1gfl Citations

The molecular structure of green fluorescent protein.

Nat Biotechnol 14 1246-51 (1996)
Cited: 788 times
EuropePMC logo PMID: 9631087

Abstract

The crystal structure of recombinant wild-type green fluorescent protein (GFP) has been solved to a resolution of 1.9 A by multiwavelength anomalous dispersion phasing methods. The protein is in the shape of a cylinder, comprising 11 strands of beta-sheet with an alpha-helix inside and short helical segments on the ends of the cylinder. This motif, with beta-structure on the outside and alpha-helix on the inside, represents a new protein fold, which we have named the beta-can. Two protomers pack closely together to form a dimer in the crystal. The fluorophores are protected inside the cylinders, and their structures are consistent with the formation of aromatic systems made up of Tyr66 with reduction of its C alpha-C beta bond coupled with cyclization of the neighboring glycine and serine residues. The environment inside the cylinder explains the effects of many existing mutants of GFP and suggests specific side chains that could be modified to change the spectral properties of GFP. Furthermore, the identification of the dimer contacts may allow mutagenic control of the state of assembly of the protein.

Reviews - 1gfl mentioned but not cited (8)

  1. A guide to maximizing the therapeutic potential of protein-polymer conjugates by rational design. Ko JH, Maynard HD. Chem Soc Rev 47 8998-9014 (2018)
  2. Progress and prospects for small-molecule probes of bacterial imaging. Kocaoglu O, Carlson EE. Nat Chem Biol 12 472-478 (2016)
  3. Principles Governing the Phase Separation of Multidomain Proteins. Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Biochemistry 61 2443-2455 (2022)
  4. Probing heterotrimeric G protein activation: applications to biased ligands. Denis C, Saulière A, Galandrin S, Sénard JM, Galés C. Curr Pharm Des 18 128-144 (2012)
  5. Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application. Jäger VD, Lamm R, Küsters K, Ölçücü G, Oldiges M, Jaeger KE, Büchs J, Krauss U. Appl Microbiol Biotechnol 104 7313-7329 (2020)
  6. Bifunctional Non-Canonical Amino Acids: Combining Photo-Crosslinking with Click Chemistry. Hoffmann JE. Biomolecules 10 E578 (2020)
  7. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Int J Mol Sci 22 E148 (2020)
  8. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. Leem JW, Kim SR, Choi KH, Kim YL. Nano Converg 5 8 (2018)

Articles - 1gfl mentioned but not cited (119)



Reviews citing this publication (107)

  1. The green fluorescent protein. Tsien RY. Annu Rev Biochem 67 509-544 (1998)
  2. Creating new fluorescent probes for cell biology. Zhang J, Campbell RE, Ting AY, Tsien RY. Nat Rev Mol Cell Biol 3 906-918 (2002)
  3. Studying protein dynamics in living cells. Lippincott-Schwartz J, Snapp E, Kenworthy A. Nat Rev Mol Cell Biol 2 444-456 (2001)
  4. Bright ideas for chemical biology. Lavis LD, Raines RT. ACS Chem Biol 3 142-155 (2008)
  5. Fluorescent protein FRET: the good, the bad and the ugly. Piston DW, Kremers GJ. Trends Biochem Sci 32 407-414 (2007)
  6. The fluorescent protein palette: tools for cellular imaging. Day RN, Davidson MW. Chem Soc Rev 38 2887-2921 (2009)
  7. Fluorescent protein-based redox probes. Meyer AJ, Dick TP. Antioxid Redox Signal 13 621-650 (2010)
  8. Bioluminescence. Wilson T, Hastings JW. Annu Rev Cell Dev Biol 14 197-230 (1998)
  9. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Greenwald EC, Mehta S, Zhang J. Chem Rev 118 11707-11794 (2018)
  10. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP. Molecules 17 4047-4132 (2012)
  11. Applications of the green fluorescent protein in cell biology and biotechnology. Misteli T, Spector DL. Nat Biotechnol 15 961-964 (1997)
  12. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Newman RH, Fosbrink MD, Zhang J. Chem Rev 111 3614-3666 (2011)
  13. Fluorescent proteins for live-cell imaging with super-resolution. Nienhaus K, Nienhaus GU. Chem Soc Rev 43 1088-1106 (2014)
  14. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Wang Y, Shyy JY, Chien S. Annu Rev Biomed Eng 10 1-38 (2008)
  15. Techniques for the Analysis of Protein-Protein Interactions in Vivo. Xing S, Wallmeroth N, Berendzen KW, Grefen C. Plant Physiol 171 727-758 (2016)
  16. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Hoffman R. Lancet Oncol 3 546-556 (2002)
  17. Developing MR reporter genes: promises and pitfalls. Gilad AA, Winnard PT, van Zijl PC, Bulte JW. NMR Biomed 20 275-290 (2007)
  18. Quantitative imaging with fluorescent biosensors. Okumoto S, Jones A, Frommer WB. Annu Rev Plant Biol 63 663-706 (2012)
  19. Windows into development: historic, current, and future perspectives on transgenic zebrafish. Udvadia AJ, Linney E. Dev Biol 256 1-17 (2003)
  20. Looking forward to seeing calcium. Rudolf R, Mongillo M, Rizzuto R, Pozzan T. Nat Rev Mol Cell Biol 4 579-586 (2003)
  21. Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Mewies M, McIntire WS, Scrutton NS. Protein Sci 7 7-20 (1998)
  22. Structure and dynamics of green fluorescent protein. Phillips GN. Curr Opin Struct Biol 7 821-827 (1997)
  23. Family of the green fluorescent protein: journey to the end of the rainbow. Matz MV, Lukyanov KA, Lukyanov SA. Bioessays 24 953-959 (2002)
  24. Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Nienhaus GU, Nienhaus K, Hölzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J. Photochem Photobiol 82 351-358 (2006)
  25. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Hochreiter B, Garcia AP, Schmid JA. Sensors (Basel) 15 26281-26314 (2015)
  26. It's green outside: tracking cell surface proteins with pH-sensitive GFP. Ashby MC, Ibaraki K, Henley JM. Trends Neurosci 27 257-261 (2004)
  27. Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK. Curr Protein Pept Sci 9 338-369 (2008)
  28. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Day RN, Davidson MW. Bioessays 34 341-350 (2012)
  29. The discovery of aequorin and green fluorescent protein. Shimomura O. J Microsc 217 1-15 (2005)
  30. Recent developments of biological reporter technology for detecting gene expression. Jiang T, Xing B, Rao J. Biotechnol Genet Eng Rev 25 41-75 (2008)
  31. Aequorea victoria bioluminescence moves into an exciting new era. Kendall JM, Badminton MN. Trends Biotechnol 16 216-224 (1998)
  32. Structure and Mechanism of RNA Mimics of Green Fluorescent Protein. You M, Jaffrey SR. Annu Rev Biophys 44 187-206 (2015)
  33. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T. Front Plant Sci 4 413 (2013)
  34. Recent progress in strategies for the creation of protein-based fluorescent biosensors. Wang H, Nakata E, Hamachi I. Chembiochem 10 2560-2577 (2009)
  35. Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Wiedenmann J, Nienhaus GU. Expert Rev Proteomics 3 361-374 (2006)
  36. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Int Rev Cell Mol Biol 302 221-278 (2013)
  37. Optogenetic experimentation on astrocytes. Figueiredo M, Lane S, Tang F, Liu BH, Hewinson J, Marina N, Kasymov V, Souslova EA, Chudakov DM, Gourine AV, Teschemacher AG, Kasparov S. Exp Physiol 96 40-50 (2011)
  38. High throughput screening in drug discovery. Carnero A. Clin Transl Oncol 8 482-490 (2006)
  39. Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Margolin W. Methods 20 62-72 (2000)
  40. Photoreactions and dynamics of the green fluorescent protein. van Thor JJ. Chem Soc Rev 38 2935-2950 (2009)
  41. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Germond A, Fujita H, Ichimura T, Watanabe TM. Biophys Rev 8 121-138 (2016)
  42. Dynamics and mobility of nuclear envelope proteins in interphase and mitotic cells revealed by green fluorescent protein chimeras. Ellenberg J, Lippincott-Schwartz J. Methods 19 362-372 (1999)
  43. Homo-FRET imaging as a tool to quantify protein and lipid clustering. Bader AN, Hoetzl S, Hofman EG, Voortman J, van Bergen en Henegouwen PM, van Meer G, Gerritsen HC. Chemphyschem 12 475-483 (2011)
  44. Bioanalysis of eukaryotic organelles. Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MD, Arriaga EA. Chem Rev 113 2733-2811 (2013)
  45. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Hötzer B, Medintz IL, Hildebrandt N. Small 8 2297-2326 (2012)
  46. Reporter gene expression for monitoring gene transfer. Welsh S, Kay SA. Curr Opin Biotechnol 8 617-622 (1997)
  47. Reporter gene vectors and assays. Schenborn E, Groskreutz D. Mol Biotechnol 13 29-44 (1999)
  48. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Musa-Aziz R, Boron WF, Parker MD. Methods 51 134-145 (2010)
  49. Measuring intracellular redox conditions using GFP-based sensors. Björnberg O, Ostergaard H, Winther JR. Antioxid Redox Signal 8 354-361 (2006)
  50. Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Nienhaus GU, Wiedenmann J. Chemphyschem 10 1369-1379 (2009)
  51. The role of the protein matrix in green fluorescent protein fluorescence. Maddalo SL, Zimmer M. Photochem Photobiol 82 367-372 (2006)
  52. Applications of autofluorescent proteins for in situ studies in microbial ecology. Larrainzar E, O'Gara F, Morrissey JP. Annu Rev Microbiol 59 257-277 (2005)
  53. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Hoffman RM. Clin Exp Metastasis 26 345-355 (2009)
  54. Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds. Teranishi K. Bioorg Chem 35 82-111 (2007)
  55. Subsystem-based theoretical spectroscopy of biomolecules and biomolecular assemblies. Neugebauer J. Chemphyschem 10 3148-3173 (2009)
  56. Structural Principles of Fluorescent RNA Aptamers. Trachman RJ, Truong L, Ferré-D'Amaré AR. Trends Pharmacol Sci 38 928-939 (2017)
  57. Understanding the folding of GFP using biophysical techniques. Jackson SE, Craggs TD, Huang JR. Expert Rev Proteomics 3 545-559 (2006)
  58. Femtosecond processes in proteins. Vos MH, Martin JL. Biochim Biophys Acta 1411 1-20 (1999)
  59. Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras. Lippincott-Schwartz J, Smith CL. Curr Opin Neurobiol 7 631-639 (1997)
  60. Photooxidation technology for correlated light and electron microscopy. Meisslitzer-Ruppitsch C, Röhrl C, Neumüller J, Pavelka M, Ellinger A. J Microsc 235 322-335 (2009)
  61. The family of GFP-like proteins: structure, function, photophysics and biosensor applications. Introduction and perspective. Wachter RM. Photochem Photobiol 82 339-344 (2006)
  62. Tumor imaging with multicolor fluorescent protein expression. Yamamoto N, Tsuchiya H, Hoffman RM. Int J Clin Oncol 16 84-91 (2011)
  63. Designing novel spectral classes of proteins with a tryptophan-expanded genetic code. Budisa N, Pal PP. Biol Chem 385 893-904 (2004)
  64. The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Zerihun M, Sukumaran S, Qvit N. Int J Mol Sci 24 5785 (2023)
  65. Function and structure of GFP-like proteins in the protein data bank. Ong WJ, Alvarez S, Leroux IE, Shahid RS, Samma AA, Peshkepija P, Morgan AL, Mulcahy S, Zimmer M. Mol Biosyst 7 984-992 (2011)
  66. Sticky caveats in an otherwise glowing report: oligomerizing fluorescent proteins and their use in cell biology. Zacharias DA. Sci STKE 2002 pe23 (2002)
  67. FRET and mechanobiology. Wang Y, Wang N. Integr Biol (Camb) 1 565-573 (2009)
  68. Cell Walls and the Convergent Evolution of the Viral Envelope. Buchmann JP, Holmes EC. Microbiol Mol Biol Rev 79 403-418 (2015)
  69. From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules. Truong L, Ferré-D'Amaré AR. Protein Sci 28 1374-1386 (2019)
  70. Green and red fluorescent proteins: photo- and thermally induced dynamics probed by site-selective spectroscopy and hole burning. Bonsma S, Purchase R, Jezowski S, Gallus J, Könz F, Völker S. Chemphyschem 6 838-849 (2005)
  71. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Bianco PR. Protein Sci 30 1757-1775 (2021)
  72. Evolutions in science triggered by green fluorescent protein (GFP). Schmid JA, Neumeier H. Chembiochem 6 1149-1156 (2005)
  73. Genetically Encoded Biosensors Based on Fluorescent Proteins. Kim H, Ju J, Lee HN, Chun H, Seong J. Sensors (Basel) 21 795 (2021)
  74. Understanding ion channel biology using epitope tags: progress, pitfalls, and promise. Maue RA. J Cell Physiol 213 618-625 (2007)
  75. Multiplexed imaging of intracellular protein networks. Grecco HE, Imtiaz S, Zamir E. Cytometry A 89 761-775 (2016)
  76. When Fluorescent Proteins Meet White Light-Emitting Diodes. Fernández-Luna V, Coto PB, Costa RD. Angew Chem Int Ed Engl 57 8826-8836 (2018)
  77. Chemical synthesis of proteins in solution. Sakakibara S. Biopolymers 51 279-296 (1999)
  78. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Int J Mol Sci 21 E2323 (2020)
  79. Single-molecule spectroscopy of fluorescent proteins. Blum C, Subramaniam V. Anal Bioanal Chem 393 527-541 (2009)
  80. Superresolution microscopy in heart - cardiac nanoscopy. Kohl T, Westphal V, Hell SW, Lehnart SE. J Mol Cell Cardiol 58 13-21 (2013)
  81. Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mocz G. Mar Biotechnol (NY) 9 305-328 (2007)
  82. Going Viral with Fluorescent Proteins. Costantini LM, Snapp EL. J Virol 89 9706-9708 (2015)
  83. Sensing of intracellular environments by fluorescence lifetime imaging of exogenous fluorophores. Nakabayashi T, Ohta N. Anal Sci 31 275-285 (2015)
  84. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C. Rev Environ Health 21 139-152 (2006)
  85. Green fluorescent proteins in receptor research: an emerging tool for drug discovery. Arun KH, Kaul CL, Ramarao P. J Pharmacol Toxicol Methods 51 1-23 (2005)
  86. Supramolecular assembly of protein building blocks: from folding to function. Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Nano Converg 9 4 (2022)
  87. The Theodore Bücher lecture. Investigating signal transduction with genetically encoded fluorescent probes. Pozzan T, Mongillo M, Rudolf R. Eur J Biochem 270 2343-2352 (2003)
  88. Tracking individual membrane proteins and their biochemistry: The power of direct observation. Barden AO, Goler AS, Humphreys SC, Tabatabaei S, Lochner M, Ruepp MD, Jack T, Simonin J, Thompson AJ, Jones JP, Brozik JA. Neuropharmacology 98 22-30 (2015)
  89. [Synthesis and properties of chromophores of fluorescent proteins]. Ivashkin PE, Iampol'skiĭ IV, Luk'ianov KA. Bioorg Khim 35 726-743 (2009)
  90. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells. Goryashchenko AS, Khrenova MG, Savitsky AP. Methods Appl Fluoresc 6 022001 (2018)
  91. Fluorescent proteins: powerful tools in phagocyte biology. Bajno L, Grinstein S. J Immunol Methods 232 67-75 (1999)
  92. Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. Lartigue L, Coupeau M, Lesault M. Nanomaterials (Basel) 10 E28 (2019)
  93. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. Zherdeva VV, Savitsky AP. Biochemistry (Mosc) 77 1553-1574 (2012)
  94. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. Nienhaus K, Nienhaus GU. RSC Chem Biol 2 796-814 (2021)
  95. In vivo real-time imaging of nuclear-cytoplasmic dynamics of dormancy, proliferation and death of cancer cells. Hoffman RM. APMIS 116 716-729 (2008)
  96. Recent Advancements in Tracking Bacterial Effector Protein Translocation. Braet J, Catteeuw D, Van Damme P. Microorganisms 10 260 (2022)
  97. Role of green fluorescent proteins and their variants in development of FRET-based sensors. Soleja N, Manzoor O, Khan I, Ahmad A, Mohsin M. J Biosci 43 763-784 (2018)
  98. Live imaging mouse embryonic development: seeing is believing and revealing. Nowotschin S, Hadjantonakis AK. Methods Mol Biol 1092 405-420 (2014)
  99. Research Progresses and Applications of Fluorescent Protein Antibodies: A Review Focusing on Nanobodies. Chen YL, Xie XX, Zhong N, Sun LC, Lin D, Zhang LJ, Weng L, Jin T, Cao MJ. Int J Mol Sci 24 4307 (2023)
  100. Understanding and re-engineering nucleoprotein machines to cure human disease. Dynan W, Takeda Y, Roth D, Bao G. Nanomedicine (Lond) 3 93-105 (2008)
  101. Delivery of nano-objects to functional sub-domains of healthy and failing cardiac myocytes. Lukyanenko V. Nanomedicine (Lond) 2 831-846 (2007)
  102. Emerging approaches to probing ion channel structure and function. Li WG, Xu TL. Neurosci Bull 28 351-374 (2012)
  103. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites. Morin-Adeline V, Šlapeta J. Parasitology 143 260-275 (2016)
  104. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Singh MK, Kenney LJ. Front Bioeng Biotechnol 12 1334503 (2024)
  105. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Plants (Basel) 13 743 (2024)
  106. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Int J Mol Sci 24 14741 (2023)
  107. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. Shang A, Shao S, Zhao L, Liu B. Biosensors (Basel) 14 359 (2024)

Articles citing this publication (554)



Related citations provided by authors (1)