1geg Citations

Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms.

Abstract

The crystal structure of a ternary complex of meso-2,3-butanediol dehydrogenase with NAD+ and a competitive inhibitor, mercaptoethanol, has been determined at 1.7 A resolution by means of molecular replacement and refined to a final R-factor of 0.194. The overall structure is similar to those of the other short chain dehydrogenase/reductase enzymes. The NAD+ binding site, and the positions of catalytic residues Ser139, Tyr152, and Lys156 are also conserved. The crystal structure revealed that mercaptoethanol bound specifically to meso-2,3-butanediol dehydrogenase. Two residues around the active site, Gln140 and Gly183, forming hydrogen bonds with the inhibitor, are important but not sufficient for distinguishing stereoisomerism of a chiral substrate.

Reviews - 1geg mentioned but not cited (1)

  1. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L, Zhang J, Liu J. Microb Cell Fact 22 165 (2023)

Articles - 1geg mentioned but not cited (14)

  1. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors. Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS. PLoS Biol 14 e1002396 (2016)
  2. BIOZON: a system for unification, management and analysis of heterogeneous biological data. Birkland A, Yona G. BMC Bioinformatics 7 70 (2006)
  3. Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Raedts J, Siemerink MA, Levisson M, van der Oost J, Kengen SW. Appl Environ Microbiol 80 2011-2020 (2014)
  4. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state. Baik SH, Michel F, Aghajari N, Haser R, Harayama S. Appl Environ Microbiol 71 3285-3293 (2005)
  5. Rational proteomics II: electrostatic nature of cofactor preference in the short-chain oxidoreductase (SCOR) enzyme family. Pletnev VZ, Weeks CM, Duax WL. Proteins 57 294-301 (2004)
  6. Thioredoxin Profiling of Multiple Thioredoxin-Like Proteins in Staphylococcus aureus. Peng H, Zhang Y, Trinidad JC, Giedroc DP. Front Microbiol 9 2385 (2018)
  7. Borneol Dehydrogenase from Pseudomonas sp. Strain TCU-HL1 Catalyzes the Oxidation of (+)-Borneol and Its Isomers to Camphor. Tsang HL, Huang JL, Lin YH, Huang KF, Lu PL, Lin GH, Khine AA, Hu A, Chen HP. Appl Environ Microbiol 82 6378-6385 (2016)
  8. The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism. Bakolitsa C, Kumar A, McMullan D, Krishna SS, Miller MD, Carlton D, Najmanovich R, Abdubek P, Astakhova T, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1211-1217 (2010)
  9. Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress. Chamchoy K, Pumirat P, Reamtong O, Pakotiprapha D, Leartsakulpanich U, Boonyuen U. Sci Rep 10 10453 (2020)
  10. Expression, purification, crystallization and X-ray analysis of 3-quinuclidinone reductase from Agrobacterium tumefaciens. Hou F, Miyakawa T, Takeshita D, Kataoka M, Uzura A, Nagata K, Shimizu S, Tanokura M. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 1237-1239 (2012)
  11. Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR. Biotechnol Biofuels 13 186 (2020)
  12. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6. Miao X, Huang X, Zhang G, Zhao X, Zhu X, Dong H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1140-1142 (2013)
  13. research-article Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor. Aspacio D, Zhang Y, Cui Y, King E, Black WB, Perea S, Luu E, Siegel JB, Li H. bioRxiv 2023.08.29.555398 (2023)
  14. Crystallization and preliminary X-ray diffraction analysis of domain-chimeric L-(2S,3S)-butanediol dehydrogenase. Shimegi T, Ooyama T, Ohtsuki T, Kurisu G, Kusunoki M, Ui S. Acta Crystallogr F Struct Biol Commun 70 461-463 (2014)


Reviews citing this publication (1)

  1. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. An J, Nie Y, Xu Y. Crit Rev Biotechnol 39 366-379 (2019)

Articles citing this publication (16)

  1. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci 11 2125-2137 (2002)
  2. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D. J Mol Biol 349 801-813 (2005)
  3. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Petrov K, Petrova P. Appl Microbiol Biotechnol 84 659-665 (2009)
  4. The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency. Niefind K, Müller J, Riebel B, Hummel W, Schomburg D. J Mol Biol 327 317-328 (2003)
  5. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. Favia AD, Nobeli I, Glaser F, Thornton JM. J Mol Biol 375 855-874 (2008)
  6. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X. Appl Microbiol Biotechnol 98 641-650 (2014)
  7. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. Aklujkar M, Haveman SA, DiDonato R, Chertkov O, Han CS, Land ML, Brown P, Lovley DR. BMC Genomics 13 690 (2012)
  8. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. Otagiri M, Ui S, Takusagawa Y, Ohtsuki T, Kurisu G, Kusunoki M. FEBS Lett 584 219-223 (2010)
  9. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. Yang TH, Rathnasingh C, Lee HJ, Seung D. J Biotechnol 172 59-66 (2014)
  10. Selective complexation of N-alkylpyridinium salts: recognition of NAD+ in water. Jasper C, Schrader T, Panitzky J, Klärner FG. Angew Chem Int Ed Engl 41 1355-1358 (2002)
  11. Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Asada Y, Endo S, Inoue Y, Mamiya H, Hara A, Kunishima N, Matsunaga T. Chem Biol Interact 178 117-126 (2009)
  12. Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution. Chang CC, Chuang YC, Chang MC. Biochem Biophys Res Commun 322 303-309 (2004)
  13. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR. Hou F, Miyakawa T, Kataoka M, Takeshita D, Kumashiro S, Uzura A, Urano N, Nagata K, Shimizu S, Tanokura M. Biochem Biophys Res Commun 446 911-915 (2014)
  14. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Nakabayashi M, Shibata N, Ishido-Nakai E, Kanagawa M, Iio Y, Komori H, Ueda Y, Nakagawa N, Kuramitsu S, Higuchi Y. Extremophiles 20 275-282 (2016)
  15. Letter Rational design of Meso-2,3-butanediol dehydrogenase by molecular dynamics simulation and experimental evaluations. Pu Z, Ji F, Wang J, Zhang Y, Sun W, Bao Y. FEBS Lett 591 3402-3413 (2017)
  16. The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry. Tian J, Boggs DG, Donnan PH, Barroso GT, Garcia AA, Dowling DP, Buss JA, Bridwell-Rabb J. J Biol Chem 299 105222 (2023)