1gsn Citations

Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers.

Nat Struct Biol 5 267-71 (1998)
Cited: 94 times
EuropePMC logo PMID: 9546215

Abstract

Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH]2), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH]2 at 1.7 A resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH]2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO2H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.

Reviews - 1gsn mentioned but not cited (2)

  1. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM, Poole LB. Mass Spectrom Rev 33 126-146 (2014)
  2. Thioredoxin reductase and its inhibitors. Saccoccia F, Angelucci F, Boumis G, Carotti D, Desiato G, Miele AE, Bellelli A. Curr. Protein Pept. Sci. 15 621-646 (2014)


Reviews citing this publication (28)

  1. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Klatt P, Lamas S. Eur. J. Biochem. 267 4928-4944 (2000)
  2. Protein sulfenic acids in redox signaling. Poole LB, Karplus PA, Claiborne A. Annu. Rev. Pharmacol. Toxicol. 44 325-347 (2004)
  3. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Int. J. Parasitol. 34 163-189 (2004)
  4. Nitric oxide and the regulation of gene expression. Bogdan C. Trends Cell Biol. 11 66-75 (2001)
  5. Thioredoxin reductase as a pathophysiological factor and drug target. Becker K, Gromer S, Schirmer RH, Müller S. Eur. J. Biochem. 267 6118-6125 (2000)
  6. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Mocellin S, Bronte V, Nitti D. Med Res Rev 27 317-352 (2007)
  7. Regulation of the apoptosis-necrosis switch. Nicotera P, Melino G. Oncogene 23 2757-2765 (2004)
  8. Nitroso-redox interactions in the cardiovascular system. Zimmet JM, Hare JM. Circulation 114 1531-1544 (2006)
  9. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Vanin AF. Nitric Oxide 21 1-13 (2009)
  10. Glutathione--functions and metabolism in the malarial parasite Plasmodium falciparum. Becker K, Rahlfs S, Nickel C, Schirmer RH. Biol. Chem. 384 551-566 (2003)
  11. Formation, reactivity, and detection of protein sulfenic acids. Kettenhofen NJ, Wood MJ. Chem. Res. Toxicol. 23 1633-1646 (2010)
  12. The effects of nitric oxide in acute lung injury. Mehta S. Vascul. Pharmacol. 43 390-403 (2005)
  13. Targeting the redox balance in inflammatory skin conditions. Wagener FA, Carels CE, Lundvig DM. Int J Mol Sci 14 9126-9167 (2013)
  14. Interactions of mitochondrial thiols with nitric oxide. Costa NJ, Dahm CC, Hurrell F, Taylor ER, Murphy MP. Antioxid. Redox Signal. 5 291-305 (2003)
  15. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Maron BA, Tang SS, Loscalzo J. Antioxid. Redox Signal. 18 270-287 (2013)
  16. Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins. Zhukova L, Zhukov I, Bal W, Wyslouch-Cieszynska A. Biochim. Biophys. Acta 1742 191-201 (2004)
  17. Nitric oxide in brain: diffusion, targets and concentration dynamics in hippocampal subregions. Ledo A, Frade J, Barbosa RM, Laranjinha J. Mol. Aspects Med. 25 75-89 (2004)
  18. S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications. Evangelista AM, Kohr MJ, Murphy E. Antioxid. Redox Signal. 19 1209-1219 (2013)
  19. Nitrosyl iron complexes--synthesis, structure and biology. Lewandowska H, Kalinowska M, Brzóska K, Wójciuk K, Wójciuk G, Kruszewski M. Dalton Trans 40 8273-8289 (2011)
  20. The physiological activity and in vivo distribution of dinitrosyl dithiolato iron complex. Ueno T, Yoshimura T. Jpn. J. Pharmacol. 82 95-101 (2000)
  21. Glutathione, Glutaredoxins, and Iron. Berndt C, Lillig CH. Antioxid. Redox Signal. 27 1235-1251 (2017)
  22. Glutathione S-transferase and MRP1 form an integrated system involved in the storage and transport of dinitrosyl-dithiolato iron complexes in cells. Lok HC, Sahni S, Richardson V, Kalinowski DS, Kovacevic Z, Lane DJ, Richardson DR. Free Radic. Biol. Med. 75 14-29 (2014)
  23. Detection of thiol-based redox switch processes in parasites - facts and future. Rahbari M, Diederich K, Becker K, Krauth-Siegel RL, Jortzik E. Biol. Chem. 396 445-463 (2015)
  24. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Qin J, Yang Y, Velyvis A, Gronenborn A. Antioxid. Redox Signal. 2 827-840 (2000)
  25. Biochemical basis of sulphenomics: how protein sulphenic acids may be stabilized by the protein microenvironment. Trost P, Fermani S, Calvaresi M, Zaffagnini M. Plant Cell Environ. 40 483-490 (2017)
  26. Formation and functions of protein sulfenic acids. Poole LB. Curr Protoc Toxicol Chapter 17 Unit17.1 (2004)
  27. Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Bocedi A, Noce A, Marrone G, Noce G, Cattani G, Gambardella G, Di Lauro M, Di Daniele N, Ricci G. Nutrients 11 (2019)
  28. The Relationship of Glutathione-S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Russell TM, Azad MG, Richardson DR. Molecules 26 5784 (2021)

Articles citing this publication (64)

  1. Peroxynitrite reductase activity of bacterial peroxiredoxins. Bryk R, Griffin P, Nathan C. Nature 407 211-215 (2000)
  2. OxyR: a molecular code for redox-related signaling. Kim SO, Merchant K, Nudelman R, Beyer WF, Keng T, DeAngelo J, Hausladen A, Stamler JS. Cell 109 383-396 (2002)
  3. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Schröder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. Structure 8 605-615 (2000)
  4. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. Nature 437 981-986 (2005)
  5. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Hausladen A, Gow AJ, Stamler JS. Proc. Natl. Acad. Sci. U.S.A. 95 14100-14105 (1998)
  6. Comment Oxidative modifications in nitrosative stress. Stamler JS, Hausladen A. Nat. Struct. Biol. 5 247-249 (1998)
  7. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K. J. Biol. Chem. 275 40180-40186 (2000)
  8. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-. Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, Stamler JS, Lipton SA. Neuron 24 461-469 (1999)
  9. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. Dahm CC, Moore K, Murphy MP. J Biol Chem 281 10056-10065 (2006)
  10. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Salsbury FR, Knutson ST, Poole LB, Fetrow JS. Protein Sci. 17 299-312 (2008)
  11. Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RA, Murphy MP. Biochem. J. 430 49-59 (2010)
  12. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Bottoms CA, Smith PE, Tanner JJ. Protein Sci. 11 2125-2137 (2002)
  13. Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. J. Mol. Biol. 328 893-907 (2003)
  14. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Rehder DS, Borges CR. Biochemistry 49 7748-7755 (2010)
  15. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. Changela A, Ho CK, Martins A, Shuman S, Mondragón A. EMBO J. 20 2575-2586 (2001)
  16. The kinetics of S-transnitrosation--a reversible second-order reaction. Hogg N. Anal. Biochem. 272 257-262 (1999)
  17. Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Mallis RJ, Hamann MJ, Zhao W, Zhang T, Hendrich S, Thomas JA. Biol. Chem. 383 649-662 (2002)
  18. Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. Cesareo E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, Lo Bello M. J Biol Chem 280 42172-42180 (2005)
  19. Inhibition of papain by S-nitrosothiols. Formation of mixed disulfides. Xian M, Chen X, Liu Z, Wang K, Wang PG. J. Biol. Chem. 275 20467-20473 (2000)
  20. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. Campanale N, Nickel C, Daubenberger CA, Wehlan DA, Gorman JJ, Klonis N, Becker K, Tilley L. J. Biol. Chem. 278 27354-27361 (2003)
  21. Undressing of phosphine gold(I) complexes as irreversible inhibitors of human disulfide reductases. Urig S, Fritz-Wolf K, Réau R, Herold-Mende C, Tóth K, Davioud-Charvet E, Becker K. Angew. Chem. Int. Ed. Engl. 45 1881-1886 (2006)
  22. Glutathione transferases sequester toxic dinitrosyl-iron complexes in cells. A protection mechanism against excess nitric oxide. Pedersen JZ, De Maria F, Turella P, Federici G, Mattei M, Fabrini R, Dawood KF, Massimi M, Caccuri AM, Ricci G. J Biol Chem 282 6364-6371 (2007)
  23. Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Jönsson TJ, Murray MS, Johnson LC, Poole LB, Lowther WT. Biochemistry 44 8634-8642 (2005)
  24. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors. Sinha V, Wijewickrama GT, Chandrasena RE, Xu H, Edirisinghe PD, Schiefer IT, Thatcher GR. ACS Chem. Biol. 5 667-680 (2010)
  25. Antioxidant status and nitric oxide in the malnutrition syndrome kwashiorkor. Fechner A, Böhme C, Gromer S, Funk M, Schirmer R, Becker K. Pediatr. Res. 49 237-243 (2001)
  26. Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H(2)O(2). Smith-Pearson PS, Kooshki M, Spitz DR, Poole LB, Zhao W, Robbins ME. Free Radic. Biol. Med. 45 1178-1189 (2008)
  27. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites. Bocedi A, Dawood KF, Fabrini R, Federici G, Gradoni L, Pedersen JZ, Ricci G. FASEB J. 24 1035-1042 (2010)
  28. Structure mechanism insights and the role of nitric oxide donation guide the development of oxadiazole-2-oxides as therapeutic agents against schistosomiasis. Rai G, Sayed AA, Lea WA, Luecke HF, Chakrapani H, Prast-Nielsen S, Jadhav A, Leister W, Shen M, Inglese J, Austin CP, Keefer L, Arnér ES, Simeonov A, Maloney DJ, Williams DL, Thomas CJ. J. Med. Chem. 52 6474-6483 (2009)
  29. Electrostatic association of glutathione transferase to the nuclear membrane. Evidence of an enzyme defense barrier at the nuclear envelope. Stella L, Pallottini V, Moreno S, Leoni S, De Maria F, Turella P, Federici G, Fabrini R, Dawood KF, Bello ML, Pedersen JZ, Ricci G. J Biol Chem 282 6372-6379 (2007)
  30. Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme. Bohme CC, Arscott LD, Becker K, Schirmer RH, Williams CH. J. Biol. Chem. 275 37317-37323 (2000)
  31. Redox capacity of cells affects inactivation of glutathione reductase by nitrosative stress. Fujii T, Hamaoka R, Fujii J, Taniguchi N. Arch. Biochem. Biophys. 378 123-130 (2000)
  32. Zn2+-dependent redox switch in the intracellular T1-T1 interface of a Kv channel. Wang G, Strang C, Pfaffinger PJ, Covarrubias M. J. Biol. Chem. 282 13637-13647 (2007)
  33. Effect of S-nitrosothiols on cellular glutathione and reactive protein sulfhydryls. Mallis RJ, Thomas JA. Arch. Biochem. Biophys. 383 60-69 (2000)
  34. Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation. Bonilla M, Denicola A, Marino SM, Gladyshev VN, Salinas G. J. Biol. Chem. 286 4959-4967 (2011)
  35. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Yan LJ, Sumien N, Thangthaeng N, Forster MJ. Free Radic. Res. 47 123-133 (2013)
  36. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. Butzer U, Weidenbach H, Gansauge S, Gansauge F, Beger HG, Nussler AK. FEBS Lett. 445 274-278 (1999)
  37. Inhibition of indoleamine 2,3 dioxygenase activity by H2O2. Poljak A, Grant R, Austin CJ, Jamie JF, Willows RD, Takikawa O, Littlejohn TK, Truscott RJ, Walker MJ, Sachdev P, Smythe GA. Arch. Biochem. Biophys. 450 9-19 (2006)
  38. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. Kreusch A, Spraggon G, Lee CC, Klock H, McMullan D, Ng K, Shin T, Vincent J, Warner I, Ericson C, Lesley SA. J. Mol. Biol. 330 309-321 (2003)
  39. Evidence for the rapid conversion of stephacidin B into the electrophilic monomer avrainvillamide in cell culture. Wulff JE, Herzon SB, Siegrist R, Myers AG. J. Am. Chem. Soc. 129 4898-4899 (2007)
  40. Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Shelton JL, Wang L, Cepinskas G, Sandig M, Scott JA, North ML, Inculet R, Mehta S. Microvasc. Res. 74 23-31 (2007)
  41. Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, Becker K. Biol. Chem. 386 1129-1136 (2005)
  42. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation. Wang YT, Piyankarage SC, Williams DL, Thatcher GR. ACS Chem. Biol. 9 821-830 (2014)
  43. Modern diets and diseases: NO-zinc balance. Under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Sprietsma JE. Med. Hypotheses 53 6-16 (1999)
  44. Nitrogen monoxide (NO) storage and transport by dinitrosyl-dithiol-iron complexes: long-lived NO that is trafficked by interacting proteins. Suryo Rahmanto Y, Kalinowski DS, Lane DJ, Lok HC, Richardson V, Richardson DR. J. Biol. Chem. 287 6960-6968 (2012)
  45. Structure of a glutathione conjugate bound to the active site of aldose reductase. Singh R, White MA, Ramana KV, Petrash JM, Watowich SJ, Bhatnagar A, Srivastava SK. Proteins 64 101-110 (2006)
  46. Acyl phosphatase activity of NO-inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH): a potential mechanism for uncoupling glycolysis from ATP generation in NO-producing cells. Albina JE, Mastrofrancesco B, Reichner JS. Biochem. J. 341 ( Pt 1) 5-9 (1999)
  47. Dinitrosyl iron complexes with thiol-containing ligands and S-nitroso-D,L-penicillamine as inductors of heat shock protein synthesis in H35 hepatoma cells. Wiegant FA, Malyshev IY, Kleschyov AL, van Faassen E, Vanin AF. FEBS Lett. 455 179-182 (1999)
  48. Nitric oxide inhibits the HIV-1 reverse transcriptase activity. Persichini T, Colasanti M, Fraziano M, Colizzi V, Medana C, Polticelli F, Venturini G, Ascenzi P. Biochem. Biophys. Res. Commun. 258 624-627 (1999)
  49. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids. Rehder DS, Borges CR. BMC Biochem. 11 25 (2010)
  50. In vivo distribution and behavior of paramagnetic dinitrosyl dithiolato iron complex in the abdomen of mouse. Ueno T, Suzuki Y, Fujii S, Vanin AF, Yoshimura T. Free Radic. Res. 31 525-534 (1999)
  51. Reversible inactivation of dihydrolipoamide dehydrogenase by Angeli's salt. Yan LJ, Liu L, Forster MJ. Sheng Wu Wu Li Hsueh Bao 28 341-350 (2012)
  52. Microinjected glutathione reductase crystals as indicators of the redox status in living cells. Keese MA, Saffrich R, Dandekar T, Becker K, Schirmer RH. FEBS Lett. 447 135-138 (1999)
  53. The impact of nitric oxide toxicity on the evolution of the glutathione transferase superfamily: a proposal for an evolutionary driving force. Bocedi A, Fabrini R, Farrotti A, Stella L, Ketterman AJ, Pedersen JZ, Allocati N, Lau PC, Grosse S, Eltis LD, Ruzzini A, Edwards TE, Morici L, Del Grosso E, Guidoni L, Bovi D, Lo Bello M, Federici G, Parker MW, Board PG, Ricci G. J. Biol. Chem. 288 24936-24947 (2013)
  54. Characterization of the glutathione binding site of aldose reductase. Ramana KV, Dixit BL, Srivastava S, Bhatnagar A, Balendiran GK, Watowich SJ, Petrash JM, Srivastava SK. Chem. Biol. Interact. 130-132 537-548 (2001)
  55. Lead-induced changes in human erythrocytes and lymphocytes. Slobozhanina EI, Kozlova NM, Lukyanenko LM, Oleksiuk OB, Gabbianelli R, Fedeli D, Caulini GC, Falcioni G. J Appl Toxicol 25 109-114 (2005)
  56. An Interplay of S-Nitrosylation and Metal Ion Binding for Astrocytic S100B Protein. Bajor M, Zaręba-Kozioł M, Zhukova L, Goryca K, Poznański J, Wysłouch-Cieszyńska A. PLoS ONE 11 e0154822 (2016)
  57. Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Dieni CA, Callaghan NI, Gormley PT, Butler KM, Maccormack TJ. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 162 51-61 (2014)
  58. Dioxygen mediated conversion of {Fe(NO)2}9 dinitrosyl iron complexes to Roussin's red esters. Fitzpatrick J, Kalyvas H, Shearer J, Kim E. Chem. Commun. (Camb.) 49 5550-5552 (2013)
  59. Interactions of the neurotoxin 6-hydroxydopamine with glyceraldehyde-3-phosphate dehydrogenase. Hayes JP, Tipton KF. Toxicol. Lett. 128 197-206 (2002)
  60. Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone. Urmey AR, Zondlo NJ. Free Radic Biol Med 148 96-107 (2020)
  61. The origin of dinitrosyl-iron complex in endothelial cells. Komarov AM, Mak IT, Weglicki WB. Ann N Y Acad Sci 899 407-410 (2000)
  62. Uptake of NO-releasing drugs by the P2 nucleoside transporter in trypanosomes. Soulère L, Hoffmann P, Bringaud F, Périé J. Braz. J. Med. Biol. Res. 32 1447-1452 (1999)
  63. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? Mukherjee S. Plant Signal Behav 16 1831792 (2021)
  64. Formation of glutathionyl dinitrosyl iron complexes protects against iron genotoxicity. Lewandowska H, Sadło J, Męczyńska S, Stępkowski TM, Wójciuk G, Kruszewski M. Dalton Trans 44 12640-12652 (2015)