1h3g Citations

Covalent and three-dimensional structure of the cyclodextrinase from Flavobacterium sp. no. 92.

Eur. J. Biochem. 270 2332-41 (2003)

Articles - 1h3g mentioned but not cited (3)

  1. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. Guérin F, Barbe S, Pizzut-Serin S, Potocki-Véronèse G, Guieysse D, Guillet V, Monsan P, Mourey L, Remaud-Siméon M, André I, Tranier S. J. Biol. Chem. 287 6642-6654 (2012)
  2. Sequence, Structure, and Binding Analysis of Cyclodextrinase (TK1770) from T. kodakarensis (KOD1) Using an In Silico Approach. Ali R, Shafiq MI. Archaea 2015 179196 (2015)
  3. A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from Flavobacterium sp. No. 92. Mareček F, Janeček Š. Molecules 27 8735 (2022)


Reviews citing this publication (1)

  1. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Foley MH, Cockburn DW, Koropatkin NM. Cell. Mol. Life Sci. 73 2603-2617 (2016)

Articles citing this publication (17)

  1. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Koropatkin NM, Smith TJ. Structure 18 200-215 (2010)
  2. Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. Abe A, Tonozuka T, Sakano Y, Kamitori S. J. Mol. Biol. 335 811-822 (2004)
  3. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC, Mijts BN, Swaminathan K, Patel BK, Divne C. J. Mol. Biol. 378 852-870 (2008)
  4. Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S. FEBS J. 272 6145-6153 (2005)
  5. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Mehta D, Satyanarayana T. Appl. Microbiol. Biotechnol. 98 4503-4519 (2014)
  6. Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Mok SC, Teh AH, Saito JA, Najimudin N, Alam M. Enzyme Microb. Technol. 53 46-54 (2013)
  7. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN, Fernández-Arrojo L, Ghazi I, Ballesteros A, Elborough K, Timmis KN, Golyshin PN. Biotechnol J 2 207-213 (2007)
  8. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Ohtaki A, Mizuno M, Yoshida H, Tonozuka T, Sakano Y, Kamitori S. Carbohydr. Res. 341 1041-1046 (2006)
  9. Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans. Kobayashi M, Hondoh H, Mori H, Saburi W, Okuyama M, Kimura A. Biosci. Biotechnol. Biochem. 75 1557-1563 (2011)
  10. Structural base for enzymatic cyclodextrin hydrolysis. Buedenbender S, Schulz GE. J. Mol. Biol. 385 606-617 (2009)
  11. Recombinant cyclodextrinase from Thermococcus kodakarensis KOD1: expression, purification, and enzymatic characterization. Sun Y, Lv X, Li Z, Wang J, Jia B, Liu J. Archaea 2015 397924 (2015)
  12. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Sarian FD, Janeček Š, Pijning T, Ihsanawati, Nurachman Z, Radjasa OK, Dijkhuizen L, Natalia D, van der Maarel MJ. Sci Rep 7 44230 (2017)
  13. Biophysical characterization of a recombinant α-amylase from thermophilic Bacillus sp. strain TS-23. Chi MC, Wu TJ, Chuang TT, Chen HL, Lo HF, Lin LL. Protein J. 29 572-582 (2010)
  14. Enzymatic synthesis of novel branched sugar alcohols mediated by the transglycosylation reaction of pullulan-hydrolyzing amylase II (TVA II) cloned from Thermoactinomyces vulgaris R-47. Shimura Y, Oh K, Kon M, Yamamoto E, Mizuno Y, Adachi T, Abe T, Tamogami S, Fukushima J, Inamoto T, Tonozuka T. Carbohydr. Res. 346 1842-1847 (2011)
  15. Molecular characterization of a novel trehalose-6-phosphate hydrolase, TreA, from Bacillus licheniformis. Chuang TT, Ong PL, Wang TF, Huang HB, Chi MC, Lin LL. Int. J. Biol. Macromol. 50 459-470 (2012)
  16. Domain evolution in enzymes of the neopullulanase subfamily. Kuchtová A, Janeček Š. Microbiology (Reading, Engl.) 162 2099-2115 (2016)
  17. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. Cihan AC, Yildiz ED, Sahin E, Mutlu O. World J. Microbiol. Biotechnol. 34 95 (2018)