1h68 Citations

X-ray structure of sensory rhodopsin II at 2.1-A resolution.

Proc Natl Acad Sci U S A 98 10131-6 (2001)
Cited: 157 times
EuropePMC logo PMID: 11504917

Abstract

Sensory rhodopsins (SRs) belong to a subfamily of heptahelical transmembrane proteins containing a retinal chromophore. These photoreceptors mediate the cascade of vision in animal eyes and phototaxis in archaebacteria and unicellular flagellated algae. Signal transduction by these photoreceptors occurs by means of transducer proteins. The two archaebacterial sensory rhodopsins SRI and SRII are coupled to the membrane-bound HtrI and HtrII transducer proteins. Activation of these proteins initiates phosphorylation cascades that modulate the flagellar motors, resulting in either attractant (SRI) or repellent (SRII) phototaxis. In addition, transducer-free SRI and SRII were shown to operate as proton pumps, analogous to bacteriorhodopsin. Here, we present the x-ray structure of SRII from Natronobacterium pharaonis (pSRII) at 2.1-A resolution, revealing a unique molecular architecture of the retinal-binding pocket. In particular, the structure of pSRII exhibits a largely unbent conformation of the retinal (as compared with bacteriorhodopsin and halorhodopsin), a hydroxyl group of Thr-204 in the vicinity of the Schiff base, and an outward orientation of the guanidinium group of Arg-72. Furthermore, the structure reveals a putative chloride ion that is coupled to the Schiff base by means of a hydrogen-bond network and a unique, positively charged surface patch for a probable interaction with HtrII. The high-resolution structure of pSRII provides a structural basis to elucidate the mechanisms of phototransduction and color tuning.

Reviews - 1h68 mentioned but not cited (4)

  1. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Caffrey M. Acta Crystallogr F Struct Biol Commun 71 3-18 (2015)
  2. Oncolytic Virotherapy for Breast Cancer Treatment. O Bryan SM, Mathis JM. Curr Gene Ther 18 192-205 (2018)
  3. Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins. Altun A, Yokoyama S, Morokuma K. Photochem Photobiol 84 845-854 (2008)
  4. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1h68 mentioned but not cited (25)

  1. X-ray structure of sensory rhodopsin II at 2.1-A resolution. Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J. Proc Natl Acad Sci U S A 98 10131-10136 (2001)
  2. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D. Proc Natl Acad Sci U S A 109 10873-10878 (2012)
  3. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D. Nat Struct Mol Biol 17 768-774 (2010)
  4. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. Nogly P, James D, Wang D, White TA, Zatsepin N, Shilova A, Nelson G, Liu H, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu W, Båth P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, Weierstall U. IUCrJ 2 168-176 (2015)
  5. Helical packing patterns in membrane and soluble proteins. Gimpelev M, Forrest LR, Murray D, Honig B. Biophys J 87 4075-4086 (2004)
  6. In meso structure of the cobalamin transporter, BtuB, at 1.95 A resolution. Cherezov V, Yamashita E, Liu W, Zhalnina M, Cramer WA, Caffrey M. J Mol Biol 364 716-734 (2006)
  7. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Caffrey M, Li D, Dukkipati A. Biochemistry 51 6266-6288 (2012)
  8. A generalized born implicit-membrane representation compared to experimental insertion free energies. Ulmschneider MB, Ulmschneider JP, Sansom MS, Di Nola A. Biophys J 92 2338-2349 (2007)
  9. Intrinsic curvature properties of photosynthetic proteins in chromatophores. Chandler DE, Hsin J, Harrison CB, Gumbart J, Schulten K. Biophys J 95 2822-2836 (2008)
  10. Evolution of and evolutionary relationships between extant vaccinia virus strains. Qin L, Favis N, Famulski J, Evans DH. J Virol 89 1809-1824 (2015)
  11. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nogly P, Panneels V, Nelson G, Gati C, Kimura T, Milne C, Milathianaki D, Kubo M, Wu W, Conrad C, Coe J, Bean R, Zhao Y, Båth P, Dods R, Harimoorthy R, Beyerlein KR, Rheinberger J, James D, DePonte D, Li C, Sala L, Williams GJ, Hunter MS, Koglin JE, Berntsen P, Nango E, Iwata S, Chapman HN, Fromme P, Frank M, Abela R, Boutet S, Barty A, White TA, Weierstall U, Spence J, Neutze R, Schertler G, Standfuss J. Nat Commun 7 12314 (2016)
  12. Biological characterization and next-generation genome sequencing of the unclassified Cotia virus SPAn232 (Poxviridae). Afonso PP, Silva PM, Schnellrath LC, Jesus DM, Hu J, Yang Y, Renne R, Attias M, Condit RC, Moussatché N, Damaso CR. J Virol 86 5039-5054 (2012)
  13. Lipidic cubic phases as matrices for membrane protein crystallization. Nollert P. Methods 34 348-353 (2004)
  14. Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice. Chen NG, Yu YA, Zhang Q, Szalay AA. J Transl Med 9 164 (2011)
  15. Correlation of the O-intermediate rate with the pKa of Asp-75 in the dark, the counterion of the Schiff base of Pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M, Sudo Y, Shimono K, Araiso T, Kamo N. Biophys J 88 1215-1223 (2005)
  16. Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy. O'Brien ES, Fuglestad B, Lessen HJ, Stetz MA, Lin DW, Marques BS, Gupta K, Fleming KG, Wand AJ. Angew Chem Int Ed Engl 59 11108-11114 (2020)
  17. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Misol GN, Kokkari C, Katharios P. Pathogens 9 E1051 (2020)
  18. Generation of a Vero-Based Packaging Cell Line to Produce SV40 Gene Delivery Vectors for Use in Clinical Gene Therapy Studies. Toscano MG, van der Velden J, van der Werf S, Odijk M, Roque A, Camacho-Garcia RJ, Herrera-Gomez IG, Mancini I, de Haan P. Mol Ther Methods Clin Dev 6 124-134 (2017)
  19. Real-time partitioning of octadecyl rhodamine B into bead-supported lipid bilayer membranes revealing quantitative differences in saturable binding sites in DOPC and 1:1:1 DOPC/SM/cholesterol membranes. Buranda T, Wu Y, Perez D, Chigaev A, Sklar LA. J Phys Chem B 114 1336-1349 (2010)
  20. Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions. Heim AJ, Li Z. J Comput Aided Mol Des 26 301-309 (2012)
  21. Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. Proteins 83 2170-2185 (2015)
  22. Optical detection and virotherapy of live metastatic tumor cells in body fluids with vaccinia strains. Wang H, Chen NG, Minev BR, Zimmermann M, Aguilar RJ, Zhang Q, Sturm JB, Fend F, Yu YA, Cappello J, Lauer UM, Szalay AA. PLoS One 8 e71105 (2013)
  23. Exploring the binding properties and structural stability of an opsin in the chytrid Spizellomyces punctatus using comparative and molecular modeling. Ahrendt SR, Medina EM, Chang CA, Stajich JE. PeerJ 5 e3206 (2017)
  24. Comparison analysis of primary ligand-binding sites in seven-helix membrane proteins. Pabuwal V, Li Z. Biopolymers 95 31-38 (2011)
  25. Sequence and intramolecular distance scoring analyses of microbial rhodopsins. Asano M, Ide S, Kamata A, Takahasi K, Okada T. F1000Res 5 165 (2016)


Reviews citing this publication (31)

  1. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. Chem Rev 114 126-163 (2014)
  2. G protein-coupled receptor rhodopsin: a prospectus. Filipek S, Stenkamp RE, Teller DC, Palczewski K. Annu Rev Physiol 65 851-879 (2003)
  3. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Annu Rev Biochem 86 845-872 (2017)
  4. The multitalented microbial sensory rhodopsins. Spudich JL. Trends Microbiol 14 480-487 (2006)
  5. Membrane protein structural biology: the high throughput challenge. Loll PJ. J Struct Biol 142 144-153 (2003)
  6. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM. Biochim Biophys Acta 1565 144-167 (2002)
  7. Interactions between opioid and chemokine receptors: heterologous desensitization. Steele AD, Szabo I, Bednar F, Rogers TJ. Cytokine Growth Factor Rev 13 209-222 (2002)
  8. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff HJ, Engelhard M. FEBS Lett 564 219-224 (2004)
  9. The role of protein-bound water molecules in microbial rhodopsins. Gerwert K, Freier E, Wolf S. Biochim Biophys Acta 1837 606-613 (2014)
  10. Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. Rosenbusch JP. J Struct Biol 136 144-157 (2001)
  11. Sensory rhodopsin II: functional insights from structure. Spudich JL, Luecke H. Curr Opin Struct Biol 12 540-546 (2002)
  12. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Grote M, Engelhard M, Hegemann P. Biochim Biophys Acta 1837 533-545 (2014)
  13. Molecular and evolutionary aspects of microbial sensory rhodopsins. Inoue K, Tsukamoto T, Sudo Y. Biochim Biophys Acta 1837 562-577 (2014)
  14. Signal transfer in haloarchaeal sensory rhodopsin- transducer complexes. Sasaki J, Spudich JL. Photochem Photobiol 84 863-868 (2008)
  15. An overview of biological macromolecule crystallization. Russo Krauss I, Merlino A, Vergara A, Sica F. Int J Mol Sci 14 11643-11691 (2013)
  16. Nucleotide exchange in mitochondria: insight at a molecular level. Pebay-Peyroula E, Brandolin G. Curr Opin Struct Biol 14 420-425 (2004)
  17. X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. Cartailler JP, Luecke H. Annu Rev Biophys Biomol Struct 32 285-310 (2003)
  18. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Radu I, Schleeger M, Bolwien C, Heberle J. Photochem Photobiol Sci 8 1517-1528 (2009)
  19. Protein nanocrystallography: a new approach to structural proteomics. Pechkova E, Nicolini C. Trends Biotechnol 22 117-122 (2004)
  20. Unlocking the secrets of the gatekeeper: methods for stabilizing and crystallizing GPCRs. Bertheleme N, Chae PS, Singh S, Mossakowska D, Hann MM, Smith KJ, Hubbard JA, Dowell SJ, Byrne B. Biochim Biophys Acta 1828 2583-2591 (2013)
  21. Membrane protein complexes. Byrne B, Iwata S. Curr Opin Struct Biol 12 239-243 (2002)
  22. Bacteriorhodopsin: Structural Insights Revealed Using X-Ray Lasers and Synchrotron Radiation. Wickstrand C, Nogly P, Nango E, Iwata S, Standfuss J, Neutze R. Annu Rev Biochem 88 59-83 (2019)
  23. Structural basis for sensory rhodopsin function. Pebay-Peyroula E, Royant A, Landau EM, Navarro J. Biochim Biophys Acta 1565 196-205 (2002)
  24. Membrane protein crystallization in amphiphile phases: practical and theoretical considerations. Nollert P. Prog Biophys Mol Biol 88 339-357 (2005)
  25. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Sensors (Basel) 10 4010-4039 (2010)
  26. Structural and mechanistic insight from high resolution structures of archaeal rhodopsins. Landau EM, Pebay-Peyroula E, Neutze R. FEBS Lett 555 51-56 (2003)
  27. Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E. Photosynth Res 97 33-53 (2008)
  28. Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Thoma J, Burmann BM. Int J Mol Sci 22 E50 (2020)
  29. Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins. Gautier A. Biochim Biophys Acta 1837 578-588 (2014)
  30. Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. Baldus M. Eur Biophys J 36 Suppl 1 S37-48 (2007)
  31. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. de Grip WJ, Ganapathy S. Front Chem 10 879609 (2022)

Articles citing this publication (97)

  1. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Lin JY, Lin MZ, Steinbach P, Tsien RY. Biophys J 96 1803-1814 (2009)
  2. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. Nature 419 484-487 (2002)
  3. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. Faham S, Bowie JU. J Mol Biol 316 1-6 (2002)
  4. Demonstration of a sensory rhodopsin in eubacteria. Jung KH, Trivedi VD, Spudich JL. Mol Microbiol 47 1513-1522 (2003)
  5. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. Science 306 1390-1393 (2004)
  6. Properties of integral membrane protein structures: derivation of an implicit membrane potential. Ulmschneider MB, Sansom MS, Di Nola A. Proteins 59 252-265 (2005)
  7. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK. Proc Natl Acad Sci U S A 105 16561-16565 (2008)
  8. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI. Nature 440 115-119 (2006)
  9. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H. Biophys J 83 3578-3588 (2002)
  10. Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M. Angew Chem Int Ed Engl 46 459-462 (2007)
  11. Cys-scanning disulfide crosslinking and bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Molnar KS, Bonomi M, Pellarin R, Clinthorne GD, Gonzalez G, Goldberg SD, Goulian M, Sali A, DeGrado WF. Structure 22 1239-1251 (2014)
  12. Structural dynamics of light-driven proton pumps. Andersson M, Malmerberg E, Westenhoff S, Katona G, Cammarata M, Wöhri AB, Johansson LC, Ewald F, Eklund M, Wulff M, Davidsson J, Neutze R. Structure 17 1265-1275 (2009)
  13. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M. Biophys J 83 3393-3407 (2002)
  14. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V. PLoS One 6 e22348 (2011)
  15. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Sudo Y, Spudich JL. Proc Natl Acad Sci U S A 103 16129-16134 (2006)
  16. Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35A resolution. Katona G, Andréasson U, Landau EM, Andréasson LE, Neutze R. J Mol Biol 331 681-692 (2003)
  17. Probing the energy landscape of the membrane protein bacteriorhodopsin. Janovjak H, Struckmeier J, Hubain M, Kedrov A, Kessler M, Müller DJ. Structure 12 871-879 (2004)
  18. Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle. Hayashi S, Tajkhorshid E, Schulten K. Biophys J 83 1281-1297 (2002)
  19. Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Faham S, Boulting GL, Massey EA, Yohannan S, Yang D, Bowie JU. Protein Sci 14 836-840 (2005)
  20. Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, Nureki O. Nat Commun 6 7177 (2015)
  21. Lipidic sponge phase crystallization of membrane proteins. Wadsten P, Wöhri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engström S. J Mol Biol 364 44-53 (2006)
  22. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Jiang X, Zaitseva E, Schmidt M, Siebert F, Engelhard M, Schlesinger R, Ataka K, Vogel R, Heberle J. Proc Natl Acad Sci U S A 105 12113-12117 (2008)
  23. Structural and functional characterization of pi bulges and other short intrahelical deformations. Cartailler JP, Luecke H. Structure 12 133-144 (2004)
  24. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps. Enami N, Yoshimura K, Murakami M, Okumura H, Ihara K, Kouyama T. J Mol Biol 358 675-685 (2006)
  25. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M. J Biol Chem 286 5967-5976 (2011)
  26. Probing the sensory rhodopsin II binding domain of its cognate transducer by calorimetry and electrophysiology. Hippler-Mreyen S, Klare JP, Wegener AA, Seidel R, Herrmann C, Schmies G, Nagel G, Bamberg E, Engelhard M. J Mol Biol 330 1203-1213 (2003)
  27. Protein interactions and membrane geometry. Grabe M, Neu J, Oster G, Nollert P. Biophys J 84 854-868 (2003)
  28. Solution-state NMR spectroscopy of a seven-helix transmembrane protein receptor: backbone assignment, secondary structure, and dynamics. Gautier A, Kirkpatrick JP, Nietlispach D. Angew Chem Int Ed Engl 47 7297-7300 (2008)
  29. Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode. Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K. Angew Chem Int Ed Engl 49 6889-6893 (2010)
  30. In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Ward ME, Wang S, Munro R, Ritz E, Hung I, Gor'kov PL, Jiang Y, Liang H, Brown LS, Ladizhansky V. Biophys J 108 1683-1696 (2015)
  31. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Nannenga BL, Baneyx F. Protein Sci 20 1411-1420 (2011)
  32. X-ray diffraction from membrane protein nanocrystals. Hunter MS, DePonte DP, Shapiro DA, Kirian RA, Wang X, Starodub D, Marchesini S, Weierstall U, Doak RB, Spence JC, Fromme P. Biophys J 100 198-206 (2011)
  33. Higher-order interhelical spatial interactions in membrane proteins. Adamian L, Jackups R, Binkowski TA, Liang J. J Mol Biol 327 251-272 (2003)
  34. A lipidic-sponge phase screen for membrane protein crystallization. Wöhri AB, Johansson LC, Wadsten-Hindrichsen P, Wahlgren WY, Fischer G, Horsefield R, Katona G, Nyblom M, Oberg F, Young G, Cogdell RJ, Fraser NJ, Engström S, Neutze R. Structure 16 1003-1009 (2008)
  35. Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Etzkorn M, Seidel K, Li L, Martell S, Geyer M, Engelhard M, Baldus M. Structure 18 293-300 (2010)
  36. Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Edman K, Royant A, Nollert P, Maxwell CA, Pebay-Peyroula E, Navarro J, Neutze R, Landau EM. Structure 10 473-482 (2002)
  37. Time-resolved detection of sensory rhodopsin II-transducer interaction. Inoue K, Sasaki J, Morisaki M, Tokunaga F, Terazima M. Biophys J 87 2587-2597 (2004)
  38. Development of an Automated High Throughput LCP-FRAP Assay to Guide Membrane Protein Crystallization in Lipid Mesophases. Xu F, Liu W, Hanson MA, Stevens RC, Cherezov V. Cryst Growth Des 11 1193-1201 (2011)
  39. Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP. Proc Natl Acad Sci U S A 100 11309-11314 (2003)
  40. Interaction of Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II) with its cognate transducer probed by increase in the thermal stability. Sudo Y, Yamabi M, Iwamoto M, Shimono K, Kamo N. Photochem Photobiol 78 511-516 (2003)
  41. Tyr-199 and charged residues of pharaonis Phoborhodopsin are important for the interaction with its transducer. Sudo Y, Iwamoto M, Shimono K, Kamo N. Biophys J 83 427-432 (2002)
  42. Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin S, Engelhard M, Büldt G, Gordeliy V. J Mol Biol 412 591-600 (2011)
  43. Comparative analysis of NMR chemical shift predictions for proteins in the solid phase. Seidel K, Etzkorn M, Schneider R, Ader C, Baldus M. Solid State Nucl Magn Reson 35 235-242 (2009)
  44. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E, Becker T, Ullmann GM. Proteins 61 953-965 (2005)
  45. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state. Nishikawa T, Murakami M, Kouyama T. J Mol Biol 352 319-328 (2005)
  46. Crystal structure of the Anabaena sensory rhodopsin transducer. Vogeley L, Trivedi VD, Sineshchekov OA, Spudich EN, Spudich JL, Luecke H. J Mol Biol 367 741-751 (2007)
  47. Crystal structure of the bromide-bound D85S mutant of bacteriorhodopsin: principles of ion pumping. Facciotti MT, Cheung VS, Nguyen D, Rouhani S, Glaeser RM. Biophys J 85 451-458 (2003)
  48. Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli. Mironova OS, Efremov RG, Person B, Heberle J, Budyak IL, Büldt G, Schlesinger R. FEBS Lett 579 3147-3151 (2005)
  49. Structural divergence and functional versatility of the rhodopsin superfamily. Kouyama T, Murakami M. Photochem Photobiol Sci 9 1458-1465 (2010)
  50. Time-resolved FTIR studies of sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis: implications for proton transport and receptor activation. Hein M, Wegener AA, Engelhard M, Siebert F. Biophys J 84 1208-1217 (2003)
  51. Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. Suzuki D, Furutani Y, Inoue K, Kikukawa T, Sakai M, Fujii M, Kandori H, Homma M, Sudo Y. J Mol Biol 392 48-62 (2009)
  52. Spectral tuning in sensory rhodopsin I from Salinibacter ruber. Sudo Y, Yuasa Y, Shibata J, Suzuki D, Homma M. J Biol Chem 286 11328-11336 (2011)
  53. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y, Shibata M, Kandori H. Photochem Photobiol Sci 4 661-666 (2005)
  54. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin. Furutani Y, Iwamoto M, Shimono K, Kamo N, Kandori H. Biophys J 83 3482-3489 (2002)
  55. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, Polovinkin V, Borshchevskiy V, Gordeliy V. PLoS One 10 e0128390 (2015)
  56. Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide. Nakanishi T, Kanada S, Murakami M, Ihara K, Kouyama T. Biophys J 104 377-385 (2013)
  57. Arg-72 of pharaonis phoborhodopsin (sensory rhodopsin II) is important for the maintenance of the protein structure in the solubilized states. Ikeura Y, Shimono K, Iwamoto M, Sudo Y, Kamo N. Photochem Photobiol 77 96-100 (2003)
  58. Probing the proton channel and the retinal binding site of Natronobacterium pharaonis sensory rhodopsin II. Klare JP, Schmies G, Chizhov I, Shimono K, Kamo N, Engelhard M. Biophys J 82 2156-2164 (2002)
  59. Pseudocontact Shift-Driven Iterative Resampling for 3D Structure Determinations of Large Proteins. Pilla KB, Otting G, Huber T. J Mol Biol 428 522-532 (2016)
  60. Increasing the diffraction limit and internal order of a membrane protein crystal by dehydration. Kuo A, Bowler MW, Zimmer J, Antcliff JF, Doyle DA. J Struct Biol 141 97-102 (2003)
  61. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. Sci Rep 7 41811 (2017)
  62. Role of a helix B lysine residue in the photoactive site in channelrhodopsins. Li H, Govorunova EG, Sineshchekov OA, Spudich JL. Biophys J 106 1607-1617 (2014)
  63. Algal rhodopsins: phototaxis receptors found at last. Ridge KD. Curr Biol 12 R588-90 (2002)
  64. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions. Adamian L, Ouyang Z, Tseng YY, Liang J. Photochem Photobiol 82 1426-1435 (2006)
  65. Photoreactions and structural changes of anabaena sensory rhodopsin. Kawanabe A, Kandori H. Sensors (Basel) 9 9741-9804 (2009)
  66. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins. Kubicek J, Schlesinger R, Baeken C, Büldt G, Schäfer F, Labahn J. PLoS One 7 e35458 (2012)
  67. Crystal structure of deltarhodopsin-3 from Haloterrigena thermotolerans. Zhang J, Mizuno K, Murata Y, Koide H, Murakami M, Ihara K, Kouyama T. Proteins 81 1585-1592 (2013)
  68. Role of Asp193 in chromophore-protein interaction of pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M, Furutani Y, Sudo Y, Shimono K, Kandori H, Kamo N. Biophys J 83 1130-1135 (2002)
  69. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. Furuse M, Tamogami J, Hosaka T, Kikukawa T, Shinya N, Hato M, Ohsawa N, Kim SY, Jung KH, Demura M, Miyauchi S, Kamo N, Shimono K, Kimura-Someya T, Yokoyama S, Shirouzu M. Acta Crystallogr D Biol Crystallogr 71 2203-2216 (2015)
  70. BATMAS30: amino acid substitution matrix for alignment of bacterial transporters. Sutormin RA, Rakhmaninova AB, Gelfand MS. Proteins 51 85-95 (2003)
  71. Dynamic structure of pharaonis phoborhodopsin (sensory rhodopsin II) and complex with a cognate truncated transducer as revealed by site-directed 13C solid-state NMR. Arakawa T, Shimono K, Yamaguchi S, Tuzi S, Sudo Y, Kamo N, Saitô H. FEBS Lett 536 237-240 (2003)
  72. Photochemistry of Acetabularia rhodopsin II from a marine plant, Acetabularia acetabulum. Kikukawa T, Shimono K, Tamogami J, Miyauchi S, Kim SY, Kimura-Someya T, Shirouzu M, Jung KH, Yokoyama S, Kamo N. Biochemistry 50 8888-8898 (2011)
  73. A long-lived M-like state of phoborhodopsin that mimics the active state. Sudo Y, Nishihori T, Iwamoto M, Shimono K, Kojima C, Kamo N. Biophys J 95 753-760 (2008)
  74. Mimicking Microbial Rhodopsin Isomerization in a Single Crystal. Ghanbarpour A, Nairat M, Nosrati M, Santos EM, Vasileiou C, Dantus M, Borhan B, Geiger JH. J Am Chem Soc 141 1735-1741 (2019)
  75. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts. Pilla KB, Otting G, Huber T. Structure 25 559-568 (2017)
  76. Conformation and dynamics of the [3-(13)C]Ala, [1-(13)C]Val-labeled truncated pharaonis transducer, pHtrII(1-159), as revealed by site-directed (13)C solid-state NMR: changes due to association with phoborhodopsin (sensory rhodopsin II). Yamaguchi S, Shimono K, Sudo Y, Tuzi S, Naito A, Kamo N, Saitô H. Biophys J 86 3131-3140 (2004)
  77. Distinct protein interfaces in transmembrane domains suggest an in vivo folding model. Stevens TJ, Mizuguchi K, Arkin IT. Protein Sci 13 3028-3037 (2004)
  78. Phototaxis, chemotaxis and the missing link. Oprian DD. Trends Biochem Sci 28 167-169 (2003)
  79. Role of Arg-72 of pharaonis Phoborhodopsin (sensory rhodopsin II) on its photochemistry. Ikeura Y, Shimono K, Iwamoto M, Sudo Y, Kamo N. Biophys J 86 3112-3120 (2004)
  80. Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights. Dong B, Sánchez-Magraner L, Luecke H. Biophys J 111 963-972 (2016)
  81. Crystallization of membrane proteins from media composed of connected-bilayer gels. Rouhani S, Facciotti MT, Woodcock G, Cheung V, Cunningham C, Nguyen D, Rad B, Lin CT, Lunde CS, Glaeser RM. Biopolymers 66 300-316 (2002)
  82. Electric-field dependent decays of two spectroscopically different M-states of photosensory rhodopsin II from Natronobacterium pharaonis. Rivas L, Hippler-Mreyen S, Engelhard M, Hildebrandt P. Biophys J 84 3864-3873 (2003)
  83. Functional expression of the signaling complex sensory rhodopsin II/transducer II from Halobacterium salinarum in Escherichia coli. Kim YJ, Chizhov I, Engelhard M. Photochem Photobiol 85 521-528 (2009)
  84. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase. Manimekalai MS, Kumar A, Jeyakanthan J, Grüber G. J Mol Biol 408 736-754 (2011)
  85. Computational analysis of the transient movement of helices in sensory rhodopsin II. Sato Y, Hata M, Neya S, Hoshino T. Protein Sci 14 183-192 (2005)
  86. Na+ and solute diffusion in aqueous channels of Myverol bicontinuous cubic phase: PGSE NMR and computer modelling. Larkin TJ, Garvey CJ, Shishmarev D, Kuchel PW, Momot KI. Magn Reson Chem 55 464-471 (2017)
  87. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints. Reichel K, Fisette O, Braun T, Lange OF, Hummer G, Schäfer LV. Proteins 85 812-826 (2017)
  88. Illumination accelerates the decay of the O-intermediate of pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M, Sudo Y, Shimono K, Kamo N. Photochem Photobiol 76 462-466 (2002)
  89. Protein-protein interaction changes in an archaeal light-signal transduction. Kandori H, Sudo Y, Furutani Y. J Biomed Biotechnol 2010 424760 (2010)
  90. Tryptophan 171 in Pharaonis phoborhodopsin (sensory rhodopsin II) interacts with the chromophore retinal and its substitution with alanine or threonine slowed down the decay of M- and O-intermediate. Iwasa T, Abe E, Yakura Y, Yoshida H, Kamo N. Photochem Photobiol 83 328-335 (2007)
  91. Flexibility of the cytoplasmic domain of the phototaxis transducer II from Natronomonas pharaonis. Budyak IL, Mironova OS, Yanamala N, Manoharan V, Büldt G, Schlesinger R, Klein-Seetharaman J. J Biophys 2008 267912 (2008)
  92. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I. Sasaki J, Takahashi H, Furutani Y, Sineshchekov OA, Spudich JL, Kandori H. Biochemistry 53 5923-5929 (2014)
  93. Photoreaction cycle of phoborhodopsin (sensory rhodopsin II) from Halobacterium salinarum expressed in Escherichia coli. Dai G, Ohno Y, Ikeda Y, Tamogami J, Kikukawa T, Kamo N, Iwasa T. Photochem Photobiol 86 571-579 (2010)
  94. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. Tamogami J, Iwano K, Matsuyama A, Kikukawa T, Demura M, Nara T, Kamo N. J Photochem Photobiol B 141 192-201 (2014)
  95. A photochromic photoreceptor from a eubacterium. Suzuki D, Kitajima-Ihara T, Furutani Y, Ihara K, Kandori H, Homma M, Sudo Y. Commun Integr Biol 1 150-152 (2008)
  96. Crystallization of Microbial Rhodopsins. Kovalev K, Astashkin R, Gordeliy V, Cherezov V. Methods Mol Biol 2501 125-146 (2022)
  97. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species. Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T. Photochem Photobiol 94 705-714 (2018)