1fv1 Citations

Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins.

J Mol Biol 304 177-88 (2000)
Cited: 108 times
EuropePMC logo PMID: 11080454

Abstract

Susceptibility to multiple sclerosis (MS) is associated with certain MHC class II haplotypes, in particular HLA-DR2. Two DR beta chains, DRB1*1501 and DRB5*0101, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP 84-102) to MBP-specific T cells from MS patients. We have determined the crystal structure of HLA-DR2a complexed with MBP 86-105 to 1.9 A resolution. A comparison of this structure with that of HLA-DR2b complexed with MBP 85-99, reported previously, reveals that the peptide register is shifted by three residues, such that the MBP peptide is bound in strikingly different conformations by the two MHC molecules. This shift in binding register is attributable to a large P1 pocket in DR2a, which accommodates Phe92, in conjunction with a relatively shallow P4 pocket, which is occupied by Ile95. In DR2b, by contrast, the small P1 pocket accommodates Val89, while the deep P4 pocket is filled by Phe92. In both complexes, however, the C-terminal half of the peptide is positioned higher in the binding groove than in other MHC class II/peptide structures. As a result of the register shift, different side-chains of the MBP peptide are displayed for interaction with T cell receptors in the DR2a and DR2b complexes. These results demonstrate that MHC molecules can impose different alignments and conformations on the same bound peptide as a consequence of topological differences in their peptide-binding sites, thereby creating distinct T cell epitopes.

Reviews - 1fv1 mentioned but not cited (1)

Articles - 1fv1 mentioned but not cited (35)

  1. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. PLoS Comput Biol 4 e1000048 (2008)
  2. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Richardson JS, Richardson DC. Proc. Natl. Acad. Sci. U.S.A. 99 2754-2759 (2002)
  3. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O. PLoS Comput Biol 4 e1000107 (2008)
  4. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. EMBO J. 24 2968-2979 (2005)
  5. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, Ripke S, Gusareva ES, Annese V, Hauser SL, Oksenberg JR, Thomsen I, Leslie S, International Inflammatory Bowel Disease Genetics Consortium, Australia and New Zealand IBDGC, Belgium IBD Genetics Consortium, Italian Group for IBD Genetic Consortium, NIDDK Inflammatory Bowel Disease Genetics Consortium, United Kingdom IBDGC, Wellcome Trust Case Control Consortium, Quebec IBD Genetics Consortium, Daly MJ, Van Steen K, Duerr RH, Barrett JC, McGovern DP, Schumm LP, Traherne JA, Carrington MN, Kosmoliaptsis V, Karlsen TH, Franke A, Rioux JD. Nat. Genet. 47 172-179 (2015)
  6. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Immunogenetics 67 641-650 (2015)
  7. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. Petersson K, Håkansson M, Nilsson H, Forsberg G, Svensson LA, Liljas A, Walse B. EMBO J. 20 3306-3312 (2001)
  8. Modeling the structure of bound peptide ligands to major histocompatibility complex. Tong JC, Tan TW, Ranganathan S. Protein Sci 13 2523-2532 (2004)
  9. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. PLoS One 7 e30483 (2012)
  10. A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition. Zavala-Ruiz Z, Strug I, Walker BD, Norris PJ, Stern LJ. Proc. Natl. Acad. Sci. U.S.A. 101 13279-13284 (2004)
  11. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. Oyarzún P, Ellis JJ, Bodén M, Kobe B. BMC Bioinformatics 14 52 (2013)
  12. pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes. Khan JM, Ranganathan S. Immunome Res 6 Suppl 1 S2 (2010)
  13. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. Bordner AJ. PLoS One 5 e14383 (2010)
  14. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model. Bordner AJ, Mittelmann HD. BMC Bioinformatics 11 41 (2010)
  15. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. PLoS One 13 e0205933 (2018)
  16. Docking Flexible Cyclic Peptides with AutoDock CrankPep. Zhang Y, Sanner MF. J Chem Theory Comput 15 5161-5168 (2019)
  17. In-Silico Proteomic Exploratory Quest: Crafting T-Cell Epitope Vaccine Against Whipple's Disease. Joshi A, Kaushik V. Int J Pept Res Ther 27 169-179 (2021)
  18. The Possible Mechanism of Idiosyncratic Lapatinib-Induced Liver Injury in Patients Carrying Human Leukocyte Antigen-DRB1*07:01. Hirasawa M, Hagihara K, Okudaira N, Izumi T. PLoS ONE 10 e0130928 (2015)
  19. Predicting MHC-II binding affinity using multiple instance regression. EL-Manzalawy Y, Dobbs D, Honavar V. IEEE/ACM Trans Comput Biol Bioinform 8 1067-1079 (2011)
  20. Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data. Adrian PE, Rajaseger G, Mathura VS, Sakharkar MK, Kangueane P. BMC Struct. Biol. 2 2 (2002)
  21. A Newly Recognized Pairing Mechanism of the α- and β-Chains of the Chicken Peptide-MHC Class II Complex. Zhang L, Li X, Ma L, Zhang B, Meng G, Xia C. J Immunol 204 1630-1640 (2020)
  22. An effective and effecient peptide binding prediction approach for a broad set of HLA-DR molecules based on ordered weighted averaging of binding pocket profiles. Shen WJ, Zhang S, Wong HS. Proteome Sci 11 S15 (2013)
  23. PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking. Xu X, Zou X. J Comput Chem 41 362-369 (2020)
  24. T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. Joshi A, Ray NM, Singh J, Upadhyay AK, Kaushik V. Netw Model Anal Health Inform Bioinform 11 2 (2022)
  25. A Novel Peptide Binding Prediction Approach for HLA-DR Molecule Based on Sequence and Structural Information. Li Z, Zhao Y, Pan G, Tang J, Guo F. Biomed Res Int 2016 3832176 (2016)
  26. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. Painter CA, Stern LJ. Curr Top Biochem Res 13 39-55 (2011)
  27. A comprehensive analysis of amino-peptidase N1 protein (APN) from Anopheles culicifacies for epitope design using Immuno-informatics models. Jakhar R, Kumar P, Sehrawat N, Gakhar SK. Bioinformation 15 600-612 (2019)
  28. Impact of HLA-DR Antigen Binding Cleft Rigidity on T Cell Recognition. Szeto C, Bloom JI, Sloane H, Lobos CA, Fodor J, Jayasinghe D, Chatzileontiadou DSM, Grant EJ, Buckle AM, Gras S. Int J Mol Sci 21 E7081 (2020)
  29. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  30. Bioinformatics pipeline unveils genetic variability to synthetic vaccine design for Indian SARS-CoV-2 genomes. Ghosh N, Saha I, Sharma N, Nandi S. Int Immunopharmacol 112 109224 (2022)
  31. Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. Lohia N, Baranwal M. 3 Biotech 8 492 (2018)
  32. IDP-LZerD: Software for Modeling Disordered Protein Interactions. Christoffer C, Kihara D. Methods Mol Biol 2165 231-244 (2020)
  33. Interactions of HLA-DR and Topoisomerase I Epitope Modulated Genetic Risk for Systemic Sclerosis. Kongkaew S, Rungrotmongkol T, Punwong C, Noguchi H, Takeuchi F, Kungwan N, Wolschann P, Hannongbua S. Sci Rep 9 745 (2019)
  34. Predicting Humoral Alloimmunity from Differences in Donor and Recipient HLA Surface Electrostatic Potential. Mallon DH, Kling C, Robb M, Ellinghaus E, Bradley JA, Taylor CJ, Kabelitz D, Kosmoliaptsis V. J. Immunol. 201 3780-3792 (2018)
  35. research-article Targeting hepatitis B vaccine escape using immunogenetics in Bangladeshi infants. Butler-Laporte G, Auckland K, Noor Z, Kabir M, Alam M, Carstensen T, Wojcik GL, Chong AY, Pomilla C, Noble JA, McDevitt SL, Smits G, Wareing S, van der Klis FR, Jeffery K, Kirkpatrick BD, Sirima S, Madhi S, Elliott A, Richards JB, Hill AV, Duggal P, PROVIDE authors, Cryptosporidiosis Birth Cohort authors, Sandhu MS, Haque R, Petri WA, Mentzer AJ. medRxiv 2023.06.26.23291885 (2023)


Reviews citing this publication (18)

  1. MHC class II proteins and disease: a structural perspective. Jones EY, Fugger L, Strominger JL, Siebold C. Nat. Rev. Immunol. 6 271-282 (2006)
  2. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Farès C. Micron 35 503-542 (2004)
  3. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Vollers SS, Stern LJ. Immunology 123 305-313 (2008)
  4. The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Surana NK, Kasper DL. Immunol. Rev. 245 13-26 (2012)
  5. Infection, mimics, and autoimmune disease. Rose NR. J. Clin. Invest. 107 943-944 (2001)
  6. Interplay between superantigens and immunoreceptors. Petersson K, Forsberg G, Walse B. Scand. J. Immunol. 59 345-355 (2004)
  7. So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Sundberg EJ, Li Y, Mariuzza RA. Curr. Opin. Immunol. 14 36-44 (2002)
  8. Labeling antigen-specific CD4(+) T cells with class II MHC oligomers. Cameron TO, Norris PJ, Patel A, Moulon C, Rosenberg ES, Mellins ED, Wedderburn LR, Stern LJ. J. Immunol. Methods 268 51-69 (2002)
  9. Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design. Purcell AW, Zeng W, Mifsud NA, Ely LK, Macdonald WA, Jackson DC. J. Pept. Sci. 9 255-281 (2003)
  10. HLA-DR: molecular insights and vaccine design. Stern LJ, Calvo-Calle JM. Curr. Pharm. Des. 15 3249-3261 (2009)
  11. Humanized animal models for autoimmune diseases. Gregersen JW, Holmes S, Fugger L. Tissue Antigens 63 383-394 (2004)
  12. Immunogenetic factors in beryllium sensitization and chronic beryllium disease. Weston A, Snyder J, McCanlies EC, Schuler CR, Andrew ME, Kreiss K, Demchuk E. Mutat. Res. 592 68-78 (2005)
  13. Molecular mimicry in multiple sclerosis. Wekerle H, Hohlfeld R. N. Engl. J. Med. 349 185-186 (2003)
  14. Dissection of the multiple sclerosis associated DR2 haplotype. Etzensperger R, McMahon RM, Jones EY, Fugger L. J. Autoimmun. 31 201-207 (2008)
  15. Electrostatic potential on human leukocyte antigen: implications for putative mechanism of chronic beryllium disease. Snyder JA, Weston A, Tinkle SS, Demchuk E. Environ. Health Perspect. 111 1827-1834 (2003)
  16. Minor histocompatibility antigens: presentation principles, recognition logic and the potential for a healing hand. Spencer CT, Gilchuk P, Dragovic SM, Joyce S. Curr Opin Organ Transplant 15 512-525 (2010)
  17. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Raasakka A, Kursula P. Cells 9 (2020)
  18. Stereo electronic principles for selecting fully-protective, chemically-synthesised malaria vaccines. Patarroyo ME, Bermudez A, Alba MP, Patarroyo MA, Suarez C, Aza-Conde J, Moreno-Vranich A, Vanegas M. Front Immunol 13 926680 (2022)

Articles citing this publication (54)

  1. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L. Nat. Immunol. 3 940-943 (2002)
  2. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Lee KH, Wucherpfennig KW, Wiley DC. Nat. Immunol. 2 501-507 (2001)
  3. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Manoury B, Mazzeo D, Fugger L, Viner N, Ponsford M, Streeter H, Mazza G, Wraith DC, Watts C. Nat Immunol 3 169-174 (2002)
  4. The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Bondinas GP, Moustakas AK, Papadopoulos GK. Immunogenetics 59 539-553 (2007)
  5. The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. Arnold PY, La Gruta NL, Miller T, Vignali KM, Adams PS, Woodland DL, Vignali DA. J Immunol 169 739-749 (2002)
  6. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Li Y, Li H, Dimasi N, McCormick JK, Martin R, Schuck P, Schlievert PM, Mariuzza RA. Immunity 14 93-104 (2001)
  7. Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: prediction of an I-Ab peptide-binding motif. Zhu Y, Rudensky AY, Corper AL, Teyton L, Wilson IA. J. Mol. Biol. 326 1157-1174 (2003)
  8. Alternate interactions define the binding of peptides to the MHC molecule IA(b). Liu X, Dai S, Crawford F, Fruge R, Marrack P, Kappler J. Proc. Natl. Acad. Sci. U.S.A. 99 8820-8825 (2002)
  9. Monomeric recombinant TCR ligand reduces relapse rate and severity of experimental autoimmune encephalomyelitis in SJL/J mice through cytokine switch. Huan J, Subramanian S, Jones R, Rich C, Link J, Mooney J, Bourdette DN, Vandenbark AA, Burrows GG, Offner H. J Immunol 172 4556-4566 (2004)
  10. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, Eggenhuizen PJ, Loh KL, Watson KA, Gan PY, Alikhan MA, Dudek NL, Handel A, Hudson BG, Fugger L, Power DA, Holt SG, Coates PT, Gregersen JW, Purcell AW, Holdsworth SR, La Gruta NL, Reid HH, Rossjohn J, Kitching AR. Nature 545 243-247 (2017)
  11. An immunodominant epitope of myelin basic protein is an amphipathic alpha-helix. Bates IR, Feix JB, Boggs JM, Harauz G. J Biol Chem 279 5757-5764 (2004)
  12. Peptide length-based prediction of peptide-MHC class II binding. Chang ST, Ghosh D, Kirschner DE, Linderman JJ. Bioinformatics 22 2761-2767 (2006)
  13. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, Cruciani C, Faigle W, Naghavian R, Foege M, Binder TMC, Eiermann T, Opitz L, Fuentes-Font L, Reynolds R, Kwok WW, Nguyen JT, Lee JH, Lutterotti A, Münz C, Rammensee HG, Hauri-Hohl M, Sospedra M, Stevanovic S, Martin R. Cell 183 1264-1281.e20 (2020)
  14. Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides. Tong JC, Zhang GL, Tan TW, August JT, Brusic V, Ranganathan S. Bioinformatics 22 1232-1238 (2006)
  15. Crystallographic structure of the human leukocyte antigen DRA, DRB3*0101: models of a directional alloimmune response and autoimmunity. Parry CS, Gorski J, Stern LJ. J. Mol. Biol. 371 435-446 (2007)
  16. Redundancy in antigen-presenting function of the HLA-DR and -DQ molecules in the multiple sclerosis-associated HLA-DR2 haplotype. Sospedra M, Muraro PA, Stefanová I, Zhao Y, Chung K, Li Y, Giulianotti M, Simon R, Mariuzza R, Pinilla C, Martin R. J. Immunol. 176 1951-1961 (2006)
  17. Recombinant HLA-DP2 binds beryllium and tolerizes beryllium-specific pathogenic CD4+ T cells. Fontenot AP, Keizer TS, McCleskey M, Mack DG, Meza-Romero R, Huan J, Edwards DM, Chou YK, Vandenbark AA, Scott B, Burrows GG. J Immunol 177 3874-3883 (2006)
  18. Effects of the osmolyte trimethylamine-N-oxide on conformation, self-association, and two-dimensional crystallization of myelin basic protein. Hill CM, Bates IR, White GF, Hallett FR, Harauz G. J. Struct. Biol. 139 13-26 (2002)
  19. MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation. Ryan SO, Bonomo JA, Zhao F, Cobb BA. J. Exp. Med. 208 1041-1053 (2011)
  20. Exploration of the P6/P7 region of the peptide-binding site of the human class II major histocompatability complex protein HLA-DR1. Zavala-Ruiz Z, Sundberg EJ, Stone JD, DeOliveira DB, Chan IC, Svendsen J, Mariuzza RA, Stern LJ. J Biol Chem 278 44904-44912 (2003)
  21. A polymorphic pocket at the P10 position contributes to peptide binding specificity in class II MHC proteins. Zavala-Ruiz Z, Strug I, Anderson MW, Gorski J, Stern LJ. Chem. Biol. 11 1395-1402 (2004)
  22. Proteomic scan for tyrosinase peptide antigenic pattern in vitiligo and melanoma: role of sequence similarity and HLA-DR1 affinity. Lucchese A, Willers J, Mittelman A, Kanduc D, Dummer R. J Immunol 175 7009-7020 (2005)
  23. Myelin basic protein-specific TCR/HLA-DRB5*01:01 transgenic mice support the etiologic role of DRB5*01:01 in multiple sclerosis. Quandt JA, Huh J, Baig M, Yao K, Ito N, Bryant M, Kawamura K, Pinilla C, McFarland HF, Martin R, Ito K. J. Immunol. 189 2897-2908 (2012)
  24. NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist: structural implications for the MHC II (I-Au)-peptide complex from docking calculations. Tzakos AG, Fuchs P, van Nuland NA, Troganis A, Tselios T, Deraos S, Matsoukas J, Gerothanassis IP, Bonvin AM. Eur. J. Biochem. 271 3399-3413 (2004)
  25. Electron paramagnetic resonance spectroscopy and molecular modelling of the interaction of myelin basic protein (MBP) with calmodulin (CaM)-diversity and conformational adaptability of MBP CaM-targets. Polverini E, Boggs JM, Bates IR, Harauz G, Cavatorta P. J. Struct. Biol. 148 353-369 (2004)
  26. Molecular and structural determinants of adamantyl susceptibility to HLA-DRs allelic variants: an in silico approach to understand the mechanism of MLEs. Zaheer-ul-Haq, Khan W. J. Comput. Aided Mol. Des. 25 81-101 (2011)
  27. Amino acid dimorphism and parasite immune evasion: cellular immune responses to a promiscuous epitope of Plasmodium falciparum merozoite surface protein 1 displaying dimorphic amino acid polymorphism are highly constrained. Daubenberger CA, Nickel B, Ciatto C, Grütter MG, Pöltl-Frank F, Rossi L, Siegler U, Robinson J, Kashala O, Patarroyo ME, Pluschke G. Eur. J. Immunol. 32 3667-3677 (2002)
  28. HLA-DRB1*1501 risk association in multiple sclerosis may not be related to presentation of myelin epitopes. Finn TP, Jones RE, Rich C, Dahan R, Link J, David CS, Chou YK, Offner H, Vandenbark AA. J. Neurosci. Res. 78 100-114 (2004)
  29. Single-chain recombinant HLA-DQ2.5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease. Huan J, Meza-Romero R, Mooney JL, Vandenbark AA, Offner H, Burrows GG. Mucosal Immunol 4 112-120 (2011)
  30. A putative bioactive conformation for the altered peptide ligand of myelin basic protein and inhibitor of experimental autoimmune encephalomyelitis [Arg91, Ala96] MBP87-99. Mantzourani ED, Tselios TV, Grdadolnik SG, Brancale A, Platts JA, Matsoukas JM, Mavromoustakos TM. J. Mol. Graph. Model. 25 17-29 (2006)
  31. The role of citrullination of an immunodominant proteoglycan (PG) aggrecan T cell epitope in BALB/c mice with PG-induced arthritis. Misják P, Bősze S, Horváti K, Pásztói M, Pálóczi K, Holub MC, Szakács F, Aradi B, György B, Szabó TG, Nagy G, Glant TT, Mikecz K, Falus A, Buzás EI. Immunol. Lett. 152 25-31 (2013)
  32. A new model defines the minimal set of polymorphism in HLA-DQ and -DR that determines susceptibility and resistance to autoimmune diabetes. Parry CS, Brooks BR. Biol. Direct 3 42 (2008)
  33. T-cell epitope prediction with combinatorial peptide libraries. Sung MH, Zhao Y, Martin R, Simon R. J. Comput. Biol. 9 527-539 (2002)
  34. Cyclic citrullinated MBP87-99 peptide stimulates T cell responses: Implications in triggering disease. Apostolopoulos V, Deraos G, Matsoukas MT, Day S, Stojanovska L, Tselios T, Androutsou ME, Matsoukas J. Bioorg. Med. Chem. 25 528-538 (2017)
  35. Genomewide conserved epitope profiles of HIV-1 predicted by biophysical properties of MHC binding peptides. Sung MH, Simon R. J. Comput. Biol. 11 125-145 (2004)
  36. Rationally designed mutations convert complexes of human recombinant T cell receptor ligands into monomers that retain biological activity. Huan JY, Meza-Romero R, Mooney JL, Chou YK, Edwards DM, Rich C, Link JM, Vandenbark AA, Bourdette DN, Bächinger HP, Burrows GG. J Chem Technol Biotechnol 80 2-12 (2005)
  37. Extraordinary cross-reactivity of an autoimmune T-cell receptor recognizing specific peptides both on autologous and on allogeneic HLA class II molecules. Hansen BE, Rasmussen AH, Jakobsen BK, Ryder LP, Svejgaard A. Tissue Antigens 70 42-52 (2007)
  38. Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets. Parry CS. BMC Struct. Biol. 8 44 (2008)
  39. BOLA-DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Miretti MM, Poli MA. Anim. Genet. 48 420-430 (2017)
  40. Homo-β-amino acid containing MBP(85-99) analogs alleviate experimental autoimmune encephalomyelitis. Kant R, Pasi S, Surolia A. Sci Rep 5 8205 (2015)
  41. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions. Murray JS, Fois SD, Schountz T, Ford SR, Tawde MD, Brown JC, Siahaan TJ. J. Pept. Res. 59 115-122 (2002)
  42. A five-residue HIV envelope helper T cell determinant: does this peptide-MHC interaction leave the binding groove half empty? Lockey TD, Surman S, Brown S, Slobod KS, Coleclough C, Doherty PC, Hurwitz JL. AIDS Res. Hum. Retroviruses 18 1141-1144 (2002)
  43. Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires. Scholz EM, Marcilla M, Daura X, Arribas-Layton D, James EA, Alvarez I. Front Immunol 8 984 (2017)
  44. The HLA-DP2 protein binds the immunodominant epitope from myelin basic protein, MBP85-99, with high affinity. Hansen BE, Nielsen CH, Madsen HO, Ryder LP, Jakobsen BK, Svejgaard A. Tissue Antigens 77 229-234 (2011)
  45. HLA-DR allele reading register shifting is associated with immunity induced by SERA peptide analogues. Salazar LM, Bermúdez A, Patarroyo ME. Biochem. Biophys. Res. Commun. 372 114-120 (2008)
  46. Protective Allele for Multiple Sclerosis HLA-DRB1*01:01 Provides Kinetic Discrimination of Myelin and Exogenous Antigenic Peptides. Mamedov A, Vorobyeva N, Filimonova I, Zakharova M, Kiselev I, Bashinskaya V, Baulina N, Boyko A, Favorov A, Kulakova O, Ziganshin R, Smirnov I, Poroshina A, Shilovskiy I, Khaitov M, Sykulev Y, Favorova O, Vlassov V, Gabibov A, Belogurov A. Front Immunol 10 3088 (2019)
  47. Structure-based selection of human metabolite binding P4 pocket of DRB1*15:01 and DRB1*15:03, with implications for multiple sclerosis. Misra MK, Damotte V, Hollenbach JA. Genes Immun. 20 46-55 (2019)
  48. Accurate MHC Motif Deconvolution of Immunopeptidomics Data Reveals a Significant Contribution of DRB3, 4 and 5 to the Total DR Immunopeptidome. Kaabinejadian S, Barra C, Alvarez B, Yari H, Hildebrand WH, Nielsen M. Front Immunol 13 835454 (2022)
  49. Amino acid sequence conservation of the algesic fragment of myelin basic protein is required for its interaction with CDK5 and function in pain. Chernov AV, Remacle AG, Hullugundi SK, Cieplak P, Angert M, Dolkas J, Shubayev VI, Strongin AY. FEBS J. 285 3485-3502 (2018)
  50. Comparative study of the digestion and metabolism related genes' expression changes during the postnatal food change in different dietary mammals. Yizhen Z, Chen L, Jie X, Shen F, Zhang L, Hou Y, Li L, Yan G, Zhang X, Yang Z. Front Genet 14 1198977 (2023)
  51. Design of Linear and Cyclic Mutant Analogues of Dirucotide Peptide (MBP82⁻98) against Multiple Sclerosis: Conformational and Binding Studies to MHC Class II. Deraos G, Kritsi E, Matsoukas MT, Christopoulou K, Kalbacher H, Zoumpoulakis P, Apostolopoulos V, Matsoukas J. Brain Sci 8 (2018)
  52. Does multiple sclerosis have a zoonotic origin? Correlations with lymphocytic choriomeningitis virus infection. Hogeboom C. Front Immunol 14 1217176 (2023)
  53. Peculiarities of the Presentation of the Encephalitogenic MBP Peptide by HLA-DR Complexes Providing Protection and Predisposition to Multiple Sclerosis. Mamedov AE, Filimonova IN, Smirnov IV, Belogurov AA. Acta Naturae 13 127-133 (2021)
  54. Surface Layer Protein A Expressed in Clostridioides difficile DJNS06-36 Possesses an Encephalitogenic Mimotope of Myelin Basic Protein. Mindur JE, Yadav SK, Ito N, Senoh M, Kato H, Dhib-Jalbut S, Ito K. Microorganisms 9 (2020)