1fo8 Citations

X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily.

EMBO J 19 5269-80 (2000)
Related entries: 1fo9, 1foa

Cited: 140 times
EuropePMC logo PMID: 11032794

Abstract

N:-acetylglucosaminyltransferase I (GnT I) serves as the gateway from oligomannose to hybrid and complex N:-glycans and plays a critical role in mammalian development and possibly all metazoans. We have determined the X-ray crystal structure of the catalytic fragment of GnT I in the absence and presence of bound UDP-GlcNAc/Mn(2+) at 1.5 and 1.8 A resolution, respectively. The structures identify residues critical for substrate binding and catalysis and provide evidence for similarity, at the mechanistic level, to the deglycosylation step of retaining beta-glycosidases. The structuring of a 13 residue loop, resulting from UDP-GlcNAc/Mn(2+) binding, provides an explanation for the ordered sequential 'Bi Bi' kinetics shown by GnT I. Analysis reveals a domain shared with Bacillus subtilis glycosyltransferase SpsA, bovine beta-1,4-galactosyl transferase 1 and Escherichia coli N:-acetylglucosamine-1-phosphate uridyltransferase. The low sequence identity, conserved fold and related functional features shown by this domain define a superfamily whose members probably share a common ancestor. Sequence analysis and protein threading show that the domain is represented in proteins from several glycosyltransferase families.

Reviews - 1fo8 mentioned but not cited (2)

  1. Replication and partitioning of papillomavirus genomes. McBride AA. Adv. Virus Res. 72 155-205 (2008)
  2. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Nagae M, Yamaguchi Y, Taniguchi N, Kizuka Y. Int J Mol Sci 21 (2020)

Articles - 1fo8 mentioned but not cited (5)

  1. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. EMBO J. 19 5269-5280 (2000)
  2. Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. Gastinel LN, Bignon C, Misra AK, Hindsgaul O, Shaper JH, Joziasse DH. EMBO J. 20 638-649 (2001)
  3. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. Aksyuk AA, Leiman PG, Kurochkina LP, Shneider MM, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. EMBO J. 28 821-829 (2009)
  4. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches. Voxeur A, André A, Breton C, Lerouge P. PLoS ONE 7 e51129 (2012)
  5. Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis. Romero-García J, Francisco C, Biarnés X, Planas A. PLoS One 8 e81990 (2013)


Reviews citing this publication (19)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu. Rev. Biochem. 77 521-555 (2008)
  2. Cellulose synthesis in higher plants. Somerville C. Annu. Rev. Cell Dev. Biol. 22 53-78 (2006)
  3. Glycoside hydrolases and glycosyltransferases: families and functional modules. Bourne Y, Henrissat B. Curr. Opin. Struct. Biol. 11 593-600 (2001)
  4. Structures and mechanisms of glycosyltransferases. Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Glycobiology 16 29R-37R (2006)
  5. Glycan-dependent signaling: O-linked N-acetylglucosamine. Hanover JA. FASEB J. 15 1865-1876 (2001)
  6. Substrate-induced conformational changes in glycosyltransferases. Qasba PK, Ramakrishnan B, Boeggeman E. Trends Biochem. Sci. 30 53-62 (2005)
  7. Carbohydrate mimetics-based glycosyltransferase inhibitors. Compain P, Martin OR. Bioorg. Med. Chem. 9 3077-3092 (2001)
  8. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Yother J. Annu. Rev. Microbiol. 65 563-581 (2011)
  9. The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Schachter H. Glycoconj. J. 17 465-483 (2000)
  10. Structural and functional features of glycosyltransferases. Breton C, Mucha J, Jeanneau C. Biochimie 83 713-718 (2001)
  11. Plant protein glycosylation. Strasser R. Glycobiology 26 926-939 (2016)
  12. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Chang A, Singh S, Phillips GN, Thorson JS. Curr. Opin. Biotechnol. 22 800-808 (2011)
  13. Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders. Butters TD, Mellor HR, Narita K, Dwek RA, Platt FM. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358 927-945 (2003)
  14. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides. Luzhetskyy A, Vente A, Bechthold A. Mol Biosyst 1 117-126 (2005)
  15. Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Kizuka Y, Oka S. Cell. Mol. Life Sci. 69 4135-4147 (2012)
  16. The importance of disordered loops in ABO glycosyltransferases. Yazer MH, Palcic MM. Transfus Med Rev 19 210-216 (2005)
  17. From imino sugars to cancer glycoproteins. Paulsen H, Brockhausen I. Glycoconj. J. 18 867-870 (2001)
  18. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, Bardor M. Biol Rev Camb Philos Soc 97 732-748 (2022)
  19. GALNT14: An Emerging Marker Capable of Predicting Therapeutic Outcomes in Multiple Cancers. Lin WR, Yeh CT. Int J Mol Sci 21 (2020)

Articles citing this publication (114)

  1. An evolving hierarchical family classification for glycosyltransferases. Coutinho PM, Deleury E, Davies GJ, Henrissat B. J. Mol. Biol. 328 307-317 (2003)
  2. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T. Dev. Cell 1 717-724 (2001)
  3. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. Plant Cell 17 3141-3154 (2005)
  4. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Henrissat B, Coutinho PM, Davies GJ. Plant Mol. Biol. 47 55-72 (2001)
  5. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S. Proc. Natl. Acad. Sci. U.S.A. 100 845-849 (2003)
  6. Natural history of S-adenosylmethionine-binding proteins. Kozbial PZ, Mushegian AR. BMC Struct. Biol. 5 19 (2005)
  7. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Mulichak AM, Losey HC, Walsh CT, Garavito RM. Structure 9 547-557 (2001)
  8. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Chiu CP, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG, Strynadka NC. Nat. Struct. Mol. Biol. 11 163-170 (2004)
  9. Structural basis for the function of Clostridium difficile toxin B. Reinert DJ, Jank T, Aktories K, Schulz GE. J. Mol. Biol. 351 973-981 (2005)
  10. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. Ramakrishnan B, Qasba PK. J. Mol. Biol. 310 205-218 (2001)
  11. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y. EMBO J. 20 6191-6202 (2001)
  12. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA. Proc. Natl. Acad. Sci. U.S.A. 101 15307-15312 (2004)
  13. DNA-dependent divalent cation binding in the nucleosome core particle. Davey CA, Richmond TJ. Proc. Natl. Acad. Sci. U.S.A. 99 11169-11174 (2002)
  14. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, Beeton C, Torossian S, Tatarian GG, Lee SU, Lau K, Walker E, Siminovitch KA, Chandy KG, Yu Z, Dennis JW, Demetriou M. Nat Commun 2 334 (2011)
  15. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Shen A, Kamp HD, Gründling A, Higgins DE. Genes Dev. 20 3283-3295 (2006)
  16. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform. Pacis E, Yu M, Autsen J, Bayer R, Li F. Biotechnol. Bioeng. 108 2348-2358 (2011)
  17. Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Strasser R, Stadlmann J, Svoboda B, Altmann F, Glössl J, Mach L. Biochem. J. 387 385-391 (2005)
  18. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. Tarbouriech N, Charnock SJ, Davies GJ. J. Mol. Biol. 314 655-661 (2001)
  19. Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle-eye-brain disease. Manya H, Sakai K, Kobayashi K, Taniguchi K, Kawakita M, Toda T, Endo T. Biochem. Biophys. Res. Commun. 306 93-97 (2003)
  20. Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Hoffmeister D, Wilkinson B, Foster G, Sidebottom PJ, Ichinose K, Bechthold A. Chem. Biol. 9 287-295 (2002)
  21. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold. Hidaka M, Honda Y, Kitaoka M, Nirasawa S, Hayashi K, Wakagi T, Shoun H, Fushinobu S. Structure 12 937-947 (2004)
  22. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Hoffmeister D, Ichinose K, Bechthold A. Chem. Biol. 8 557-567 (2001)
  23. A winged-helix protein from Sulfolobus turreted icosahedral virus points toward stabilizing disulfide bonds in the intracellular proteins of a hyperthermophilic virus. Larson ET, Eilers B, Menon S, Reiter D, Ortmann A, Young MJ, Lawrence CM. Virology 368 249-261 (2007)
  24. Structural insight into mammalian sialyltransferases. Rao FV, Rich JR, Rakić B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NC. Nat. Struct. Mol. Biol. 16 1186-1188 (2009)
  25. Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I. Zhang W, Betel D, Schachter H. Biochem. J. 361 153-162 (2002)
  26. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Glycobiology 17 455-466 (2007)
  27. High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. Moréra S, Larivière L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, Janin J, Rüger W. J. Mol. Biol. 311 569-577 (2001)
  28. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. Ramos-Castañeda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, Jonkman MF, Mori K, Ikeda S, Ogawa H, Arvan P. J. Biol. Chem. 280 9467-9473 (2005)
  29. Structure of A197 from Sulfolobus turreted icosahedral virus: a crenarchaeal viral glycosyltransferase exhibiting the GT-A fold. Larson ET, Reiter D, Young M, Lawrence CM. J. Virol. 80 7636-7644 (2006)
  30. Arabidopsis thaliana beta1,2-xylosyltransferase: an unusual glycosyltransferase with the potential to act at multiple stages of the plant N-glycosylation pathway. Bencúr P, Steinkellner H, Svoboda B, Mucha J, Strasser R, Kolarich D, Hann S, Köllensperger G, Glössl J, Altmann F, Mach L. Biochem. J. 388 515-525 (2005)
  31. Molecular heterogeneity in fetal forms of type II lissencephaly. Bouchet C, Gonzales M, Vuillaumier-Barrot S, Devisme L, Lebizec C, Alanio E, Bazin A, Bessières-Grattagliano B, Bigi N, Blanchet P, Bonneau D, Bonnières M, Carles D, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D, Gasser B, Guimiot F, Joubert M, Laurent N, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, Pelluard-Nehmé F, Perez MJ, Rouleau-Dubois C, Triau S, Laquerrière A, Encha-Razavi F, Seta N. Hum. Mutat. 28 1020-1027 (2007)
  32. High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Yang M, Brazier M, Edwards R, Davis BG. Chembiochem 6 346-357 (2005)
  33. Chondroitin sulfate synthase-2. Molecular cloning and characterization of a novel human glycosyltransferase homologous to chondroitin sulfate glucuronyltransferase, which has dual enzymatic activities. Yada T, Gotoh M, Sato T, Shionyu M, Go M, Kaseyama H, Iwasaki H, Kikuchi N, Kwon YD, Togayachi A, Kudo T, Watanabe H, Narimatsu H, Kimata K. J. Biol. Chem. 278 30235-30247 (2003)
  34. Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway. Ramakrishnan B, Ramasamy V, Qasba PK. J. Mol. Biol. 357 1619-1633 (2006)
  35. A genetic and structural analysis of the N-glycosylation capabilities. Léonard R, Kolarich D, Paschinger K, Altmann F, Wilson IB. Plant Mol. Biol. 55 631-644 (2004)
  36. Studies on the metal binding sites in the catalytic domain of beta1,4-galactosyltransferase. Boeggeman E, Qasba PK. Glycobiology 12 395-407 (2002)
  37. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Jimenez del Val I, Nagy JM, Kontoravdi C. Biotechnol. Prog. 27 1730-1743 (2011)
  38. N-glycans of Phaeodactylum tricornutum diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme. Baïet B, Burel C, Saint-Jean B, Louvet R, Menu-Bouaouiche L, Kiefer-Meyer MC, Mathieu-Rivet E, Lefebvre T, Castel H, Carlier A, Cadoret JP, Lerouge P, Bardor M. J. Biol. Chem. 286 6152-6164 (2011)
  39. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues. Gordon RD, Sivarajah P, Satkunarajah M, Ma D, Tarling CA, Vizitiu D, Withers SG, Rini JM. J. Mol. Biol. 360 67-79 (2006)
  40. Crystal structure of uridine-diphospho-N-acetylglucosamine pyrophosphorylase from Candida albicans and catalytic reaction mechanism. Maruyama D, Nishitani Y, Nonaka T, Kita A, Fukami TA, Mio T, Yamada-Okabe H, Yamada-Okabe T, Miki K. J Biol Chem 282 17221-17230 (2007)
  41. Synthesis of novel ammonium and selenonium ions and their evaluation as inhibitors of UDP-galactopyranose mutase. Veerapen N, Yuan Y, Sanders DA, Pinto BM. Carbohydr. Res. 339 2205-2217 (2004)
  42. Role of the carbohydrate binding site of the Streptococcus pneumoniae capsular polysaccharide type 3 synthase in the transition from oligosaccharide to polysaccharide synthesis. Forsee WT, Cartee RT, Yother J. J Biol Chem 281 6283-6289 (2006)
  43. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses. Geisler M, Wilczynska M, Karpinski S, Kleczkowski LA. Plant Mol. Biol. 56 783-794 (2004)
  44. GG: a domain involved in phage LTF apparatus and implicated in human MEB and non-syndromic hearing loss diseases. Guo J, Cheng H, Zhao S, Yu L. FEBS Lett. 580 581-584 (2006)
  45. Structure-function analysis of human protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Akasaka-Manya K, Manya H, Kobayashi K, Toda T, Endo T. Biochem. Biophys. Res. Commun. 320 39-44 (2004)
  46. The Golgi localization of Arabidopsis thaliana beta1,2-xylosyltransferase in plant cells is dependent on its cytoplasmic and transmembrane sequences. Dirnberger D, Bencúr P, Mach L, Steinkellner H. Plant Mol. Biol. 50 273-281 (2002)
  47. Requirements for catalysis in mammalian glycogenin. Hurley TD, Stout S, Miner E, Zhou J, Roach PJ. J. Biol. Chem. 280 23892-23899 (2005)
  48. The role of tryptophan 314 in the conformational changes of beta1,4-galactosyltransferase-I. Ramasamy V, Ramakrishnan B, Boeggeman E, Qasba PK. J. Mol. Biol. 331 1065-1076 (2003)
  49. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Videira P, Fialho A, Geremia RA, Breton C, Sá-Correia I. Biochem. J. 358 457-464 (2001)
  50. Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. Remminghorst U, Hay ID, Rehm BH. J. Biotechnol. 140 176-183 (2009)
  51. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway. Geisler C, Jarvis DL. J. Biol. Chem. 287 7084-7097 (2012)
  52. The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis. Qu M, Liu T, Yang J, Yang Q. Biochem. Biophys. Res. Commun. 404 302-307 (2011)
  53. Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T1). Tenno M, Toba S, Kézdy FJ, Elhammer AP, Kurosaka A. Eur. J. Biochem. 269 4308-4316 (2002)
  54. Inhibition kinetics of carba- and C-fucosyl analogues of GDP-fucose against fucosyltransferase V: implication for the reaction mechanism. Norris AJ, Whitelegge JP, Strouse MJ, Faull KF, Toyokuni T. Bioorg. Med. Chem. Lett. 14 571-573 (2004)
  55. A catalytically inactive beta 1,4-N-acetylglucosaminyltransferase III (GnT-III) behaves as a dominant negative GnT-III inhibitor. Ihara H, Ikeda Y, Koyota S, Endo T, Honke K, Taniguchi N. Eur. J. Biochem. 269 193-201 (2002)
  56. Characterization of two beta-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152. Brockhausen I, Hu B, Liu B, Lau K, Szarek WA, Wang L, Feng L. J. Bacteriol. 190 4922-4932 (2008)
  57. Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Tvaroska I. Carbohydr. Res. 339 1007-1014 (2004)
  58. Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Hosseini-Maaf B, Letts JA, Persson M, Smart E, LePennec PY, Hustinx H, Zhao Z, Palcic MM, Evans SV, Chester MA, Olsson ML. Transfusion 47 864-875 (2007)
  59. Structural insights into the Notch-modifying glycosyltransferase Fringe. Jinek M, Chen YW, Clausen H, Cohen SM, Conti E. Nat. Struct. Mol. Biol. 13 945-946 (2006)
  60. The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. Jelakovic S, Schulz GE. J. Mol. Biol. 312 143-155 (2001)
  61. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM, Brennan PJ, Jackson M, Guerin ME. J. Biol. Chem. 287 24649-24661 (2012)
  62. Salmonella Effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways. Newson JPM, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C, Gan J, Wang N, Strugnell RA, Brown NF, Cygler M, Pearson JS, Hartland EL. Mol Cell Proteomics 18 1138-1156 (2019)
  63. Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Nidetzky B, Eis C. Biochem. J. 360 727-736 (2001)
  64. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. Chazalet V, Uehara K, Geremia RA, Breton C. J. Bacteriol. 183 7067-7075 (2001)
  65. A novel human glycosyltransferase: primary structure and characterization of the gene and transcripts. Heinonen TY, Pasternack L, Lindfors K, Breton C, Gastinel LN, Mäki M, Kainulainen H. Biochem. Biophys. Res. Commun. 309 166-174 (2003)
  66. Cysteine-to-serine mutants dramatically reorder the active site of human ABO(H) blood group B glycosyltransferase without affecting activity: structural insights into cooperative substrate binding. Schuman B, Persson M, Landry RC, Polakowski R, Weadge JT, Seto NO, Borisova SN, Palcic MM, Evans SV. J. Mol. Biol. 402 399-411 (2010)
  67. Structural and mechanistic characterization of leukocyte-type core 2 β1,6-N-acetylglucosaminyltransferase: a metal-ion-independent GT-A glycosyltransferase. Pak JE, Satkunarajah M, Seetharaman J, Rini JM. J. Mol. Biol. 414 798-811 (2011)
  68. Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Zhong X, Cooley C, Seth N, Juo ZS, Presman E, Resendes N, Kumar R, Allen M, Mosyak L, Stahl M, Somers W, Kriz R. Biotechnol. Bioeng. 109 1723-1734 (2012)
  69. Molecular genetic analysis for the B subgroup revealing two novel alleles in the ABO gene. Cai XH, Jin S, Liu X, Shen W, Lu Q, Wang JL, Fan LF, Sun JL, Liu DZ, Xiang D. Transfusion 48 2442-2447 (2008)
  70. On the reaction pathways and determination of transition-state structures for retaining alpha-galactosyltransferases. André I, Tvaroska I, Carver JP. Carbohydr. Res. 338 865-877 (2003)
  71. Phylogenetic and mutational analyses reveal key residues for UDP-glucuronic acid binding and activity of beta1,3-glucuronosyltransferase I (GlcAT-I). Fondeur-Gelinotte M, Lattard V, Oriol R, Mollicone R, Jacquinet JC, Mulliert G, Gulberti S, Netter P, Magdalou J, Ouzzine M, Fournel-Gigleux S. Protein Sci. 15 1667-1678 (2006)
  72. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. Kuwabara N, Manya H, Yamada T, Tateno H, Kanagawa M, Kobayashi K, Akasaka-Manya K, Hirose Y, Mizuno M, Ikeguchi M, Toda T, Hirabayashi J, Senda T, Endo T, Kato R. Proc. Natl. Acad. Sci. U.S.A. 113 9280-9285 (2016)
  73. Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis. Wimmerová M, Engelsen SB, Bettler E, Breton C, Imberty A. Biochimie 85 691-700 (2003)
  74. Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions. Villiger TK, Scibona E, Stettler M, Broly H, Morbidelli M, Soos M. Biotechnol. Prog. 32 1135-1148 (2016)
  75. Functional assignment of motifs conserved in beta 1,3-glycosyltransferases. Malissard M, Dinter A, Berger EG, Hennet T. Eur. J. Biochem. 269 233-239 (2002)
  76. Human N-acetylglucosaminyltransferase I. Expression in Escherichia coli as a soluble enzyme, and application as an immobilized enzyme for the chemoenzymatic synthesis of N-linked oligosaccharides. Fujiyama K, Ido Y, Misaki R, Moran DG, Yanagihara I, Honda T, Nishimura S, Yoshida T, Seki T. J. Biosci. Bioeng. 92 569-574 (2001)
  77. Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic beta-1,2-glucan, a Brucella abortus virulence factor. Ciocchini AE, Roset MS, Briones G, Iñón de Iannino N, Ugalde RA. Glycobiology 16 679-691 (2006)
  78. Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. Gonçalves S, Borges N, Esteves AM, Victor BL, Soares CM, Santos H, Matias PM. J. Biol. Chem. 285 17857-17868 (2010)
  79. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Zea CJ, Camci-Unal G, Pohl NL. Chem Cent J 2 15 (2008)
  80. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. Yen TY, Macher BA, Bryson S, Chang X, Tvaroska I, Tse R, Takeshita S, Lew AM, Datti A. J. Biol. Chem. 278 45864-45881 (2003)
  81. Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype. Yazer MH, Denomme GA, Rose NL, Palcic MM. Transfusion 45 1178-1182 (2005)
  82. Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition. Kopycki J, Wieduwild E, Kohlschmidt J, Brandt W, Stepanova AN, Alonso JM, Pedras MS, Abel S, Grubb CD. Biochem. J. 450 37-46 (2013)
  83. Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations. Petrová P, Koca J, Imberty A. Eur. J. Biochem. 268 5365-5374 (2001)
  84. Structural and mechanistic insights into lunatic fringe from a kinetic analysis of enzyme mutants. Luther KB, Schindelin H, Haltiwanger RS. J. Biol. Chem. 284 3294-3305 (2009)
  85. Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance. Sobhanifar S, Worrall LJ, King DT, Wasney GA, Baumann L, Gale RT, Nosella M, Brown ED, Withers SG, Strynadka NC. PLoS Pathog. 12 e1006067 (2016)
  86. Isolation of null alleles of the Caenorhabditis elegans gly-12, gly-13 and gly-14 genes, all of which encode UDP-GlcNAc: alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I activity. Chen S, Spence AM, Schachter H. Biochimie 85 391-401 (2003)
  87. Tissues of the clawed frog Xenopus laevis contain two closely related forms of UDP-GlcNAc:alpha3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I. Mucha J, Svoboda B, Fröhwein U, Strasser R, Mischinger M, Schwihla H, Altmann F, Hane W, Schachter H, Glössl J, Mach L. Glycobiology 11 769-778 (2001)
  88. Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites. Kadirvelraj R, Yang JY, Kim HW, Sanders JH, Moremen KW, Wood ZA. J Biol Chem 296 100110 (2021)
  89. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues. Inamori K, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP. J. Biol. Chem. 289 28138-28148 (2014)
  90. Molecular Recognition of UDP-Gal by β-1,4-Galactosyltransferase T1. Biet T, Peters T. Angew. Chem. Int. Ed. Engl. 40 4189-4192 (2001)
  91. Potential transition-state analogs for glycosyltransferases. Design and DFT calculations of conformational behavior. Raab M, Kozmon S, Tvaroska I. Carbohydr. Res. 340 1051-1057 (2005)
  92. Refolding of human beta-1-2 GlcNAc transferase (GnT1) and the role of its unpaired Cys 121. Saribas AS, Johnson K, Liu L, Bezila D, Hakes D. Biochem. Biophys. Res. Commun. 362 381-386 (2007)
  93. Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and DPGal inferred from molecular modeling. Rao M, Tvaroska I. Proteins 44 428-434 (2001)
  94. The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. Singh K, Gittis AG, Gitti RK, Ostazeski SA, Su HP, Garboczi DN. J. Virol. 90 5020-5030 (2016)
  95. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Bhattacharyya S, Kerzmann A, Feig AL. Eur. J. Biochem. 269 3425-3432 (2002)
  96. The N-acetyl-binding pocket of N-acetylglucosaminyltransferases also accommodates a sugar analog with a chemical handle at C2. Pasek M, Ramakrishnan B, Boeggeman E, Mercer N, Dulcey AE, Griffiths GL, Qasba PK. Glycobiology 22 379-388 (2012)
  97. The synthesis of a series of modified mannotrisaccharides as probes of the enzymes involved in the early stages of mammalian complex N-glycan formation. Tarling CA, Withers SG. Carbohydr. Res. 339 2487-2497 (2004)
  98. Two closely related forms of UDP-GlcNAc: alpha6-D-mannoside beta1,2-N-acetylglucosaminyltransferase II occur in the clawed frog Xenopus laevis. Mucha J, Svoboda B, Kappel S, Strasser R, Bencur P, Fröhwein U, Schachter H, Mach L, Glössl J. Glycoconj. J. 19 187-195 (2002)
  99. Unusual sugar nucleotide recognition elements of mesophilic vs. thermophilic glycogen synthases. Zea CJ, Pohl NL. Biopolymers 79 106-113 (2005)
  100. Expression in E. coli and characterization of the catalytic domain of Botrytis cinerea chitin synthase. Magellan H, Drujon T, Thellend A, Piffeteau A, Becker HF. BMC Res Notes 3 299 (2010)
  101. Generation of histo-blood group B transferase by replacing the N-acetyl-D-galactosamine recognition domain of human A transferase with the galactose-recognition domain of evolutionarily related murine alpha1,3-galactosyltransferase. Yamamoto F, Yamamoto M, Blancher A. Transfusion 50 622-630 (2010)
  102. Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase. Wagner GK, Pesnot T, Palcic MM, Jørgensen R. J. Biol. Chem. 290 31162-31172 (2015)
  103. Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nagae M, Kizuka Y, Mihara E, Kitago Y, Hanashima S, Ito Y, Takagi J, Taniguchi N, Yamaguchi Y. Nat Commun 9 3380 (2018)
  104. Structure of the Glycosyltransferase Ktr4p from Saccharomyces cerevisiae. Possner DD, Claesson M, Guy JE. PLoS ONE 10 e0136239 (2015)
  105. Synthesis of protected 2-amino-2-deoxy-D-xylothionolactam derivatives and some aspects of their reactivity. Devel L, Hamon L, Becker H, Thellend A, Vidal-Cros A. Carbohydr. Res. 338 1591-1601 (2003)
  106. A photo-cross-linking GlcNAc analog enables covalent capture of N-linked glycoprotein-binding partners on the cell surface. Wu H, Shajahan A, Yang JY, Capota E, Wands AM, Arthur CM, Stowell SR, Moremen KW, Azadi P, Kohler JJ. Cell Chem Biol 29 84-97.e8 (2022)
  107. Characterization of a novel polypeptide N-acetylgalactosaminyltransferase (dGalNAc-T3) from Drosophila. Nakamura N, Katano K, Toba S, Kurosaka A. Biol. Pharm. Bull. 27 1509-1514 (2004)
  108. Discovery of a lectin domain that regulates enzyme activity in mouse N-acetylglucosaminyltransferase-IVa (MGAT4A). Nagae M, Hirata T, Tateno H, Mishra SK, Manabe N, Osada N, Tokoro Y, Yamaguchi Y, Doerksen RJ, Shimizu T, Kizuka Y. Commun Biol 5 695 (2022)
  109. Functional and informatics analysis enables glycosyltransferase activity prediction. Yang M, Fehl C, Lees KV, Lim EK, Offen WA, Davies GJ, Bowles DJ, Davidson MG, Roberts SJ, Davis BG. Nat. Chem. Biol. 14 1109-1117 (2018)
  110. Human N-acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Kadirvelraj R, Yang JY, Sanders JH, Liu L, Ramiah A, Prabhakar PK, Boons GJ, Wood ZA, Moremen KW. Proc. Natl. Acad. Sci. U.S.A. 115 4637-4642 (2018)
  111. Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients. Jiao H, Manya H, Wang S, Zhang Y, Li X, Xiao J, Yang Y, Kobayashi K, Toda T, Endo T, Wu X, Xiong H. Mol. Genet. Genomics 288 297-308 (2013)
  112. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Biochim Biophys Acta Gen Subj 1866 130118 (2022)
  113. Biochemical characterization of Helicobacter pylori α-1,4 fucosyltransferase: metal ion requirement, donor substrate specificity and organic solvent stability. Rabbani S, Corona F, Ernst B. Biometals 22 1011-1017 (2009)
  114. Structures of the mannose-6-phosphate pathway enzyme, GlcNAc-1-phosphotransferase. Gorelik A, Illes K, Bui KH, Nagar B. Proc Natl Acad Sci U S A 119 e2203518119 (2022)