1fkk Citations

Comparative X-ray structures of the major binding protein for the immunosuppressant FK506 (tacrolimus) in unliganded form and in complex with FK506 and rapamycin.

Acta Crystallogr D Biol Crystallogr 51 511-21 (1995)
Related entries: 1fkj, 1fkl

Cited: 55 times
EuropePMC logo PMID: 15299838

Abstract

FK506 (tacrolimus) is a natural product now approved in the US and Japan for organ transplantation. FK506, in complex with its 12 kDa cytosolic receptor (FKBP12), is a potent agonist of immunosuppression through the inhibition of the phosphatase activity of calcineurin. Rapamycin (sirolimus), which is itself an immunosuppressant by a different mechanism, completes with FK506 for binding to FKBP12 and thereby acts as an antagonist of calcineurin inhibition. We have solved the X-ray structure of unliganded FKBP12 and of FKBP12 in complex with FK506 and with rapamycin; these structures show localized differences in conformation and mobility in those regions of the protein that are known, by site-directed mutagenesis, to be involved in calcineurin inhibition. A comparison of 16 additional X-ray structures of FKBP12 in complex with FKBP12-binding ligands, where those structures were determined from different crystal forms with distinct packing arrangements, lends significance to the observed structural variability and suggests that it represents an intrinsic functional characteristic of the protein. Similar differences have been observed for FKBP12 before, but were considered artifacts of crystal-packing interactions. We suggest that immunosuppressive ligands express their differential effects in part by modulating the conformation of FKBP12, in agreement with mutagenesis experiments on the protein, and not simply through differences in the ligand structures themselves.

Articles - 1fkk mentioned but not cited (4)

  1. Structure-based classification of 45 FK506-binding proteins. Somarelli JA, Lee SY, Skolnick J, Herrera RJ. Proteins 72 197-208 (2008)
  2. Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bächinger HP. Protein Sci 23 67-75 (2014)
  3. Structural analysis of protein folding by the long-chain archaeal chaperone FKBP26. Martinez-Hackert E, Hendrickson WA. J Mol Biol 407 450-464 (2011)
  4. Assessing the chemical accuracy of protein structures via peptide acidity. Anderson JS, Hernández G, LeMaster DM. Biophys Chem 171 63-75 (2013)


Reviews citing this publication (5)

  1. Immunophilins: switched on protein binding domains? Ivery MT. Med Res Rev 20 452-484 (2000)
  2. The Many Faces of FKBP51. Hähle A, Merz S, Meyners C, Hausch F. Biomolecules 9 E35 (2019)
  3. Calcineurin-immunosuppressor complexes. Stoddard BL, Flick KE. Curr Opin Struct Biol 6 770-775 (1996)
  4. Identifying the cellular targets of natural products using T7 phage display. Piggott AM, Karuso P. Nat Prod Rep 33 626-636 (2016)
  5. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Biology (Basel) 12 1008 (2023)

Articles citing this publication (46)

  1. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Huse M, Chen YG, Massagué J, Kuriyan J. Cell 96 425-436 (1999)
  2. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Wang J, Deng Y, Roux B. Biophys J 91 2798-2814 (2006)
  3. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J. Proc Natl Acad Sci U S A 100 868-873 (2003)
  4. Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. Brenner C, Garrison P, Gilmour J, Peisach D, Ringe D, Petsko GA, Lowenstein JM. Nat Struct Biol 4 231-238 (1997)
  5. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. Saul FA, Arié JP, Vulliez-le Normand B, Kahn R, Betton JM, Bentley GA. J Mol Biol 335 595-608 (2004)
  6. Structural analysis uncovers a role for redox in regulating FKBP13, an immunophilin of the chloroplast thylakoid lumen. Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Héroux A, Buchanan BB, Swaminathan K, Luan S. Proc Natl Acad Sci U S A 101 13945-13950 (2004)
  7. Design of chimeric antigen receptors with integrated controllable transient functions. Juillerat A, Marechal A, Filhol JM, Valton J, Duclert A, Poirot L, Duchateau P. Sci Rep 6 18950 (2016)
  8. New Frontiers in Druggability. Kozakov D, Hall DR, Napoleon RL, Yueh C, Whitty A, Vajda S. J Med Chem 58 9063-9088 (2015)
  9. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP. Zacharias M. Proteins 54 759-767 (2004)
  10. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Piazza I, Beaton N, Bruderer R, Knobloch T, Barbisan C, Chandat L, Sudau A, Siepe I, Rinner O, de Souza N, Picotti P, Reiter L. Nat Commun 11 4200 (2020)
  11. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Colucci S, Pagani A, Pettinato M, Artuso I, Nai A, Camaschella C, Silvestri L. Blood 130 2111-2120 (2017)
  12. The FK506-binding protein, Fpr4, is an acidic histone chaperone. Xiao H, Jackson V, Lei M. FEBS Lett 580 4357-4364 (2006)
  13. Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-helix. Pereira PJ, Vega MC, González-Rey E, Fernández-Carazo R, Macedo-Ribeiro S, Gomis-Rüth FX, González A, Coll M. EMBO Rep 3 88-94 (2002)
  14. Requirements for peptidyl-prolyl isomerization activity: a comprehensive mutational analysis of the substrate-binding cavity of FK506-binding protein 12. Ikura T, Ito N. Protein Sci 16 2618-2625 (2007)
  15. Differential responses of the backbone and side-chain conformational dynamics in FKBP12 upon binding the transition-state analog FK506: implications for transition-state stabilization and target protein recognition. Brath U, Akke M. J Mol Biol 387 233-244 (2009)
  16. Solution structure of the Legionella pneumophila Mip-rapamycin complex. Ceymann A, Horstmann M, Ehses P, Schweimer K, Paschke AK, Steinert M, Faber C. BMC Struct Biol 8 17 (2008)
  17. The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells. Helbig JH, König B, Knospe H, Bubert B, Yu C, Lück CP, Riboldi-Tunnicliffe A, Hilgenfeld R, Jacobs E, Hacker J, Fischer G. Biol Chem 384 125-137 (2003)
  18. Discovery and Biocatalytic Application of a PLP-Dependent Amino Acid γ-Substitution Enzyme That Catalyzes C-C Bond Formation. Chen M, Liu CT, Tang Y. J Am Chem Soc 142 10506-10515 (2020)
  19. N-terminal extension changes the folding mechanism of the FK506-binding protein. Korepanova A, Douglas C, Leyngold I, Logan TM. Protein Sci 10 1905-1910 (2001)
  20. Design and structure-based study of new potential FKBP12 inhibitors. Sun F, Li P, Ding Y, Wang L, Bartlam M, Shu C, Shen B, Jiang H, Li S, Rao Z. Biophys J 85 3194-3201 (2003)
  21. Switchable elastin-like polypeptides that respond to chemical inducers of dimerization. Dhandhukia J, Weitzhandler I, Wang W, MacKay JA. Biomacromolecules 14 976-985 (2013)
  22. The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90. Blundell KL, Pal M, Roe SM, Pearl LH, Prodromou C. PLoS One 12 e0173543 (2017)
  23. Isolation and characterization of meridamycin biosynthetic gene cluster from Streptomyces sp. NRRL 30748. He M, Haltli B, Summers M, Feng X, Hucul J. Gene 377 109-118 (2006)
  24. Tryptophan dynamics of the FK506 binding protein: time-resolved fluorescence and simulations. Silva ND, Prendergast FG. Biophys J 70 1122-1137 (1996)
  25. II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: application to the FK506-related immunophilin ligands. Nerattini F, Chelli R, Procacci P. Phys Chem Chem Phys 18 15005-15018 (2016)
  26. Berunda Polypeptides: Multi-Headed Fusion Proteins Promote Subcutaneous Administration of Rapamycin to Breast Cancer In Vivo. Dhandhukia JP, Li Z, Peddi S, Kakan S, Mehta A, Tyrpak D, Despanie J, MacKay JA. Theranostics 7 3856-3872 (2017)
  27. The linear interaction energy method for the prediction of protein stability changes upon mutation. Wickstrom L, Gallicchio E, Levy RM. Proteins 80 111-125 (2012)
  28. Drug-target identification from total cellular lysate by drug-induced conformational changes. Nishiya Y, Shibata K, Saito S, Yano K, Oneyama C, Nakano H, Sharma SV. Anal Biochem 385 314-320 (2009)
  29. Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. Quistgaard EM, Weininger U, Ural-Blimke Y, Modig K, Nordlund P, Akke M, Löw C. BMC Biol 14 82 (2016)
  30. NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins. Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ. J Biomol NMR 17 305-310 (2000)
  31. Structure comparison of native and mutant human recombinant FKBP12 complexes with the immunosuppressant drug FK506 (tacrolimus). Itoh S, Navia MA. Protein Sci 4 2261-2268 (1995)
  32. The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development. Norville IH, O'Shea K, Sarkar-Tyson M, Zheng S, Titball RW, Varani G, Harmer NJ. Biochem J 437 413-422 (2011)
  33. Fragment-based synthesis and SAR of modified FKBP ligands: influence of different linking on binding affinity. Röhrig CH, Loch C, Guan JY, Siegal G, Overhand M. ChemMedChem 2 1054-1070 (2007)
  34. Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs. Gobeil SM, Bobay BG, Juvvadi PR, Cole DC, Heitman J, Steinbach WJ, Venters RA, Spicer LD. mBio 12 e0300021 (2021)
  35. Evidence for the preservation of native inter- and intra-molecular hydrogen bonds in the desolvated FK-binding protein·FK506 complex produced by electrospray ionization. Hopper JT, Rawlings A, Afonso JP, Channing D, Layfield R, Oldham NJ. J Am Soc Mass Spectrom 23 1757-1767 (2012)
  36. Investigation of the biosynthesis of the pipecolate moiety of neuroprotective polyketide meridamycin. Jiang H, Haltli B, Feng X, Cai P, Summers M, Lotvin J, He M. J Antibiot (Tokyo) 64 533-538 (2011)
  37. C-H…O hydrogen bonds in FK506-binding protein-ligand interactions. Rajan S, Baek K, Yoon HS. J Mol Recognit 26 550-555 (2013)
  38. Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation. Nehls T, Heymann T, Meyners C, Hausch F, Lermyte F. Int J Mol Sci 22 9927 (2021)
  39. Calculation of the Absolute Free Energy of Binding and Related Entropies with the HSMD-TI Method: The FKBP12-L8 Complex. General IJ, Dragomirova R, Meirovitch H. J Chem Theory Comput 7 4196-4207 (2011)
  40. Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Goh CKW, Silvester J, Wan Mahadi WNS, Chin LP, Ying LT, Leow TC, Kurahashi R, Takano K, Budiman C. Protein Eng Des Sel 31 489-498 (2018)
  41. Molecular docking study of macrocycles as Fk506-binding protein inhibitors. MacDonald CA, Boyd RJ. J Mol Graph Model 59 117-122 (2015)
  42. A Curvilinear-Path Umbrella Sampling Approach to Characterizing the Interactions Between Rapamycin and Three FKBP12 Variants. Joshi DC, Gosse C, Huang SY, Lin JH. Front Mol Biosci 9 879000 (2022)
  43. Monitoring molecular-specific pharmacodynamics of rapamycin in vivo with inducible Gal4->Fluc transgenic reporter mice. Pan MH, Lin J, Prior JL, Piwnica-Worms D. Mol Cancer Ther 9 2752-2760 (2010)
  44. Chaperoning of specific tau structure by immunophilin FKBP12 regulates the neuronal resilience to extracellular stress. Jiang L, Chakraborty P, Zhang L, Wong M, Hill SE, Webber CJ, Libera J, Blair LJ, Wolozin B, Zweckstetter M. Sci Adv 9 eadd9789 (2023)
  45. Distribution of Peptidyl-Prolyl Isomerase (PPIase) in the Archaea. Anchal, Kaushik V, Goel M. Front Microbiol 12 751049 (2021)
  46. Reactive group-embedded affinity labeling reagent for efficient intracellular protein labeling. Takaoka Y, Nukadzuka Y, Ueda M. Bioorg Med Chem 25 2888-2894 (2017)


Related citations provided by authors (6)

  1. X-Ray Structure of Calcineurin Inhibited by the Immunophilin-Immunosuppressant Fkbp12-Fk506 Complex. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, Fleming MA, Caron PR, Hsiao K, Navia MA Cell 82 507- (1995)
  2. Improved Calcineurin Inhibition by Yeast Fkbp12-Drug Complexes. Rotonda J, Burbaum JJ, Chan HK, Marcy AI, Becker JW J. Biol. Chem. 268 7607- (1993)
  3. Fk-506-Binding Protein: Three-Dimensional Structure of the Complex with the Antagonist L-685,818. Becker JW, Rotonda J, Mckeever BM, Chan HK, Marcy AI, Wiederrecht G, Hermes JD, Springer JP J. Mol. Biol. 268 11335- (1993)
  4. Atomic Structures of Human Immunophilin Fkbp12 Complexes with Fk506 and Rapamycin. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J J. Mol. Biol. 229 105- (1993)
  5. Atomic Structure of the Rapamycin Human Immunophilin Fkbp-12 Complex. Van Duyne GD, Standaert RF, Schreiber SL, Clardy J J. Am. Chem. Soc. 113 7433- (1991)
  6. Atomic Structure of Fkbp-Fk506, an Immunophilin-Immunosuppressant Complex. Van Duyne GD, Standaert RF, Karplus PA, Schreiber SL, Clardy J Science 252 839- (1991)