 and cytochrome c'-β from the methanotroph Methylococcus capsulatus (Bath). Adams HR, Krewson C, Vardanega JE, Fujii S, Moreno-Chicano T, Moreno T, Chicano, Sambongi Y, Svistunenko D, Paps J, Andrew CR, Hough MA. Chem Sci 10 3031-3041 (2019)
  65. Properties and structure of a low-potential, penta-heme cytochrome c552 from a thermophilic purple sulfur photosynthetic bacterium Thermochromatium tepidum. Chen JH, Yu LJ, Boussac A, Wang-Otomo ZY, Kuang T, Shen JR. Photosyn. Res. 139 281-293 (2019)
  66. Specificity of Small c-Type Cytochromes in Anaerobic Ammonium Oxidation. Akram M, Bock J, Dietl A, Barends TRM. ACS Omega 6 21457-21464 (2021)
  67. Synthesis, molecular structure, and spectroelectrochemistry of a nitrosyl iron porphyrin containing an unsymmetrical xanthene-linked porphyrin core. Xu N, Powell DR, Richter-Addo GB. Nitric Oxide 37 61-65 (2014)