1fns Citations

von Willebrand factor conformation and adhesive function is modulated by an internalized water molecule.

Nat Struct Biol 7 881-4 (2000)
Cited: 59 times
EuropePMC logo PMID: 11017197

Abstract

Platelet participation in hemostasis and arterial thrombosis requires the binding of glycoprotein (GP) Ibalpha to von Willebrand factor (vWF). Hemodynamic forces enhance this interaction, an effect mimicked by the substitution I546V in the vWF A1 domain. A water molecule becomes internalized near the deleted Ile methyl group. The change in hydrophobicity of the local environment causes positional changes propagated over a distance of 27 A. As a consequence, a major reorientation of a peptide plane occurs in a surface loop involved in GP Ibalpha binding. This distinct vWF conformation shows increased platelet adhesion and provides a structural model for the initial regulation of thrombus formation.

Articles - 1fns mentioned but not cited (20)

  1. How insulin engages its primary binding site on the insulin receptor. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Záková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC. Nature 493 241-245 (2013)
  2. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Krawczyk K, Liu X, Baker T, Shi J, Deane CM. Bioinformatics 30 2288-2294 (2014)
  3. Higher-Resolution Structure of the Human Insulin Receptor Ectodomain: Multi-Modal Inclusion of the Insert Domain. Croll TI, Smith BJ, Margetts MB, Whittaker J, Weiss MA, Ward CW, Lawrence MC. Structure 24 469-476 (2016)
  4. Prediction of antigenic epitopes on protein surfaces by consensus scoring. Liang S, Zheng D, Zhang C, Zacharias M. BMC Bioinformatics 10 302 (2009)
  5. Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. Blenner MA, Dong X, Springer TA. J Biol Chem 289 5565-5579 (2014)
  6. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis. Wang X, Singh SK, Kumar S. Pharm Res 27 1512-1529 (2010)
  7. Mining for the antibody-antigen interacting associations that predict the B cell epitopes. Zhao L, Li J. BMC Struct Biol 10 Suppl 1 S6 (2010)
  8. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA. J Virol 80 3607-3616 (2006)
  9. A structurally minimized yet fully active insulin based on cone-snail venom insulin principles. Xiong X, Menting JG, Disotuar MM, Smith NA, Delaine CA, Ghabash G, Agrawal R, Wang X, He X, Fisher SJ, MacRaild CA, Norton RS, Gajewiak J, Forbes BE, Smith BJ, Safavi-Hemami H, Olivera B, Lawrence MC, Chou DH. Nat Struct Mol Biol 27 615-624 (2020)
  10. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct Biol 10 40 (2010)
  11. Computationally-driven identification of antibody epitopes. Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C. Elife 6 e29023 (2017)
  12. Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint. Weitzner BD, Gray JJ. J Immunol 198 505-515 (2017)
  13. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor. Lawrence CF, Margetts MB, Menting JG, Smith NA, Smith BJ, Ward CW, Lawrence MC. J Biol Chem 291 15473-15481 (2016)
  14. Unusual water-mediated antigenic recognition of the proinflammatory cytokine interleukin-18. Argiriadi MA, Xiang T, Wu C, Ghayur T, Borhani DW. J Biol Chem 284 24478-24489 (2009)
  15. Determination of the interfacial water content in protein-protein complexes from free energy simulations. Monecke P, Borosch T, Brickmann J, Kast SM. Biophys J 90 841-850 (2006)
  16. Identification of a small molecule that modulates platelet glycoprotein Ib-von Willebrand factor interaction. Broos K, Trekels M, Jose RA, Demeulemeester J, Vandenbulcke A, Vandeputte N, Venken T, Egle B, De Borggraeve WM, Deckmyn H, De Maeyer M. J Biol Chem 287 9461-9472 (2012)
  17. A meta-learning approach for B-cell conformational epitope prediction. Hu YJ, Lin SC, Lin YL, Lin KH, You SN. BMC Bioinformatics 15 378 (2014)
  18. A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers. Lyu Y, Gong X. Molecules 25 E4353 (2020)
  19. Von Willebrand factor A1 domain stability and affinity for GPIbα are differentially regulated by its O-glycosylated N- and C-linker. Bonazza K, Iacob RE, Hudson NE, Li J, Lu C, Engen JR, Springer TA. Elife 11 e75760 (2022)
  20. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Biophys J 121 4063-4077 (2022)


Reviews citing this publication (12)

  1. Adhesion mechanisms in platelet function. Ruggeri ZM, Mendolicchio GL. Circ Res 100 1673-1685 (2007)
  2. Conformational regulation of integrin structure and function. Shimaoka M, Takagi J, Springer TA. Annu Rev Biophys Biomol Struct 31 485-516 (2002)
  3. Von Willebrand factor, platelets and endothelial cell interactions. Ruggeri ZM. J Thromb Haemost 1 1335-1342 (2003)
  4. Platelet adhesion under flow. Ruggeri ZM. Microcirculation 16 58-83 (2009)
  5. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Ruggeri ZM. Best Pract Res Clin Haematol 14 257-279 (2001)
  6. Von Willebrand factor. Ruggeri ZM. Curr Opin Hematol 10 142-149 (2003)
  7. Biology and physics of von Willebrand factor concatamers. Springer TA. J Thromb Haemost 9 Suppl 1 130-143 (2011)
  8. New perspectives on von Willebrand factor functions in hemostasis and thrombosis. Mendolicchio GL, Ruggeri ZM. Semin Hematol 42 5-14 (2005)
  9. Structure and function of snake venom toxins interacting with human von Willebrand factor. Matsui T, Hamako J. Toxicon 45 1075-1087 (2005)
  10. 14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling. Chen Y, Ruggeri ZM, Du X. Blood 131 2436-2448 (2018)
  11. Functional property of von Willebrand factor under flowing blood. Sugimoto M, Miyata S. Int J Hematol 75 19-24 (2002)
  12. von Willebrand factor: a prima ballerina on two different stages. Mannucci PM. Semin Hematol 42 1-4 (2005)

Articles citing this publication (27)

  1. Bacterial adhesion to target cells enhanced by shear force. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. Cell 109 913-923 (2002)
  2. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Kim J, Kim J, Zhang CZ, Zhang X, Springer TA. Nature 466 992-995 (2010)
  3. Functional self-association of von Willebrand factor during platelet adhesion under flow. Savage B, Sixma JJ, Ruggeri ZM. Proc Natl Acad Sci U S A 99 425-430 (2002)
  4. Crystal structure of the wild-type von Willebrand factor A1-glycoprotein Ibalpha complex reveals conformation differences with a complex bearing von Willebrand disease mutations. Dumas JJ, Kumar R, McDonagh T, Sullivan F, Stahl ML, Somers WS, Mosyak L. J Biol Chem 279 23327-23334 (2004)
  5. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. Ju L, Dong JF, Cruz MA, Zhu C. J Biol Chem 288 32289-32301 (2013)
  6. Platelet mimetic particles for targeting thrombi in flowing blood. Doshi N, Orje JN, Molins B, Smith JW, Mitragotri S, Ruggeri ZM. Adv Mater 24 3864-3869 (2012)
  7. Structural basis of von Willebrand factor activation by the snake toxin botrocetin. Fukuda K, Doggett TA, Bankston LA, Cruz MA, Diacovo TG, Liddington RC. Structure 10 943-950 (2002)
  8. Lateral clustering of platelet GP Ib-IX complexes leads to up-regulation of the adhesive function of integrin alpha IIbbeta 3. Kasirer-Friede A, Ware J, Leng L, Marchese P, Ruggeri ZM, Shattil SJ. J Biol Chem 277 11949-11956 (2002)
  9. A new look at Weibel-Palade body structure in endothelial cells using electron tomography. Valentijn KM, Valentijn JA, Jansen KA, Koster AJ. J Struct Biol 161 447-458 (2008)
  10. Role of chloride ions in modulation of the interaction between von Willebrand factor and ADAMTS-13. De Cristofaro R, Peyvandi F, Palla R, Lavoretano S, Lombardi R, Merati G, Merati G, Romitelli F, Di Stasio E, Mannucci PM. J Biol Chem 280 23295-23302 (2005)
  11. Misfolding of vWF to pathologically disordered conformations impacts the severity of von Willebrand disease. Tischer A, Madde P, Moon-Tasson L, Auton M. Biophys J 107 1185-1195 (2014)
  12. Type IIB von Willebrand disease: a paradox explains how von Willebrand factor works. Ruggeri ZM. J Thromb Haemost 2 2-6 (2004)
  13. The linker between the D3 and A1 domains of vWF suppresses A1-GPIbα catch bonds by site-specific binding to the A1 domain. Tischer A, Cruz MA, Auton M. Protein Sci 22 1049-1059 (2013)
  14. A mechanism for localized dynamics-driven affinity regulation of the binding of von Willebrand factor to platelet glycoprotein Ibα. Liu G, Fang Y, Wu J. J Biol Chem 288 26658-26667 (2013)
  15. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets. Interlandi G, Yakovenko O, Tu AY, Harris J, Le J, Chen J, López JA, Thomas WE. J Biol Chem 292 18608-18617 (2017)
  16. Affinity improvement of a therapeutic antibody to methamphetamine and amphetamine through structure-based antibody engineering. Thakkar S, Nanaware-Kharade N, Celikel R, Peterson EC, Varughese KI. Sci Rep 4 3673 (2014)
  17. Delimiting the autoinhibitory module of von Willebrand factor. Deng W, Voos KM, Colucci JK, Legan ER, Ortlund EA, Lollar P, Li R. J Thromb Haemost 16 2097-2105 (2018)
  18. Surface-dependent expression in the platelet GPIb binding domain within human von Willebrand factor studied by atomic force microscopy. Kang I, Raghavachari M, Hofmann CM, Marchant RE. Thromb Res 119 731-740 (2007)
  19. Crystal structures of a therapeutic single chain antibody in complex with two drugs of abuse-Methamphetamine and 3,4-methylenedioxymethamphetamine. Celikel R, Peterson EC, Owens SM, Varughese KI. Protein Sci 18 2336-2345 (2009)
  20. Enhanced Local Disorder in a Clinically Elusive von Willebrand Factor Provokes High-Affinity Platelet Clumping. Tischer A, Machha VR, Frontroth JP, Brehm MA, Obser T, Schneppenheim R, Mayne L, Walter Englander S, Auton M. J Mol Biol 429 2161-2177 (2017)
  21. Evidence from limited proteolysis of a ristocetin-induced conformational change in human von Willebrand factor that promotes its binding to platelet glycoprotein Ib-IX-V. Kang M, Wilson L, Kermode JC. Blood Cells Mol Dis 40 433-443 (2008)
  22. The type 2B p.R1306W natural mutation of von Willebrand factor dramatically enhances the multimer sensitivity to shear stress. Scaglione GL, Lancellotti S, Papi M, De Spirito M, Maiorana A, Baronciani L, Pagliari MT, Arcovito A, Di Stasio E, Peyvandi F, De Cristofaro R. J Thromb Haemost 11 1688-1698 (2013)
  23. Data on the purification and crystallization of the loss-of-function von Willebrand disease variant (p.Gly1324Ser) of the von Willebrand factor A1 domain. Campbell JC, Tischer A, Machha V, Moon-Tasson L, Sankaran B, Kim C, Auton M. Data Brief 7 1700-1706 (2016)
  24. Differential surface activation of the A1 domain of von Willebrand factor. Tronic EH, Yakovenko O, Weidner T, Baio JE, Penkala R, Castner DG, Thomas WE. Biointerphases 11 029803 (2016)
  25. The Flow Dependent Adhesion of von Willebrand Factor (VWF)-A1 Functionalized Nanoparticles in an in Vitro Coronary Stenosis Model. Asaad Y, Epshtein M, Yee A, Korin N. Molecules 24 E2679 (2019)
  26. Conformational activation and inhibition of von Willebrand factor by targeting its autoinhibitory module. Arce NA, Markham-Lee Z, Liang Q, Najmudin S, Legan ER, Dean G, Su AJ, Wilson MS, Sidonio RF, Lollar P, Emsley J, Li R. Blood 143 1992-2004 (2024)
  27. Thrombocytopathy and type 2B von Willebrand disease. Ware J. J Clin Invest 123 5004-5006 (2013)


Related citations provided by authors (1)