1gyc Citations

Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers.

J Biol Chem 277 37663-9 (2002)
Cited: 282 times
EuropePMC logo PMID: 12163489

Abstract

Laccase is a polyphenol oxidase, which belongs to the family of blue multicopper oxidases. These enzymes catalyze the one-electron oxidation of four reducing-substrate molecules concomitant with the four-electron reduction of molecular oxygen to water. Laccases oxidize a broad range of substrates, preferably phenolic compounds. In the presence of mediators, fungal laccases exhibit an enlarged substrate range and are then able to oxidize compounds with a redox potential exceeding their own. Until now, only one crystal structure of a laccase in an inactive, type-2 copper-depleted form has been reported. We present here the first crystal structure of an active laccase containing a full complement of coppers, the complete polypeptide chain together with seven carbohydrate moieties. Despite the presence of all coppers in the new structure, the folds of the two laccases are quite similar. The coordination of the type-3 coppers, however, is distinctly different. The geometry of the trinuclear copper cluster in the Trametes versicolor laccase is similar to that found in the ascorbate oxidase and that of mammalian ceruloplasmin structures, suggesting a common reaction mechanism for the copper oxidation and the O(2) reduction. In contrast to most blue copper proteins, the type-1 copper in the T. versicolor laccase has no axial ligand and is only 3-fold coordinated. Previously, a modest elevation of the redox potential was attributed to the lack of an axial ligand. Based on the present structural data and sequence comparisons, a mechanism is presented to explain how laccases could tune their redox potential by as much as 200 mV.

Reviews - 1gyc mentioned but not cited (11)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem Rev 114 3659-3853 (2014)
  2. Electron transfer and reaction mechanism of laccases. Jones SM, Solomon EI. Cell Mol Life Sci 72 869-883 (2015)
  3. Copper dioxygen (bio)inorganic chemistry. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS. Faraday Discuss 148 11-39; discussion 97-108 (2011)
  4. Laccases: structure, function, and potential application in water bioremediation. Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de Los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Microb Cell Fact 18 200 (2019)
  5. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Saleh MH, Rashedi I, Keating A. Front Immunol 8 1087 (2017)
  6. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Weng C, Peng X, Han Y. Biotechnol Biofuels 14 84 (2021)
  7. Carbon-fluorine bond cleavage mediated by metalloenzymes. Wang Y, Liu A. Chem Soc Rev 49 4906-4925 (2020)
  8. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Reed CJ, Lam QN, Mirts EN, Lu Y. Chem Soc Rev 50 2486-2539 (2021)
  9. Effects of Ionic Liquids on Metalloproteins. Patel AY, Jonnalagadda KS, Paradis N, Vaden TD, Wu C, Caputo GA. Molecules 26 514 (2021)
  10. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Int J Mol Sci 24 6368 (2023)
  11. The chemical logic of enzymatic lignin degradation. Bugg TDH. Chem Commun (Camb) 60 804-814 (2024)

Articles - 1gyc mentioned but not cited (44)

  1. The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ. Proc Natl Acad Sci U S A 102 15459-15464 (2005)
  2. O2 reduction to H2O by the multicopper oxidases. Solomon EI, Augustine AJ, Yoon J. Dalton Trans 3921-3932 (2008)
  3. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Larrondo LF, Salas L, Melo F, Vicuña R, Cullen D. Appl Environ Microbiol 69 6257-6263 (2003)
  4. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. Database (Oxford) 2011 bar006 (2011)
  5. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J, Solomon EI. J Am Chem Soc 129 13127-13136 (2007)
  6. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J, Fujii S, Solomon EI. Proc Natl Acad Sci U S A 106 6585-6590 (2009)
  7. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI. Proc Natl Acad Sci U S A 104 13609-13614 (2007)
  8. Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins. Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC. J Biol Chem 284 10174-10180 (2009)
  9. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. Chen M, Zeng G, Tan Z, Jiang M, Li H, Liu L, Zhu Y, Yu Z, Wei Z, Liu Y, Xie G. PLoS One 6 e25647 (2011)
  10. A structural-chemical explanation of fungal laccase activity. Mehra R, Muschiol J, Meyer AS, Kepp KP. Sci Rep 8 17285 (2018)
  11. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. Heppner DE, Kjaergaard CH, Solomon EI. J Am Chem Soc 136 17788-17801 (2014)
  12. Spectroscopic and crystallographic characterization of "alternative resting" and "resting oxidized" enzyme forms of bilirubin oxidase: implications for activity and electrochemical behavior of multicopper oxidases. Kjaergaard CH, Durand F, Tasca F, Qayyum MF, Kauffmann B, Gounel S, Suraniti E, Hodgson KO, Hedman B, Mano N, Solomon EI. J Am Chem Soc 134 5548-5551 (2012)
  13. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M, Mishra S. BMC Biotechnol 12 75 (2012)
  14. Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. Rivera-Hoyos CM, Morales-Álvarez ED, Poveda-Cuevas SA, Reyes-Guzmán EA, Poutou-Piñales RA, Reyes-Montaño EA, Pedroza-Rodríguez AM, Rodríguez-Vázquez R, Cardozo-Bernal ÁM. PLoS One 10 e0116524 (2015)
  15. Anisotropic covalency contributions to superexchange pathways in type one copper active sites. Hadt RG, Gorelsky SI, Solomon EI. J Am Chem Soc 136 15034-15045 (2014)
  16. Stability mechanisms of a thermophilic laccase probed by molecular dynamics. Christensen NJ, Kepp KP. PLoS One 8 e61985 (2013)
  17. O2 Reduction to Water by High Potential Multicopper Oxidases: Contributions of the T1 Copper Site Potential and the Local Environment of the Trinuclear Copper Cluster. Sekretaryova A, Jones SM, Solomon EI. J Am Chem Soc 141 11304-11314 (2019)
  18. A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. Wong KS, Cheung MK, Au CH, Kwan HS. PLoS One 8 e66426 (2013)
  19. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site. Liu Z, Xie T, Zhong Q, Wang G. Acta Crystallogr F Struct Biol Commun 72 328-335 (2016)
  20. Kinetic analysis and structural studies of a high-efficiency laccase from Cerrena sp. RSD1. Wu MH, Lee CC, Hsiao AS, Yu SM, Wang AH, Ho TD. FEBS Open Bio 8 1230-1246 (2018)
  21. A comparative structural analysis of the surface properties of asco-laccases. Ernst HA, Jørgensen LJ, Bukh C, Piontek K, Plattner DA, Østergaard LH, Larsen S, Bjerrum MJ. PLoS One 13 e0206589 (2018)
  22. Designed High-Redox Potential Laccases Exhibit High Functional Diversity. Barber-Zucker S, Mateljak I, Goldsmith M, Kupervaser M, Alcalde M, Fleishman SJ. ACS Catal 12 13164-13173 (2022)
  23. Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. Ike PT, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto AL, Souza DH. Springerplus 4 654 (2015)
  24. Pushing the limits of automatic computational protein design: design, expression, and characterization of a large synthetic protein based on a fungal laccase scaffold. Glykys DJ, Szilvay GR, Tortosa P, Suárez Diez M, Jaramillo A, Banta S. Syst Synth Biol 5 45-58 (2011)
  25. Synthesis and Structure-Activity Relationship Studies of Hydrazide-Hydrazones as Inhibitors of Laccase from Trametes versicolor. Maniak H, Talma M, Matyja K, Trusek A, Giurg M. Molecules 25 E1255 (2020)
  26. Synthesis and Studies of the Inhibitory Effect of Hydroxylated Phenylpropanoids and Biphenols Derivatives on Tyrosinase and Laccase Enzymes. Dettori MA, Fabbri D, Dessì A, Dallocchio R, Carta P, Honisch C, Ruzza P, Farina D, Migheli R, Serra PA, Pantaleoni RA, Fois X, Rocchitta G, Delogu G. Molecules 25 E2709 (2020)
  27. Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. Fu N, Li J, Wang M, Ren L, Luo Y. Int J Mol Sci 21 E8845 (2020)
  28. Inhibitory Potential of New Phenolic Hydrazide-Hydrazones with a Decoy Substrate Fragment towards Laccase from a Phytopathogenic Fungus: SAR and Molecular Docking Studies. Maniak H, Talma M, Giurg M. Int J Mol Sci 22 12307 (2021)
  29. Molecular dynamics derived life times of active substrate binding poses explain K M of laccase mutants. Mehra R, Meyer AS, Kepp KP. RSC Adv 8 36915-36926 (2018)
  30. Structure of native laccase B from Trametes sp. AH28-2. Ge H, Gao Y, Hong Y, Zhang M, Xiao Y, Teng M, Niu L. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 254-258 (2010)
  31. Phenolic Compound Biotransformation by Trametes versicolor ATCC 200801 and Molecular Docking Studies. Conceição JCS, Dias HJ, Peralva CMS, Crotti AEM, da Rocha Pita SS, de Oliveira Silva E. Appl Biochem Biotechnol 190 1498-1511 (2020)
  32. Tuning the Type 1 Reduction Potential of Multicopper Oxidases: Uncoupling the Effects of Electrostatics and H-Bonding to Histidine Ligands. Singha A, Sekretareva A, Tao L, Lim H, Ha Y, Braun A, Jones SM, Hedman B, Hodgson KO, Britt RD, Kosman DJ, Solomon EI. J Am Chem Soc 145 13284-13301 (2023)
  33. In silico Design of Laccase Thermostable Mutants From Lacc 6 of Pleurotus Ostreatus. Díaz R, Díaz-Godínez G, Anducho-Reyes MA, Mercado-Flores Y, Herrera-Zúñiga LD. Front Microbiol 9 2743 (2018)
  34. Analysis of laccase-like enzymes secreted by fungi isolated from a cave in northern Spain. Fernández-Remacha D, González-Riancho C, Lastra Osua M, González Arce A, Montánchez I, García-Lobo JM, Estrada-Tejedor R, Kaberdin VR. Microbiologyopen 11 e1279 (2022)
  35. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Jia Y, Huang Q, Zhu L, Pan C. Molecules 27 1581 (2022)
  36. Fabrication of a New, Low-Cost, and Environment-Friendly Laccase-Based Biosensor by Electrospray Immobilization with Unprecedented Reuse and Storage Performances. Castrovilli MC, Tempesta E, Cartoni A, Plescia P, Bolognesi P, Chiarinelli J, Calandra P, Cicco N, Verrastro MF, Centonze D, Gullo L, Del Giudice A, Galantini L, Avaldi L. ACS Sustain Chem Eng 10 1888-1898 (2022)
  37. How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. Kashima K, Fujisaki T, Serrano-Luginbühl S, Khaydarov A, Kissner R, Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G, Schuler LD, Walde P. RSC Adv 8 33229-33242 (2018)
  38. Molecular Modification of Fluoroquinolone-Biodegrading Enzymes Based on Molecular Docking and Homology Modelling. Liu SC, Sun SJ, Cui P, Ding YF. Int J Environ Res Public Health 16 E3407 (2019)
  39. New Inhibitors of Laccase and Tyrosinase by Examination of Cross-Inhibition between Copper-Containing Enzymes. Chaudhary D, Chong F, Neupane T, Choi J, Jee JG. Int J Mol Sci 22 13661 (2021)
  40. Stability/activity tradeoffs in Thermusthermophilus HB27 laccase. Shin J, Gray HB, Winkler JR. J Biol Inorg Chem 25 233-238 (2020)
  41. Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant-Microbial Synergistic Degradation. Sun P, Zhao W. Int J Environ Res Public Health 18 10610 (2021)
  42. Substitution of the Methionine Axial Ligand of the T1 Copper for the Fungal-like Phenylalanine Ligand (M298F) Causes Local Structural Perturbations that Lead to Thermal Instability and Reduced Catalytic Efficiency of the Small Laccase from Streptomyces coelicolor A3(2). Zovo K, Pupart H, Van Wieren A, Gillilan RE, Huang Q, Majumdar S, Lukk T. ACS Omega 7 6184-6194 (2022)
  43. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang ZG. Nat Commun 14 4040 (2023)
  44. Comparative homology of Pleurotus ostreatus laccase enzyme: Swiss model or Modeller? Silva MA, Nascimento Júnior JCD, Thomaz DV, Maia RT, Costa Amador V, Tommaso G, Coelho GD. J Biomol Struct Dyn 41 8927-8940 (2023)


Reviews citing this publication (40)

  1. Fungal laccases - occurrence and properties. Baldrian P. FEMS Microbiol Rev 30 215-242 (2006)
  2. Laccases: a never-ending story. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Cell Mol Life Sci 67 369-385 (2010)
  3. Laccases: blue enzymes for green chemistry. Riva S. Trends Biotechnol 24 219-226 (2006)
  4. Pathways for degradation of lignin in bacteria and fungi. Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Nat Prod Rep 28 1883-1896 (2011)
  5. Structure and action mechanism of ligninolytic enzymes. Wong DW. Appl Biochem Biotechnol 157 174-209 (2009)
  6. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. Lundell TK, Mäkelä MR, Hildén K. J Basic Microbiol 50 5-20 (2010)
  7. Direct electron transfer between copper-containing proteins and electrodes. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L. Biosens Bioelectron 20 2517-2554 (2005)
  8. "Blue" laccases. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI. Biochemistry (Mosc) 72 1136-1150 (2007)
  9. Lignin-degrading enzymes. Pollegioni L, Tonin F, Rosini E. FEBS J 282 1190-1213 (2015)
  10. Synthetic models of the active site of catechol oxidase: mechanistic studies. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J. Chem Soc Rev 35 814-840 (2006)
  11. Designer laccases: a vogue for high-potential fungal enzymes? Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. Trends Biotechnol 28 63-72 (2010)
  12. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. Kosman DJ. J Biol Inorg Chem 15 15-28 (2010)
  13. Thermotolerant and thermostable laccases. Hildén K, Hakala TK, Lundell T. Biotechnol Lett 31 1117-1128 (2009)
  14. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Bhakta SA, Evans E, Benavidez TE, Garcia CD. Anal Chim Acta 872 7-25 (2015)
  15. Three-dimensional structures of laccases. Hakulinen N, Rouvinen J. Cell Mol Life Sci 72 857-868 (2015)
  16. Crosslinking food proteins for improved functionality. Buchert J, Ercili Cura D, Ma H, Gasparetti C, Monogioudi E, Faccio G, Mattinen M, Boer H, Partanen R, Selinheimo E, Lantto R, Kruus K. Annu Rev Food Sci Technol 1 113-138 (2010)
  17. Laccase: a green catalyst for the biosynthesis of poly-phenols. Su J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. Crit Rev Biotechnol 38 294-307 (2018)
  18. Laccase engineering by rational and evolutionary design. Pardo I, Camarero S. Cell Mol Life Sci 72 897-910 (2015)
  19. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Ba S, Arsenault A, Hassani T, Jones JP, Cabana H. Crit Rev Biotechnol 33 404-418 (2013)
  20. Laccases: complex architectures for one-electron oxidations. Mot AC, Silaghi-Dumitrescu R. Biochemistry (Mosc) 77 1395-1407 (2012)
  21. Reduction of dioxygen by enzymes containing copper. Bento I, Carrondo MA, Lindley PF. J Biol Inorg Chem 11 539-547 (2006)
  22. Laccases to take on the challenge of emerging organic contaminants in wastewater. Gasser CA, Ammann EM, Shahgaldian P, Corvini PF. Appl Microbiol Biotechnol 98 9931-9952 (2014)
  23. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Sitarz AK, Mikkelsen JD, Meyer AS. Crit Rev Biotechnol 36 70-86 (2016)
  24. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry. Cannatelli MD, Ragauskas AJ. Chem Rec 17 122-140 (2017)
  25. Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. Durán M, Silveira CP, Durán N. IET Nanobiotechnol 9 314-323 (2015)
  26. Copper mining in Streptomyces: enzymes, natural products and development. Worrall JA, Vijgenboom E. Nat Prod Rep 27 742-756 (2010)
  27. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. Molecules 26 3813 (2021)
  28. From Enzymes to Functional Materials-Towards Activation of Small Molecules. Möller F, Piontek S, Miller RG, Apfel UP. Chemistry 24 1471-1493 (2018)
  29. Enzymatic degradation of plant biomass and synthetic polymers. Chen CC, Dai L, Ma L, Guo RT, Guo RT. Nat Rev Chem 4 114-126 (2020)
  30. Enzyme-based formulations for decontamination: current state and perspectives. Grover N, Dinu CZ, Kane RS, Dordick JS. Appl Microbiol Biotechnol 97 3293-3300 (2013)
  31. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Bounegru AV, Apetrei C. Int J Mol Sci 22 4811 (2021)
  32. Mode of Action, Properties, Production, and Application of Laccase: A Review. Patel N, Shahane S, Shivam, Majumdar R, Mishra U. Recent Pat Biotechnol 13 19-32 (2019)
  33. Spectroscopic and computational characterization of laccases and their substrate radical intermediates. Pogni R, Baratto MC, Sinicropi A, Basosi R. Cell Mol Life Sci 72 885-896 (2015)
  34. Recent developments of a co-immobilized laccase-mediator system: a review. Gu Y, Yuan L, Jia L, Xue P, Yao H. RSC Adv 11 29498-29506 (2021)
  35. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Espina G, Atalah J, Blamey JM. Front Bioeng Biotechnol 9 710035 (2021)
  36. Fungal proteinaceous compounds with multiple biological activities. Ng TB, Cheung RCF, Wong JH, Chan YS, Dan X, Pan W, Wang H, Guan S, Chan K, Ye X, Liu F, Xia L, Chan WY. Appl Microbiol Biotechnol 100 6601-6617 (2016)
  37. Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. den Boer D, de Heer HC, Buda F, Hetterscheid DGH. ChemCatChem 15 e202200878 (2023)
  38. Orchestrating copper binding: structure and variations on the cupredoxin fold. Guo J, Fisher OS. J Biol Inorg Chem 27 529-540 (2022)
  39. Fungal Laccases: Fundamentals, Engineering and Classification Update. Aza P, Camarero S. Biomolecules 13 1716 (2023)
  40. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. Hahn V. World J Microbiol Biotechnol 39 107 (2023)

Articles citing this publication (187)

  1. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. FEBS J 273 2308-2326 (2006)
  2. Protein-inorganic hybrid nanoflowers. Ge J, Lei J, Zare RN. Nat Nanotechnol 7 428-432 (2012)
  3. Engineering and Applications of fungal laccases for organic synthesis. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M. Microb Cell Fact 7 32 (2008)
  4. Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Protein Sci 13 2388-2397 (2004)
  5. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Kilaru S, Hoegger PJ, Kües U. Curr Genet 50 45-60 (2006)
  6. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Turlapati PV, Kim KW, Davin LB, Lewis NG. Planta 233 439-470 (2011)
  7. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Kües U, Rühl M. Curr Genomics 12 72-94 (2011)
  8. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Shleev SV, Morozova OV, Nikitina OV, Gorshina ES, Rusinova TV, Serezhenkov VA, Burbaev DS, Gazaryan IG, Yaropolov AI. Biochimie 86 693-703 (2004)
  9. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D'Ambrosio C, Scaloni A, Rizzi M. J Mol Biol 342 1519-1531 (2004)
  10. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C. Protein Eng Des Sel 19 77-84 (2006)
  11. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. Appl Microbiol Biotechnol 79 597-603 (2008)
  12. Engineering platforms for directed evolution of Laccase from Pycnoporus cinnabarinus. Camarero S, Pardo I, Cañas AI, Molina P, Record E, Martínez AT, Martínez MJ, Alcalde M. Appl Environ Microbiol 78 1370-1384 (2012)
  13. Dioxygen reduction by multi-copper oxidases; a structural perspective. Bento I, Martins LO, Gato Lopes G, Arménia Carrondo M, Lindley PF. Dalton Trans 3507-3513 (2005)
  14. Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica. Madzak C, Otterbein L, Chamkha M, Moukha S, Asther M, Gaillardin C, Beckerich JM. FEMS Yeast Res 5 635-646 (2005)
  15. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V. Curr Genet 55 45-57 (2009)
  16. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. Kallio JP, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N. J Mol Biol 392 895-909 (2009)
  17. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Wang F, Guo C, Yang LR, Liu CZ. Bioresour Technol 101 8931-8935 (2010)
  18. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F. BMC Struct Biol 7 60 (2007)
  19. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical region covering the substrate-binding site. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T. J Mol Biol 373 141-152 (2007)
  20. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA, D'Annibale A, Galli C, Gentili P, Sergi F. Org Biomol Chem 6 868-878 (2008)
  21. Development of new laccases by directed evolution: functional and computational analyses. Festa G, Autore F, Fraternali F, Giardina P, Sannia G. Proteins 72 25-34 (2008)
  22. Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L, Ruzgas T. Biochem J 385 745-754 (2005)
  23. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K. FEBS J 276 6285-6300 (2009)
  24. Docking simulation and competitive experiments validate the interaction between the 2,5-xylidine inhibitor and Rigidoporus lignosus laccase. Cambria MT, Di Marino D, Falconi M, Garavaglia S, Cambria A. J Biomol Struct Dyn 27 501-510 (2010)
  25. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. Singh SK, Roberts SA, McDevitt SF, Weichsel A, Wildner GF, Grass GB, Rensing C, Montfort WR. J Biol Chem 286 37849-37857 (2011)
  26. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, De Lacey AL. Biosens Bioelectron 24 531-537 (2008)
  27. Crystal structures of E. coli laccase CueO at different copper concentrations. Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W. Biochem Biophys Res Commun 354 21-26 (2007)
  28. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC. Biosens Bioelectron 23 1229-1235 (2008)
  29. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes. Bayramoglu G, Yilmaz M, Yakup Arica M. Bioprocess Biosyst Eng 33 439-448 (2010)
  30. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Infect Immun 75 714-722 (2007)
  31. Characterization of a low redox potential laccase from the basidiomycete C30. Klonowska A, Gaudin C, Fournel A, Asso M, Le Petit J, Giorgi M, Tron T. Eur J Biochem 269 6119-6125 (2002)
  32. Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Cabana H, Ahamed A, Leduc R. Bioresour Technol 102 1656-1662 (2011)
  33. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Niladevi KN, Prema P. Bioresour Technol 99 4583-4589 (2008)
  34. The laccase gene family in Coprinopsis cinerea (Coprinus cinereus). Hoegger PJ, Navarro-González M, Kilaru S, Hoffmann M, Westbrook ED, Kües U. Curr Genet 45 9-18 (2004)
  35. A near atomic resolution structure of a Melanocarpus albomyces laccase. Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J. J Struct Biol 162 29-39 (2008)
  36. Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes. Bayramoğlu G, Yilmaz M, Arica MY. Bioresour Technol 101 6615-6621 (2010)
  37. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z, Durão P, Silva CS, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO. Dalton Trans 39 2875-2882 (2010)
  38. Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Koschorreck K, Richter SM, Swierczek A, Beifuss U, Schmid RD, Urlacher VB. Arch Biochem Biophys 474 213-219 (2008)
  39. Efficient electrocatalytic oxygen reduction by the 'blue' copper oxidase, laccase, directly attached to chemically modified carbons. Blanford CF, Foster CE, Heath RS, Armstrong FA. Faraday Discuss 140 319-35; discussion 417-37 (2008)
  40. Microbial and enzymatic control of pitch in the pulp and paper industry. Gutiérrez A, del Río JC, Martínez AT. Appl Microbiol Biotechnol 82 1005-1018 (2009)
  41. Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology. Niladevi KN, Sukumaran RK, Jacob N, Anisha GS, Prema P. Microbiol Res 164 105-113 (2009)
  42. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Salony, Mishra S, Bisaria VS. Appl Microbiol Biotechnol 71 646-653 (2006)
  43. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases. Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K, Rouvinen J, Hakulinen N. FEBS J 278 2283-2295 (2011)
  44. High electrocatalytic activity of tethered multicopper oxidase-carbon nanotube conjugates. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR. Chem Commun (Camb) 46 6045-6047 (2010)
  45. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Galli C, Gentili P, Jolivalt C, Madzak C, Vadalà R. Appl Microbiol Biotechnol 91 123-131 (2011)
  46. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. Miele A, Giardina P, Sannia G, Faraco V. J Appl Microbiol 108 998-1006 (2010)
  47. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. Niladevi KN, Sukumaran RK, Prema P. J Ind Microbiol Biotechnol 34 665-674 (2007)
  48. A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires. Altamura L, Horvath C, Rengaraj S, Rongier A, Elouarzaki K, Gondran C, Maçon AL, Vendrely C, Bouchiat V, Fontecave M, Mariolle D, Rannou P, Le Goff A, Duraffourg N, Holzinger M, Forge V. Nat Chem 9 157-163 (2017)
  49. Mutations at Asp112 adjacent to the trinuclear Cu center in CueO as the proton donor in the four-electron reduction of dioxygen. Ueki Y, Inoue M, Kurose S, Kataoka K, Sakurai T. FEBS Lett 580 4069-4072 (2006)
  50. Purification and characterization of a novel laccase from Cerrena sp. HYB07 with dye decolorizing ability. Yang J, Lin Q, Ng TB, Ye X, Lin J. PLoS One 9 e110834 (2014)
  51. X-ray structural studies of the fungal laccase from Cerrena maxima. Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, Koroleva OV, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, Mikhailov AM. J Biol Inorg Chem 11 963-973 (2006)
  52. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Hakulinen N, Kruus K, Koivula A, Rouvinen J. Biochem Biophys Res Commun 350 929-934 (2006)
  53. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Awasthi M, Jaiswal N, Singh S, Pandey VP, Dwivedi UN. J Biomol Struct Dyn 33 1835-1849 (2015)
  54. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. Gunne M, Höppner A, Hagedoorn PL, Urlacher VB. FEBS J 281 4307-4318 (2014)
  55. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. Yin Q, Zhou G, Peng C, Zhang Y, Kües U, Liu J, Xiao Y, Fang Z. AMB Express 9 151 (2019)
  56. Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Mäkelä MR, Hildén KS, Hakala TK, Hatakka A, Lundell TK. Curr Genet 50 323-333 (2006)
  57. Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Fernando Bautista L, Morales G, Sanz R. Bioresour Technol 101 8541-8548 (2010)
  58. Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. Ben Younes S, Mechichi T, Sayadi S. J Appl Microbiol 102 1033-1042 (2007)
  59. A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Nakagawa Y, Sakamoto Y, Kikuchi S, Sato T, Yano A. Microbiol Res 165 392-401 (2010)
  60. Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases. Rosado T, Bernardo P, Koci K, Coelho AV, Robalo MP, Martins LO. Bioresour Technol 124 371-378 (2012)
  61. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Ng YH, di Lena F, Chai CL. Chem Commun (Camb) 47 6464-6466 (2011)
  62. Molecular origin of rapid versus slow intramolecular electron transfer in the catalytic cycle of the multicopper oxidases. Heppner DE, Kjaergaard CH, Solomon EI. J Am Chem Soc 135 12212-12215 (2013)
  63. Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. Gu C, Zheng F, Long L, Wang J, Ding S. PLoS One 9 e93912 (2014)
  64. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X. PLoS One 10 e0127714 (2015)
  65. Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. Necochea R, Valderrama B, Díaz-Sandoval S, Folch-Mallol JL, Vázquez-Duhalt R, Iturriaga G. FEMS Microbiol Lett 244 235-241 (2005)
  66. Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. Zou YJ, Wang HX, Ng TB, Huang CY, Zhang JX. J Microbiol 50 72-78 (2012)
  67. A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. Yang J, Ng TB, Lin J, Ye X. Int J Biol Macromol 77 344-349 (2015)
  68. Effective mutations in a high redox potential laccase from Pleurotus ostreatus. Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G. Appl Microbiol Biotechnol 98 4949-4961 (2014)
  69. Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. Cázares-García SV, Vázquez-Garcidueñas S, Vázquez-Marrufo G. PLoS One 8 e55295 (2013)
  70. Kinetics of oxidation of benzyl alcohols by the dication and radical cation of ABTS. Comparison with laccase-ABTS oxidations: an apparent paradox. Branchi B, Galli C, Gentili P. Org Biomol Chem 3 2604-2614 (2005)
  71. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro. Hu MR, Chao YP, Zhang GQ, Yang XQ, Xue ZQ, Qian SJ. Biomol Eng 24 619-624 (2007)
  72. Oriented immobilization of a fully active monolayer of histidine-tagged recombinant laccase on modified gold electrodes. Balland V, Hureau C, Cusano AM, Liu Y, Tron T, Limoges B. Chemistry 14 7186-7192 (2008)
  73. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase - Degradation of compounds does not always eliminate toxicity. Becker D, Varela Della Giustina S, Rodriguez-Mozaz S, Schoevaart R, Barceló D, de Cazes M, Belleville MP, Sanchez-Marcano J, de Gunzburg J, Couillerot O, Völker J, Oehlmann J, Wagner M. Bioresour Technol 219 500-509 (2016)
  74. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Medina-Plaza C, de Saja JA, Rodriguez-Mendez ML. Biosens Bioelectron 57 276-283 (2014)
  75. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Silva CS, Durão P, Fillat A, Lindley PF, Martins LO, Bento I. Metallomics 4 37-47 (2012)
  76. Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1. Suzuki M, Eda Y, Ohsawa S, Kanesaki Y, Yoshikawa H, Tanaka K, Muramatsu Y, Yoshikawa J, Sato I, Fujii T, Amachi S. Appl Environ Microbiol 78 3941-3949 (2012)
  77. Metabolism of hydroxylated PCB congeners by cloned laccase isoforms. Fujihiro S, Higuchi R, Hisamatsu S, Sonoki S. Appl Microbiol Biotechnol 82 853-860 (2009)
  78. Formation of a dinuclear copper(I) complex from the Clostridium-derived antibiotic closthioamide. Kloss F, Pidot S, Goerls H, Friedrich T, Hertweck C. Angew Chem Int Ed Engl 52 10745-10748 (2013)
  79. Gold single-crystal electrode surface modified with self-assembled monolayers for electron tunneling with bilirubin oxidase. Tominaga M, Ohtani M, Taniguchi I. Phys Chem Chem Phys 10 6928-6934 (2008)
  80. Kinetic studies on the reaction between Trametes villosa laccase and dioxygen. Bukh C, Lund M, Bjerrum MJ. J Inorg Biochem 100 1547-1557 (2006)
  81. A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse. Chen CY, Hsieh ZS, Cheepudom J, Yang CH, Meng M. Appl Microbiol Biotechnol 97 8977-8986 (2013)
  82. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC. Springerplus 3 645 (2014)
  83. Characterization of two new multiforms of Trametes pubescens laccase. Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L. Bioorg Chem 35 35-49 (2007)
  84. Direct, Electrocatalytic Oxygen Reduction by Laccase on Anthracene-2-methanethiol Modified Gold. Thorum MS, Anderson CA, Hatch JJ, Campbell AS, Marshall NM, Zimmerman SC, Lu Y, Gewirth AA. J Phys Chem Lett 1 2251-2254 (2010)
  85. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Bao S, Teng Z, Ding S. Mol Biol Rep 40 1927-1936 (2013)
  86. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity. Ihssen J, Schubert M, Thöny-Meyer L, Richter M. PLoS One 9 e89924 (2014)
  87. Autoreduction and aggregation of fungal laccase in solution phase: possible correlation with a resting form of laccase. Shleev S, Reimann CT, Serezhenkov V, Burbaev D, Yaropolov AI, Gorton L, Ruzgas T. Biochimie 88 1275-1285 (2006)
  88. Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Forde J, Tully E, Vakurov A, Gibson TD, Millner P, Ó'Fágáin C. Enzyme Microb Technol 46 430-437 (2010)
  89. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Daroch M, Houghton CA, Moore JK, Wilkinson MC, Carnell AJ, Bates AD, Iwanejko LA. Enzyme Microb Technol 58-59 1-7 (2014)
  90. Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Hildén K, Mäkelä MR, Lundell T, Kuuskeri J, Chernykh A, Golovleva L, Archer DB, Hatakka A. Appl Microbiol Biotechnol 97 1589-1599 (2013)
  91. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Bleve G, Lezzi C, Spagnolo S, Tasco G, Tufariello M, Casadio R, Mita G, Rampino P, Grieco F. Protein Eng Des Sel 26 1-13 (2013)
  92. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. Granja-Travez RS, Wilkinson RC, Persinoti GF, Squina FM, Fülöp V, Bugg TDH. FEBS J 285 1684-1700 (2018)
  93. An in silico [correction of insilico] approach to bioremediation: laccase as a case study. Suresh PS, Kumar A, Kumar R, Singh VP. J Mol Graph Model 26 845-849 (2008)
  94. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Brissos V, Chen Z, Martins LO. Dalton Trans 41 6247-6255 (2012)
  95. Two-Electron Reduction versus One-Electron Oxidation of the Type 3 Pair in the Multicopper Oxidases. Kjaergaard CH, Jones SM, Gounel S, Mano N, Solomon EI. J Am Chem Soc 137 8783-8794 (2015)
  96. Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: immobilized laccase for benzidine based dyes degradation. Karagoz B, Bayramoglu G, Altintas B, Bicak N, Arica MY. Bioresour Technol 102 6783-6790 (2011)
  97. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus. De Stefano L, Rea I, De Tommasi E, Rendina I, Rotiroti L, Giocondo M, Longobardi S, Armenante A, Giardina P. Eur Phys J E Soft Matter 30 181-185 (2009)
  98. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. J Ind Microbiol Biotechnol 35 1123-1129 (2008)
  99. Exoenzymes of Trametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB. Takagi S, Shirota C, Sakaguchi K, Suzuki J, Sue T, Nagasaka H, Hisamatsu S, Sonoki S. Chemosphere 67 S54-7 (2007)
  100. Grouping of multicopper oxidases in Lentinula edodes by sequence similarities and expression patterns. Sakamoto Y, Nakade K, Yoshida K, Natsume S, Miyazaki K, Sato S, van Peer AF, Konno N. AMB Express 5 63 (2015)
  101. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Sharma KK, Shrivastava B, Sastry VR, Sehgal N, Kuhad RC. Sci Rep 3 1299 (2013)
  102. Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Cambria MT, Minniti Z, Librando V, Cambria A. Appl Biochem Biotechnol 149 1-8 (2008)
  103. Effect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes. Ulyanova Y, Babanova S, Pinchon E, Matanovic I, Singhal S, Atanassov P. Phys Chem Chem Phys 16 13367-13375 (2014)
  104. Effect of three trifluoromethanesulfonate ionic liquids on the activity, stability and conformation of laccase. Yu X, Zou F, Li Y, Lu L, Huang X, Qu Y. Int J Biol Macromol 56 62-68 (2013)
  105. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. Bronikowski A, Hagedoorn PL, Koschorreck K, Urlacher VB. AMB Express 7 73 (2017)
  106. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases. Cambria MT, Gullotto D, Garavaglia S, Cambria A. J Biomol Struct Dyn 30 89-101 (2012)
  107. Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. Rodríguez-Rincón F, Suarez A, Lucas M, Larrondo LF, de la Rubia T, Polaina J, Martínez J. Arch Microbiol 192 883-892 (2010)
  108. Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes. Niladevi KN, Sheejadevi PS, Prema P. Appl Biochem Biotechnol 151 9-19 (2008)
  109. The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Junker K, Kissner R, Rakvin B, Guo Z, Willeke M, Busato S, Weber T, Walde P. Enzyme Microb Technol 55 72-84 (2014)
  110. Chitosan-Grafted Halloysite Nanotubes-Fe3O4 Composite for Laccase-Immobilization and Sulfamethoxazole-Degradation. Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, Hyun S, Sung JS. Polymers (Basel) 12 E2221 (2020)
  111. Cleavage and synthesis function of high and low redox potential laccases towards 4-morpholinoaniline and aminated as well as chlorinated phenols. Hahn V, Mikolasch A, Schauer F. Appl Microbiol Biotechnol 98 1609-1620 (2014)
  112. Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine. Choi M, Sukumar N, Liu A, Davidson VL. Biochemistry 48 9174-9184 (2009)
  113. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation. Sosna M, Chrétien JM, Kilburn JD, Bartlett PN. Phys Chem Chem Phys 12 10018-10026 (2010)
  114. Multireference ab initio calculations of g tensors for trinuclear copper clusters in multicopper oxidases. Vancoillie S, Chalupský J, Ryde U, Solomon EI, Pierloot K, Neese F, Rulísek L. J Phys Chem B 114 7692-7702 (2010)
  115. Reductive cleavage of the O-O bond in multicopper oxidases: a QM/MM and QM study. Srnec M, Ryde U, Rulísek L. Faraday Discuss 148 41-53; discussion 97-108 (2011)
  116. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Mutti FG, Gullotti M, Casella L, Santagostini L, Pagliarin R, Andersson KK, Iozzi MF, Zoppellaro G. Dalton Trans 40 5436-5457 (2011)
  117. Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells. Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, Kittl R. Sci Rep 7 13688 (2017)
  118. Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates. Botta L, Brunori F, Tulimieri A, Piccinino D, Meschini R, Saladino R. ACS Omega 2 2515-2523 (2017)
  119. Medical bioremediation: a concept moving toward reality. Schloendorn J, Webb T, Kemmish K, Hamalainen M, Jackemeyer D, Jiang L, Mathieu J, Rebo J, Sankman J, Sherman L, Tontson L, Qureshi A, Alvarez P, Rittmann B. Rejuvenation Res 12 411-419 (2009)
  120. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. Battistuzzi G, Bellei M, Leonardi A, Pierattelli R, De Candia A, Vila AJ, Sola M. J Biol Inorg Chem 10 867-873 (2005)
  121. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Zeng S, Zhao J, Xia L. Bioprocess Biosyst Eng 40 1237-1245 (2017)
  122. Determination of polyphenolic content in beverages using laccase, gold nanoparticles and long wavelength fluorimetry. Andreu-Navarro A, Fernández-Romero JM, Gómez-Hens A. Anal Chim Acta 713 1-6 (2012)
  123. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis. Yang J, Xu X, Ng TB, Lin J, Ye X. Molecules 21 E1017 (2016)
  124. Low temperature 65Cu NMR spectroscopy of the Cu+ site in azurin. Lipton AS, Heck RW, de Jong WA, Gao AR, Wu X, Roehrich A, Harbison GS, Ellis PD. J Am Chem Soc 131 13992-13999 (2009)
  125. Polymer enzyme conjugates as chiral ligands for sharpless dihydroxylation of alkenes in organic solvents. Konieczny S, Leurs M, Tiller JC. Chembiochem 16 83-90 (2015)
  126. Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal. Rubenwolf S, Sané S, Hussein L, Kestel J, von Stetten F, Urban G, Krueger M, Zengerle R, Kerzenmacher S. Appl Microbiol Biotechnol 96 841-849 (2012)
  127. Protein Engineering Approaches to Enhance Fungal Laccase Production in S. cerevisiae. Aza P, de Salas F, Molpeceres G, Rodríguez-Escribano D, de la Fuente I, Camarero S. Int J Mol Sci 22 1157 (2021)
  128. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Lyashenko AV, Zhukhlistova NE, Gabdoulkhakov AG, Zhukova YN, Voelter W, Zaitsev VN, Bento I, Stepanova EV, Kachalova GS, Koroleva OV, Cherkashyn EA, Tishkov VI, Lamzin VS, Schirwitz K, Morgunova EY, Betzel C, Lindley PF, Mikhailov AM. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 954-957 (2006)
  129. Structure and molecular evolution of multicopper blue proteins. Komori H, Higuchi Y. Biomol Concepts 1 31-40 (2010)
  130. Channeling of electrons within SLAC, the small laccase from Streptomyces coelicolor. Tepper AW, Aartsma TJ, Canters GW. Faraday Discuss 148 161-71; discussion 207-28 (2011)
  131. Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine). Zhang Y, Rochefort D. J Microencapsul 27 703-713 (2010)
  132. Direct electron transfer reactions between human ceruloplasmin and electrodes. Haberska K, Vaz-Domínguez C, De Lacey AL, Dagys M, Reimann CT, Shleev S. Bioelectrochemistry 76 34-41 (2009)
  133. Kinetic model of laccase-catalyzed oxidation of aqueous phenol. Kurniawati S, Nicell JA. Biotechnol Bioeng 91 114-123 (2005)
  134. NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase Fet3p. Zaballa ME, Ziegler L, Kosman DJ, Vila AJ. J Am Chem Soc 132 11191-11196 (2010)
  135. Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple. Hirai H, Shibata H, Kawai S, Nishida T. FEMS Microbiol Lett 265 56-59 (2006)
  136. Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici. Feng BZ, Li P. Braz J Microbiol 45 351-357 (2014)
  137. Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green. Sun H, Huang W, Yang H, Zhang S. J Colloid Interface Sci 471 20-28 (2016)
  138. Extension and application of the "enzyme test bench" for oxygen consuming enzyme reactions. Rachinskiy K, Kunze M, Graf C, Schultze H, Boy M, Büchs J. Biotechnol Bioeng 111 244-253 (2014)
  139. Geometric distortions on a three-coordinated T1 Cu site model as a potential strategy to modulate redox potential. A theoretical study. Vázquez-Lima H, Guadarrama P, Martínez-Anaya C. J Mol Model 18 455-466 (2012)
  140. Heterologous Expression, Engineering and Characterization of a Novel Laccase of Agrocybe pediades with Promising Properties as Biocatalyst. Aza P, Molpeceres G, Ruiz-Dueñas FJ, Camarero S. J Fungi (Basel) 7 359 (2021)
  141. LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches. Weirick T, Sahu SS, Mahalingam R, Kaundal R. BMC Bioinformatics 15 Suppl 11 S15 (2014)
  142. Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers. Mo D, Zeng G, Yuan X, Chen M, Hu L, Li H, Wang H, Xu P, Lai C, Wan J, Zhang C, Cheng M. Bioprocess Biosyst Eng 41 331-343 (2018)
  143. Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems. Torras J. Phys Chem Chem Phys 17 9959-9972 (2015)
  144. Substrate entasis and electronic coupling elements in electron transfer from Fe in a multicopper ferroxidase. Kosman DJ. Inorganica Chim Acta 361 844-849 (2008)
  145. Analysis of the multicopper oxidase gene regulatory network of Aeromonas hydrophila. Singh V, Mani I, Chaudhary DK. Syst Synth Biol 6 51-59 (2012)
  146. Bioelectrocatalytic O(2) reduction with a laccase-bearing poly(3-methylthiophene) film based on direct electron transfer from the polymer to laccase. Kuwahara T, Asano T, Kondo M, Shimomura M. Bioelectrochemistry 91 28-31 (2013)
  147. Catalytic CO Oxidation by O2 Mediated by Noble-Metal-Free Cluster Anions Cu2 VO3-5. Wang LN, Li XN, Jiang LX, Yang B, Liu QY, Xu HG, Zheng WJ, He SG. Angew Chem Int Ed Engl 57 3349-3353 (2018)
  148. Contribution of substrate reorganization energies of electron transfer to laccase activity. Mehra R, Kepp KP. Phys Chem Chem Phys 21 15805-15814 (2019)
  149. Modeling the 3-D structure of a recombinant laccase from Trametes trogii active at a pH close to neutrality. Colao MC, Caporale C, Silvestri F, Ruzzi M, Buonocore V. Protein J 28 375-383 (2009)
  150. Non-symmetrically substituted phenoxazinones from laccase-mediated oxidative cross-coupling of aminophenols: an experimental and theoretical insight. Bruyneel F, Dive G, Marchand-Brynaert J. Org Biomol Chem 10 1834-1846 (2012)
  151. Production of superparamagnetic nanobiocatalysts for green chemistry applications. Gasser CA, Ammann EM, Schäffer A, Shahgaldian P, Corvini PF. Appl Microbiol Biotechnol 100 7281-7296 (2016)
  152. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol. Kurniawati S, Nicell JA. Biotechnol Prog 25 763-773 (2009)
  153. CH...Metal(II) axial interaction in planar complexes (metal=Cu, Pd) and implications for possible environmental effects of alkyl groups at biological copper sites. Yamauchi O, Yajima T, Fujii R, Shimazaki Y, Yabusaki M, Takani M, Tashiro M, Motoyama T, Kakuto M, Nakabayashi Y. J Inorg Biochem 102 1218-1226 (2008)
  154. Deprotonation of a dinuclear copper complex of 3,5-diamino-1,2,4-triazole for high oxygen reduction activity. Kato M, Kimijima K, Shibata M, Notsu H, Ogino K, Inokuma K, Ohta N, Uehara H, Uemura Y, Oyaizu N, Ohba T, Takakusagi S, Asakura K, Yagi I. Phys Chem Chem Phys 17 8638-8641 (2015)
  155. Direct bio-electrocatalysis of O2 reduction by Streptomyces coelicolor laccase orientated at promoter-modified graphite electrodes. Lörcher S, Lopes P, Kartashov A, Ferapontova EE. Chemphyschem 14 2112-2124 (2013)
  156. Gene cloning, identification, and characterization of the multicopper oxidase CumA from Pseudomonas sp. 593. Yang S, Long Y, Yan H, Cai H, Li Y, Wang X. Biotechnol Appl Biochem 64 347-355 (2017)
  157. Mediator-assisted laccase-catalyzed oxidation of 4-hydroxybiphenyl. Bratkovskaya I, Ivanec R, Kulys J. Biochemistry (Mosc) 71 550-554 (2006)
  158. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways. Bello M, Correa-Basurto J, Rudiño-Piñera E. J Biomol Struct Dyn 32 1303-1317 (2014)
  159. Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater. Yang H, He P, Yin Y, Mao Z, Zhang J, Zhong C, Xie T, Wang A. Bioprocess Biosyst Eng 44 2061-2073 (2021)
  160. Biocatalytic spectrophotometric method to detect paracetamol in water samples. Méndez-Albores A, Tarín C, Rebollar-Pérez G, Dominguez-Ramirez L, Torres E. J Environ Sci Health A Tox Hazard Subst Environ Eng 50 1046-1056 (2015)
  161. Compensatory binding of an asparagine residue to the coordination-unsaturated type I Cu center in bilirubin oxidase mutants. Kataoka K, Tsukamoto K, Kitagawa R, Ito T, Sakurai T. Biochem Biophys Res Commun 371 416-419 (2008)
  162. Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Wang H, Liu X, Zhao J, Yue Q, Yan Y, Gao Z, Dong Y, Zhang Z, Fan Y, Tian J, Wu N, Gong Y. Sci Rep 8 14252 (2018)
  163. Highly efficient direct oxygen electro-reduction by partially unfolded laccases immobilized on waste-derived magnetically separable nanoparticles. Rodríguez-Padrón D, Puente-Santiago AR, Caballero A, Balu AM, Romero AA, Luque R. Nanoscale 10 3961-3968 (2018)
  164. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes. Prasad NK, Vindal V, Narayana SL, Ramakrishna V, Kunal SP, Srinivas M. J Mol Model 18 2013-2019 (2012)
  165. Involvement of laccase-like enzymes in humic substance degradation by diverse polar soil bacteria. Park HJ, Lee YM, Do H, Lee JH, Kim E, Lee H, Kim D. Folia Microbiol (Praha) 66 331-340 (2021)
  166. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy. Opwis K, Knittel D, Schollmeyer E. Anal Bioanal Chem 380 937-941 (2004)
  167. Tracking light-induced electron transfer toward O2 in a hybrid photoredox-laccase system. Farran R, Mekmouche Y, Vo NT, Herrero C, Quaranta A, Sircoglou M, Banse F, Rousselot-Pailley P, Simaan AJ, Aukauloo A, Tron T, Leibl W. iScience 24 102378 (2021)
  168. A Novel Strategy for Selective Thyroid Hormone Determination Based on an Electrochemical Biosensor with Graphene Nanocomposite. Baluta S, Romaniec M, Halicka-Stępień K, Alicka M, Pieła A, Pala K, Cabaj J. Sensors (Basel) 23 602 (2023)
  169. A laccase study by electrospray ionization Fourier transform ion cyclotron resonance MS: copper depletion, glycoforms and stability. Marjasvaara A, Kruus K, Vainiotalo P. J Mass Spectrom 41 91-97 (2006)
  170. A novel terephthalaldehyde based turn-on fluorescent chemosensor for Cu2+ and its application in imaging of living cells. Torawane P, Keshav K, Kumawat MK, Srivastava R, Anand T, Sahoo S, Borse A, Kuwar A. Photochem Photobiol Sci 16 1464-1470 (2017)
  171. Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on d-(+)-catechin and L-( - )-epicatechin with copper complexes. Mutti FG, Pievo R, Sgobba M, Gullotti M, Santagostini L. Bioinorg Chem Appl 762029 (2008)
  172. Characterization and mapping of a putative laccase-like multicopper oxidase gene in the barley (Hordeum vulgare L.). Tomková L, Kučera L, Vaculová K, Milotová J. Plant Sci 183 77-85 (2012)
  173. Effect of solvent phase transitions on enzymatic activity and structure of laccase from Coriolus hirsutus. Stepanova EV, Fedorova TV, Sorokina ON, Volkov VV, Koroleva OV, Dembo AT. Biochemistry (Mosc) 74 385-392 (2009)
  174. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H, Zhu Y, Yang X, Lin Y. Appl Microbiol Biotechnol 102 4049-4061 (2018)
  175. Multicopper oxidase (MCO) laccase from Stropharia sp. ITCC-8422: an apparent authentication using integrated experimental and in silico analysis. Agrawal K, Shankar J, Verma P. 3 Biotech 10 413 (2020)
  176. Multicopper oxidases with laccase-ferroxidase activity: Classification and study of ferroxidase activity determinants in a member from Heterobasidion annosum s. l. Aza P, Molpeceres G, Vind J, Camarero S. Comput Struct Biotechnol J 21 1041-1053 (2023)
  177. The use of PAMAM dendrimers as a platform for laccase immobilization: kinetic characterization of the enzyme. Cardoso FP, Aquino Neto S, Ciancaglini P, de Andrade AR. Appl Biochem Biotechnol 167 1854-1864 (2012)
  178. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Nguyen TLA, Dao ATN, Dang HTC, Koekkoek J, Brouwer A, de Boer TE, van Spanning RJM. Biodegradation 33 301-316 (2022)
  179. Eco-friendly TEMPO/laccase/O2 biocatalytic system for degradation of Indigo Carmine: operative conditions and laccase inactivation. Hordieieva IO, Kushch OV, Hordieieva TO, Sirobaba SI, Kompanets MO, Anishchenko VM, Shendrik AN. RSC Adv 13 20737-20747 (2023)
  180. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum. González Arzola K, Gimeno Y, Arévalo MC, Falcón MA, Hernández Creus A. Bioelectrochemistry 79 17-24 (2010)
  181. Enzymatic post-treatment of ozonation: laccase-mediated removal of the by-products of acetaminophen ozonation. Schmiemann D, Hohenschon L, Bartels I, Hermsen A, Bachmann F, Cordes A, Jäger M, Gutmann JS, Hoffmann-Jacobsen K. Environ Sci Pollut Res Int 30 53128-53139 (2023)
  182. Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant. Jiang Q, Cui Z, Wei R, Nie K, Xu H, Liu L. Front Bioeng Biotechnol 10 957694 (2022)
  183. Functionalization of MWCNTs for Bioelectrocatalysis by Bacterial Two-Domain Laccase from Catenuloplanes japonicus. Abdullatypov A, Oskin P, Fedina V, Trubitsina L, Yakimovich S, Shuvalova E, Verma P, Dyachkova T, Ponamoreva O, Alferov S. Nanomaterials (Basel) 13 3019 (2023)
  184. Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Stevens JC, Shi J. Front Bioeng Biotechnol 10 880795 (2022)
  185. On Dioxygen Permeation of MaL Laccase from the Thermophilic Fungus Melanocarpus albomyces: An all-Atom Molecular Dynamics Investigation. Pietra F. Chem Biodivers 13 1493-1501 (2016)
  186. Resonance Raman spectra of blue copper proteins: Variable temperature spectra of Thermus thermophilus HB27 laccase. Kang J, Shin J, Gray HB, Winkler JR. J Inorg Biochem 248 112362 (2023)
  187. Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. Yang F, Backov R, Blin JL, Fáklya B, Tron T, Mekmouche Y. Biotechnol Rep (Amst) 31 e00645 (2021)


Related citations provided by authors (1)

  1. Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi.. Antorini M, Herpoël-Gimbert I, Choinowski T, Sigoillot JC, Asther M, Winterhalter K, Piontek K Biochim Biophys Acta 1594 109-14 (2002)