1g6q Citations

The structure and oligomerization of the yeast arginine methyltransferase, Hmt1.

Nat Struct Biol 7 1165-71 (2000)
Cited: 74 times
EuropePMC logo PMID: 11101900

Abstract

Protein methylation at arginines is ubiquitous in eukaryotes and affects signal transduction, gene expression and protein sorting. Hmt1/Rmt1, the major arginine methyltransferase in yeast, catalyzes methylation of arginine residues in several mRNA-binding proteins and facilitates their export from the nucleus. We now report the crystal structure of Hmt1 at 2.9 A resolution. Hmt1 forms a hexamer with approximate 32 symmetry. The surface of the oligomer is dominated by large acidic cavities at the dimer interfaces. Mutation of dimer contact sites eliminates activity of Hmt1 both in vivo and in vitro. Mutating residues in the acidic cavity significantly reduces binding and methylation of the substrate Npl3.

Reviews - 1g6q mentioned but not cited (1)

  1. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Cheng X, Roberts RJ. Nucleic Acids Res 29 3784-3795 (2001)

Articles - 1g6q mentioned but not cited (2)

  1. RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited--bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. Bujnicki JM, Rychlewski L. BMC Bioinformatics 3 10 (2002)
  2. Structural basis of arginine asymmetrical dimethylation by PRMT6. Wu H, Zheng W, Eram MS, Vhuiyan M, Dong A, Zeng H, He H, Brown P, Frankel A, Vedadi M, Luo M, Min J. Biochem J 473 3049-3063 (2016)


Reviews citing this publication (16)

  1. Structural and sequence motifs of protein (histone) methylation enzymes. Cheng X, Collins RE, Zhang X. Annu Rev Biophys Biomol Struct 34 267-294 (2005)
  2. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  3. Chromatin modifier enzymes, the histone code and cancer. Santos-Rosa H, Caldas C. Eur J Cancer 41 2381-2402 (2005)
  4. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Lee YH, Stallcup MR. Mol Endocrinol 23 425-433 (2009)
  5. Chemical biology of protein arginine modifications in epigenetic regulation. Fuhrmann J, Clancy KW, Thompson PR. Chem Rev 115 5413-5461 (2015)
  6. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Wolf SS. Cell Mol Life Sci 66 2109-2121 (2009)
  7. Protein arginine methyltransferases: from unicellular eukaryotes to humans. Bachand F. Eukaryot Cell 6 889-898 (2007)
  8. Protein interfaces in signaling regulated by arginine methylation. Boisvert FM, Chénard CA, Richard S. Sci STKE 2005 re2 (2005)
  9. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Tewary SK, Zheng YG, Ho MC. Cell Mol Life Sci 76 2917-2932 (2019)
  10. Altered histone modifications in gliomas. Kim YZ. Brain Tumor Res Treat 2 7-21 (2014)
  11. Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Smith E, Zhou W, Shindiapina P, Sif S, Li C, Baiocchi RA. Expert Opin Ther Targets 22 527-545 (2018)
  12. Impact of Epigenetic Dietary Components on Cancer through Histone Modifications. Gao Y, Tollefsbol TO. Curr Med Chem 22 2051-2064 (2015)
  13. Structure, Activity, and Function of PRMT1. Thiebaut C, Eve L, Poulard C, Le Romancer M. Life (Basel) 11 1147 (2021)
  14. Protein and nucleic acid methylating enzymes: mechanisms and regulation. Le DD, Fujimori DG. Curr Opin Chem Biol 16 507-515 (2012)
  15. The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Rajan PK, Udoh UA, Sanabria JD, Banerjee M, Smith G, Schade MS, Sanabria J, Sodhi K, Pierre S, Xie Z, Shapiro JI, Sanabria J. Int J Mol Sci 21 E8894 (2020)
  16. Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Gupta S, Kadumuri RV, Singh AK, Chavali S, Dhayalan A. Life (Basel) 11 951 (2021)

Articles citing this publication (55)

  1. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Zhang X, Cheng X. Structure 11 509-520 (2003)
  2. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM, Bedford MT. Proc Natl Acad Sci U S A 100 6464-6468 (2003)
  3. Crystal structure of the human PRMT5:MEP50 complex. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S. Proc Natl Acad Sci U S A 109 17960-17965 (2012)
  4. Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K, Garin J, Sullivan WJ, Cesbron-Delauw MF, Hakimi MA. Mol Cell Biol 25 10301-10314 (2005)
  5. Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. Goulet I, Gauvin G, Boisvenue S, Côté J. J Biol Chem 282 33009-33021 (2007)
  6. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Swiercz R, Person MD, Bedford MT. Biochem J 386 85-91 (2005)
  7. Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. Troffer-Charlier N, Cura V, Hassenboehler P, Moras D, Cavarelli J. EMBO J 26 4391-4401 (2007)
  8. Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. Yue WW, Hassler M, Roe SM, Thompson-Vale V, Pearl LH. EMBO J 26 4402-4412 (2007)
  9. Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Osborne TC, Obianyo O, Zhang X, Cheng X, Thompson PR. Biochemistry 46 13370-13381 (2007)
  10. Structural insights into protein arginine symmetric dimethylation by PRMT5. Sun L, Wang M, Lv Z, Yang N, Liu Y, Bao S, Gong W, Xu RM. Proc Natl Acad Sci U S A 108 20538-20543 (2011)
  11. Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. Swiercz R, Cheng D, Kim D, Bedford MT. J Biol Chem 282 16917-16923 (2007)
  12. Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Sinha R, Allemand E, Zhang Z, Karni R, Myers MP, Krainer AR. Mol Cell Biol 30 2762-2774 (2010)
  13. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Higashimoto K, Kuhn P, Desai D, Cheng X, Xu W. Proc Natl Acad Sci U S A 104 12318-12323 (2007)
  14. A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism. Lakowski TM, Frankel A. J Biol Chem 283 10015-10025 (2008)
  15. Enzymatic activity is required for the in vivo functions of CARM1. Kim D, Lee J, Cheng D, Li J, Carter C, Richie E, Bedford MT. J Biol Chem 285 1147-1152 (2010)
  16. Structural basis for CARM1 inhibition by indole and pyrazole inhibitors. Sack JS, Thieffine S, Bandiera T, Fasolini M, Duke GJ, Jayaraman L, Kish KF, Klei HE, Purandare AV, Rosettani P, Troiani S, Xie D, Bertrand JA. Biochem J 436 331-339 (2011)
  17. Kinetic mechanism of protein arginine methyltransferase 1. Obianyo O, Osborne TC, Thompson PR. Biochemistry 47 10420-10427 (2008)
  18. Role of pICLn in methylation of Sm proteins by PRMT5. Pesiridis GS, Diamond E, Van Duyne GD. J Biol Chem 284 21347-21359 (2009)
  19. Yeast ribosomal protein L12 is a substrate of protein-arginine methyltransferase 2. Chern MK, Chang KN, Liu LF, Tam TC, Liu YC, Liang YL, Tam MF. J Biol Chem 277 15345-15353 (2002)
  20. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. Fisk JC, Sayegh J, Zurita-Lopez C, Menon S, Presnyak V, Clarke SG, Read LK. J Biol Chem 284 11590-11600 (2009)
  21. Characterization of PRMT1 from Plasmodium falciparum. Fan Q, Miao J, Cui L, Cui L. Biochem J 421 107-118 (2009)
  22. A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Messier V, Zenklusen D, Michnick SW. Cell 153 1080-1093 (2013)
  23. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. Dillon MB, Rust HL, Thompson PR, Mowen KA. J Biol Chem 288 27872-27880 (2013)
  24. Promiscuous modification of the nuclear poly(A)-binding protein by multiple protein-arginine methyltransferases does not affect the aggregation behavior. Fronz K, Otto S, Kölbel K, Kühn U, Friedrich H, Schierhorn A, Beck-Sickinger AG, Ostareck-Lederer A, Wahle E. J Biol Chem 283 20408-20420 (2008)
  25. Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Lee DY, Ianculescu I, Purcell D, Zhang X, Cheng X, Stallcup MR. Mol Endocrinol 21 1381-1393 (2007)
  26. Structural determinants for the strict monomethylation activity by trypanosoma brucei protein arginine methyltransferase 7. Wang C, Zhu Y, Caceres TB, Liu L, Peng J, Wang J, Chen J, Chen X, Zhang Z, Zuo X, Gong Q, Teng M, Hevel JM, Wu J, Shi Y. Structure 22 756-768 (2014)
  27. Type I Arginine Methyltransferases PRMT1 and PRMT-3 Act Distributively. Kölbel K, Ihling C, Bellmann-Sickert K, Neundorf I, Beck-Sickinger AG, Sinz A, Kühn U, Wahle E. J Biol Chem 284 8274-8282 (2009)
  28. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Debler EW, Jain K, Warmack RA, Feng Y, Clarke SG, Blobel G, Stavropoulos P. Proc Natl Acad Sci U S A 113 2068-2073 (2016)
  29. Chromatin silencing protein and pachytene checkpoint regulator Dot1p has a methyltransferase fold. Dlakić M. Trends Biochem Sci 26 405-407 (2001)
  30. Structure and function of a G-actin sequestering protein with a vital role in malaria oocyst development inside the mosquito vector. Hliscs M, Sattler JM, Tempel W, Artz JD, Dong A, Hui R, Matuschewski K, Schüler H. J Biol Chem 285 11572-11583 (2010)
  31. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  32. Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity. Morales Y, Nitzel DV, Price OM, Gui S, Li J, Qu J, Hevel JM. J Biol Chem 290 14915-14926 (2015)
  33. Identification and characterization of two closely related histone H4 arginine 3 methyltransferases in Arabidopsis thaliana. Yan D, Zhang Y, Niu L, Yuan Y, Cao X. Biochem J 408 113-121 (2007)
  34. Protein arginine methylation in Candida albicans: role in nuclear transport. McBride AE, Zurita-Lopez C, Regis A, Blum E, Conboy A, Elf S, Clarke S. Eukaryot Cell 6 1119-1129 (2007)
  35. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Wong CM, Tang HM, Kong KY, Wong GW, Qiu H, Jin DY, Hinnebusch AG. Nucleic Acids Res 38 2217-2228 (2010)
  36. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei. Wang C, Zhu Y, Chen J, Li X, Peng J, Chen J, Zou Y, Zhang Z, Jin H, Yang P, Wu J, Niu L, Gong Q, Teng M, Shi Y. PLoS One 9 e87267 (2014)
  37. The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. Kafková L, Debler EW, Fisk JC, Jain K, Clarke SG, Read LK. J Biol Chem 292 2089-2100 (2017)
  38. Crystal structure of the plant epigenetic protein arginine methyltransferase 10. Cheng Y, Frazier M, Lu F, Cao X, Redinbo MR. J Mol Biol 414 106-122 (2011)
  39. mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. Bujnicki JM, Feder M, Radlinska M, Rychlewski L. BMC Bioinformatics 2 2 (2001)
  40. Protein Arginine Methyltransferase 8: Tetrameric Structure and Protein Substrate Specificity. Lee WC, Lin WL, Matsui T, Chen ES, Wei TY, Lin WH, Hu H, Zheng YG, Tsai MD, Ho MC. Biochemistry 54 7514-7523 (2015)
  41. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. J Struct Biol 191 175-183 (2015)
  42. Virtual screening and biological evaluation of novel small molecular inhibitors against protein arginine methyltransferase 1 (PRMT1). Xie Y, Zhou R, Lian F, Liu Y, Chen L, Shi Z, Zhang N, Zheng M, Shen B, Jiang H, Liang Z, Luo C. Org Biomol Chem 12 9665-9673 (2014)
  43. Förster resonance energy transfer measurements of cofactor-dependent effects on protein arginine N-methyltransferase homodimerization. Thomas D, Lakowski TM, Pak ML, Kim JJ, Frankel A. Protein Sci 19 2141-2151 (2010)
  44. Structure of the Q237W mutant of HhaI DNA methyltransferase: an insight into protein-protein interactions. Dong A, Zhou L, Zhang X, Stickel S, Roberts RJ, Cheng X. Biol Chem 385 373-379 (2004)
  45. Functional connection between histone acetyltransferase Gcn5p and methyltransferase Hmt1p. Kuo MH, Xu XJ, Bolck HA, Guo D. Biochim Biophys Acta 1789 395-402 (2009)
  46. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite. Ganter M, Rizopoulos Z, Schüler H, Matuschewski K. Mol Microbiol 96 84-94 (2015)
  47. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1. Zhang R, Li X, Liang Z, Zhu K, Lu J, Kong X, Ouyang S, Li L, Zheng YG, Luo C. PLoS One 8 e72424 (2013)
  48. Arginine methylation augments Sbp1 function in translation repression and decapping. Bhatter N, Roy R, Shah S, Sastry SP, Parbin S, Iyappan R, Kankaria S, Rajyaguru PI. FEBS J 286 4693-4708 (2019)
  49. The enzymatic activity of Arabidopsis protein arginine methyltransferase 10 is essential for flowering time regulation. Niu L, Lu F, Zhao T, Liu C, Cao X. Protein Cell 3 450-459 (2012)
  50. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Biochem J BCJ20200411 (2020)
  51. Structural Basis of Protein Arginine Methyltransferase Activation by a Catalytically Dead Homolog (Prozyme). Hashimoto H, Kafková L, Raczkowski A, Jordan KD, Read LK, Debler EW. J Mol Biol 432 410-426 (2020)
  52. Letter A flexible cofactor-binding loop in the novel arginine methyltransferase Sfm1. Wang C, Zeng J, Xie W. FEBS Lett 591 433-441 (2017)
  53. The activity of a yeast Family 16 methyltransferase, Efm2, is affected by a conserved tryptophan and its N-terminal region. Hamey JJ, Hart-Smith G, Erce MA, Wilkins MR. FEBS Open Bio 6 1320-1330 (2016)
  54. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. J Biol Chem 297 101336 (2021)
  55. Bibliography Current awareness on yeast. Yeast 18 577-584 (2001)


Related citations provided by authors (4)

  1. Analysis of the yeast arginine methyltransferase Hmt1p/Rmt1p and its in vivo function. Cofactor binding and substrate interactions.. McBride AE, Weiss VH, Kim HK, Hogle JM, Silver PA J. Biol. Chem. 275 3128-3136 (2000)
  2. Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3'-end formation.. valentini sr, weiss vh, silver pa RNA 5 272-280 (1999)
  3. A novel methyltransferase (Hmt1p) modifies poly(A)+RNA binding proteins.. henry mf, silver pa Mol. Cell. Biol. 16 3668-3678 (1996)
  4. Arginine methylation facilitates the nuclear export of hnRNP proteins.. shen ec, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS Genes Dev. 12 679-691 (1998)