1hcl Citations

High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design.

J Med Chem 39 4540-6 (1996)
Related entries: 1hck, 1w0x, 2exm

Cited: 136 times
EuropePMC logo PMID: 8917641

Abstract

Inhibition of the cell cycle is widely considered as a new approach toward treatment for diseases caused by unregulated cell proliferation, including cancer. Since cyclin-dependent kinases (CDKs) are key enzymes of cell cycle control, they are promissing targets for the design and discovery of drugs with antiproliferative activity. The detailed structural analysis of CDK2 can provide valuable information for the design of new ligands that can bind in the ATP binding pocket and inhibit CDK2 activity. For this objective, the crystal structures of human CDK2 apoenzyme and its ATP complex were refined to 1.8 and 1.9 A, respectively. The high-resolution refinement reveals 12 ordered water molecules in the ATP binding pocket of the apoenzyme and five ordered waters in that of the ATP complex. Despite a large number of hydrogen bonds between ATP-phosphates and CDK2, binding studies of cyclic AMP-dependent protein kinase with ATP analogues show that the triphosphate moiety contributes little and the adenine ring is most important for binding affinity. Our analysis of CDK2 structural data, hydration of residues in the binding pocket of the apoenzyme, flexibility of the ligand, and structural differences between the apoenzyme and CDK2-ATP complex provide an explanation for the results of earlier binding studies with ATP analogues and a basis for future inhibitor design.

Reviews - 1hcl mentioned but not cited (10)

  1. Cyclin-dependent kinases. Malumbres M. Genome Biol 15 122 (2014)
  2. Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Bahar I, Chennubhotla C, Tobi D. Curr Opin Struct Biol 17 633-640 (2007)
  3. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)
  4. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Meireles L, Gur M, Bakan A, Bahar I. Protein Sci 20 1645-1658 (2011)
  5. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2. Li Y, Zhang J, Gao W, Zhang L, Pan Y, Zhang S, Wang Y. Int J Mol Sci 16 9314-9340 (2015)
  6. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Cells 8 E316 (2019)
  7. Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Kannan N, Neuwald AF, Taylor SS. Biochim Biophys Acta 1784 27-32 (2008)
  8. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. Arter C, Trask L, Ward S, Yeoh S, Bayliss R. J Biol Chem 298 102247 (2022)
  9. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Susanti NMP, Tjahjono DH. Molecules 26 4462 (2021)
  10. Unveiling the noncanonical activation mechanism of CDKs: insights from recent structural studies. Li T, Tang HC, Tsai KL. Front Mol Biosci 10 1290631 (2023)

Articles - 1hcl mentioned but not cited (38)

  1. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Kornev AP, Haste NM, Taylor SS, Eyck LF. Proc Natl Acad Sci U S A 103 17783-17788 (2006)
  2. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. Niefind K, Guerra B, Ermakowa I, Issinger OG. EMBO J 20 5320-5331 (2001)
  3. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Tobi D, Bahar I. Proc Natl Acad Sci U S A 102 18908-18913 (2005)
  4. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Bakan A, Bahar I. Proc Natl Acad Sci U S A 106 14349-14354 (2009)
  5. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  6. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. Fukuda K, Gupta S, Chen K, Wu C, Qin J. Mol Cell 36 819-830 (2009)
  7. FiberDock: Flexible induced-fit backbone refinement in molecular docking. Mashiach E, Nussinov R, Wolfson HJ. Proteins 78 1503-1519 (2010)
  8. Molecular docking screens using comparative models of proteins. Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A. J Chem Inf Model 49 2512-2527 (2009)
  9. Side-chain modeling with an optimized scoring function. Liang S, Grishin NV. Protein Sci 11 322-331 (2002)
  10. Structural basis for the regulation of protein kinase A by activation loop phosphorylation. Steichen JM, Kuchinskas M, Keshwani MM, Yang J, Adams JA, Taylor SS. J Biol Chem 287 14672-14680 (2012)
  11. Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Stroud RM, Zhang C, Shokat KM, Walter P. BMC Biol 9 48 (2011)
  12. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Peterson RW, Dutton PL, Wand AJ. Protein Sci 13 735-751 (2004)
  13. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Ghersi D, Sanchez R. Proteins 74 417-424 (2009)
  14. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. Hall DR, Ngan CH, Zerbe BS, Kozakov D, Vajda S. J Chem Inf Model 52 199-209 (2012)
  15. Automated harvesting and processing of protein crystals through laser photoablation. Zander U, Hoffmann G, Cornaciu I, Marquette JP, Papp G, Landret C, Seroul G, Sinoir J, Röwer M, Felisaz F, Rodriguez-Puente S, Mariaule V, Murphy P, Mathieu M, Cipriani F, Márquez JA. Acta Crystallogr D Struct Biol 72 454-466 (2016)
  16. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  17. Utilizing experimental data for reducing ensemble size in flexible-protein docking. Xu M, Lill MA. J Chem Inf Model 52 187-198 (2012)
  18. Functional flexibility of human cyclin-dependent kinase-2 and its evolutionary conservation. Bártová I, Koca J, Otyepka M. Protein Sci 17 22-33 (2008)
  19. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture. Worth CL, Blundell TL. BMC Evol Biol 10 161 (2010)
  20. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  21. Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints. Greener JG, Filippis I, Sternberg MJE. Structure 25 546-558 (2017)
  22. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4. Warenius HM, Kilburn JD, Essex JW, Maurer RI, Blaydes JP, Agarwala U, Seabra LA. Mol Cancer 10 72 (2011)
  23. Covalent Modification of CDK2 by 4-Hydroxynonenal as a Mechanism of Inhibition of Cell Cycle Progression. Camarillo JM, Rose KL, Galligan JJ, Xu S, Marnett LJ. Chem Res Toxicol 29 323-332 (2016)
  24. Protein-ligand docking with multiple flexible side chains. Zhao Y, Sanner MF. J Comput Aided Mol Des 22 673-679 (2008)
  25. Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase. Szczepanowska J, Ramachandran U, Herring CJ, Gruschus JM, Qin J, Korn ED, Brzeska H. Proc Natl Acad Sci U S A 95 4146-4151 (1998)
  26. Effect of naringenin and its combination with cisplatin in cell death, proliferation and invasion of cervical cancer spheroids. Martínez-Rodríguez OP, González-Torres A, Álvarez-Salas LM, Hernández-Sánchez H, García-Pérez BE, Thompson-Bonilla MDR, Jaramillo-Flores ME. RSC Adv 11 129-141 (2020)
  27. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking. Wong KM, Tai HK, Siu SWI. Chem Biol Drug Des 97 97-110 (2021)
  28. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Shin WH, Bures MG, Kihara D. Methods 93 41-50 (2016)
  29. Polymodal allosteric regulation of Type 1 Serine/Threonine Kinase Receptors via a conserved electrostatic lock. Botello-Smith WM, Alsamarah A, Chatterjee P, Xie C, Lacroix JJ, Hao J, Luo Y. PLoS Comput Biol 13 e1005711 (2017)
  30. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps. Bettadapura R, Rasheed M, Vollrath A, Bajaj C. PLoS Comput Biol 11 e1004289 (2015)
  31. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  32. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study. Taghizadeh M, Goliaei B, Madadkar-Sobhani A. Iran J Biotechnol 14 1-12 (2016)
  33. Dynamics of protein kinases and pseudokinases by HDX-MS. Sheetz JB, Lemmon MA, Tsutsui Y. Methods Enzymol 667 303-338 (2022)
  34. Structure of a cyclin-dependent kinase from Giardia lamblia. Leibly DJ, Newling PA, Abendroth J, Guo W, Kelley A, Stewart LJ, Van Voorhis W. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1084-1089 (2011)
  35. research-article Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. Zhang W, Liu Y, Jang H, Nussinov R. bioRxiv 2023.08.16.553605 (2023)
  36. Clarifying the structures of imidines: using crystallographic characterization to identify tautomers and localized systems of π-bonding. Aristov MM, Geng H, Harris JW, Berry JF. Acta Crystallogr C Struct Chem 79 133-141 (2023)
  37. Computational and pharmacological investigation of novel 1,5-diaryl-1,4-pentadien-3-one derivatives for analgesic, anti-inflammatory and anticancer potential. Tariq MS, Khan AU, Minhas AM, Filho ER, Din ZU, Khan A. Iran J Basic Med Sci 22 72-79 (2019)
  38. The reversible inhibitor SR-4835 binds Cdk12/cyclin K in a noncanonical G-loop conformation. Schmitz M, Kaltheuner IH, Anand K, Düster R, Moecking J, Monastyrskyi A, Duckett DR, Roush WR, Geyer M. J Biol Chem 300 105501 (2023)


Reviews citing this publication (14)

  1. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol Cell 15 661-675 (2004)
  2. Magic bullets for protein kinases. Bishop AC, Buzko O, Shokat KM. Trends Cell Biol 11 167-172 (2001)
  3. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. Johnson LN, Lowe ED, Noble ME, Owen DJ. FEBS Lett 430 1-11 (1998)
  4. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 180112 (2018)
  5. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Roskoski R. Pharmacol Res 107 249-275 (2016)
  6. ATP site-directed competitive and irreversible inhibitors of protein kinases. García-Echeverría C, Traxler P, Evans DB. Med Res Rev 20 28-57 (2000)
  7. Structure-based design of cyclin-dependent kinase inhibitors. Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble ME. Pharmacol Ther 93 125-133 (2002)
  8. Designing inhibitors of cyclin-dependent kinases. Hardcastle IR, Golding BT, Griffin RJ. Annu Rev Pharmacol Toxicol 42 325-348 (2002)
  9. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  10. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  11. Automated docking for novel drug discovery. Bello M, Martínez-Archundia M, Correa-Basurto J. Expert Opin Drug Discov 8 821-834 (2013)
  12. Chemical inhibitors of cyclin-dependent kinases: insights into design from X-ray crystallographic studies. Noble ME, Endicott JA. Pharmacol Ther 82 269-278 (1999)
  13. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Lucena WA, Pelegrini PB, Martins-de-Sa D, Fonseca FC, Gomes JE, de Macedo LL, da Silva MC, Oliveira RS, Grossi-de-Sa MF. Toxins (Basel) 6 2393-2423 (2014)
  14. Biophysical highlights from 54 years of macromolecular crystallography. Richardson JS, Richardson DC. Biophys J 106 510-525 (2014)

Articles citing this publication (74)

  1. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Meijer L, Thunnissen AM, White AW, Garnier M, Nikolic M, Tsai LH, Walter J, Cleverley KE, Salinas PC, Wu YZ, Biernat J, Mandelkow EM, Kim SH, Pettit GR. Chem Biol 7 51-63 (2000)
  2. Structural evolution of the protein kinase-like superfamily. Scheeff ED, Bourne PE. PLoS Comput Biol 1 e49 (2005)
  3. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le Roch K, Doerig C, Schultz P, Meijer L. Chem Biol 7 411-422 (2000)
  4. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M, Alessi DR, van Aalten DM. PLoS Biol 7 e1000126 (2009)
  5. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Structure 5 1627-1637 (1997)
  6. Structural and mutational analysis of the PhoQ histidine kinase catalytic domain. Insight into the reaction mechanism. Marina A, Mott C, Auyzenberg A, Hendrickson WA, Waldburger CD. J Biol Chem 276 41182-41190 (2001)
  7. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Bao ZQ, Jacobsen DM, Young MA. Structure 19 675-690 (2011)
  8. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L, Wang Y, Liu Y, Hu X. J Mol Biol 336 787-807 (2004)
  9. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  10. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Baxter A, Brough S, Cooper A, Floettmann E, Foster S, Harding C, Kettle J, McInally T, Martin C, Mobbs M, Needham M, Newham P, Paine S, St-Gallay S, Salter S, Unitt J, Xue Y. Bioorg Med Chem Lett 14 2817-2822 (2004)
  11. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop. Wu SY, McNae I, Kontopidis G, McClue SJ, McInnes C, Stewart KJ, Wang S, Zheleva DI, Marriage H, Lane DP, Taylor P, Fischer PM, Walkinshaw MD. Structure 11 399-410 (2003)
  12. Analysis of protein-protein interactions and the effects of amino acid mutations on their energetics. The importance of water molecules in the binding epitope. Covell DG, Wallqvist A. J Mol Biol 269 281-297 (1997)
  13. Protein structural ensembles are revealed by redefining X-ray electron density noise. Lang PT, Holton JM, Fraser JS, Alber T. Proc Natl Acad Sci U S A 111 237-242 (2014)
  14. Imidazo[1,2-a]pyridines: a potent and selective class of cyclin-dependent kinase inhibitors identified through structure-based hybridisation. Anderson M, Beattie JF, Breault GA, Breed J, Byth KF, Culshaw JD, Ellston RP, Green S, Minshull CA, Norman RA, Pauptit RA, Stanway J, Thomas AP, Jewsbury PJ. Bioorg Med Chem Lett 13 3021-3026 (2003)
  15. Alternative binding modes of an inhibitor to two different kinases. De Moliner E, Brown NR, Johnson LN. Eur J Biochem 270 3174-3181 (2003)
  16. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Haq T, Richards MW, Burgess SG, Gallego P, Yeoh S, O'Regan L, Reverter D, Roig J, Fry AM, Bayliss R. Nat Commun 6 8771 (2015)
  17. Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-bis anilino pyrimidines. Beattie JF, Breault GA, Ellston RP, Green S, Jewsbury PJ, Midgley CJ, Naven RT, Minshull CA, Pauptit RA, Tucker JA, Pease JE. Bioorg Med Chem Lett 13 2955-2960 (2003)
  18. 5-aryl-pyrazolo[3,4-b]pyridazines: potent inhibitors of glycogen synthase kinase-3 (GSK-3). Witherington J, Bordas V, Haigh D, Hickey DM, Ife RJ, Rawlings AD, Slingsby BP, Smith DG, Ward RW. Bioorg Med Chem Lett 13 1581-1584 (2003)
  19. Insights into Thiol-Aromatic Interactions: A Stereoelectronic Basis for S-H/π Interactions. Forbes CR, Sinha SK, Ganguly HK, Bai S, Yap GP, Patel S, Zondlo NJ. J Am Chem Soc 139 1842-1855 (2017)
  20. Quinazolines as cyclin dependent kinase inhibitors. Sielecki TM, Johnson TL, Liu J, Muckelbauer JK, Grafstrom RH, Cox S, Boylan J, Burton CR, Chen H, Smallwood A, Chang CH, Boisclair M, Benfield PA, Trainor GL, Seitz SP. Bioorg Med Chem Lett 11 1157-1160 (2001)
  21. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. J Phys Chem B 116 4465-4475 (2012)
  22. Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. de Azevedo WF, Canduri F, dos Santos DM, Silva RG, de Oliveira JS, de Carvalho LP, Basso LA, Mendes MA, Palma MS, Santos DS. Biochem Biophys Res Commun 308 545-552 (2003)
  23. Modified AutoDock for accurate docking of protein kinase inhibitors. Buzko OV, Bishop AC, Shokat KM. J Comput Aided Mol Des 16 113-127 (2002)
  24. Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors. Byth KF, Cooper N, Culshaw JD, Heaton DW, Oakes SE, Minshull CA, Norman RA, Pauptit RA, Tucker JA, Breed J, Pannifer A, Rowsell S, Stanway JJ, Valentine AL, Thomas AP. Bioorg Med Chem Lett 14 2249-2252 (2004)
  25. A new series of potent oxindole inhibitors of CDK2. Luk KC, Simcox ME, Schutt A, Rowan K, Thompson T, Chen Y, Kammlott U, DePinto W, Dunten P, Dermatakis A. Bioorg Med Chem Lett 14 913-917 (2004)
  26. How mitogen-activated protein kinases recognize and phosphorylate their targets: A QM/MM study. Turjanski AG, Hummer G, Gutkind JS. J Am Chem Soc 131 6141-6148 (2009)
  27. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Gárriz A, Qiu H, Dey M, Seo EJ, Dever TE, Hinnebusch AG. Mol Cell Biol 29 1592-1607 (2009)
  28. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases. Hari SB, Merritt EA, Maly DJ. Chem Biol 21 628-635 (2014)
  29. Design, synthesis and biological activity of new CDK4-specific inhibitors, based on fascaplysin. Aubry C, Wilson AJ, Jenkins PR, Mahale S, Chaudhuri B, Maréchal JD, Sutcliffe MJ. Org Biomol Chem 4 787-801 (2006)
  30. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Modi V, Dunbrack RL. Nucleic Acids Res 50 D654-D664 (2022)
  31. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB. Rakette S, Donat S, Ohlsen K, Stehle T. PLoS One 7 e39136 (2012)
  32. Homology model of the CDK1/cyclin B complex. McGrath CF, Pattabiraman N, Kellogg GE, Lemcke T, Kunick C, Sausville EA, Zaharevitz DW, Gussio R. J Biomol Struct Dyn 22 493-502 (2005)
  33. A quantitative comparison of wild-type and gatekeeper mutant cdk2 for chemical genetic studies with ATP analogues. Elphick LM, Lee SE, Child ES, Prasad A, Pignocchi C, Thibaudeau S, Anderson AA, Bonnac L, Gouverneur V, Mann DJ. Chembiochem 10 1519-1526 (2009)
  34. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Persky NS, Hernandez D, Do Carmo M, Brenan L, Cohen O, Kitajima S, Nayar U, Walker A, Pantel S, Lee Y, Cordova J, Sathappa M, Zhu C, Hayes TK, Ram P, Pancholi P, Mikkelsen TS, Barbie DA, Yang X, Haq R, Piccioni F, Root DE, Johannessen CM. Nat Struct Mol Biol 27 92-104 (2020)
  35. Mobility-based prediction of hydration structures of protein surfaces. Jeszenői N, Horváth I, Bálint M, van der Spoel D, Hetényi C. Bioinformatics 31 1959-1965 (2015)
  36. Structural analysis of the inhibition of Cdk4 and Cdk6 by p16(INK4a) through molecular dynamics simulations. Villacañas O, Pérez JJ, Rubio-Martínez J. J Biomol Struct Dyn 20 347-358 (2002)
  37. The effect of a tightly bound water molecule on scaffold diversity in the computer-aided de novo ligand design of CDK2 inhibitors. García-Sosa AT, Mancera RL. J Mol Model 12 422-431 (2006)
  38. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer. Kenyon CP, Roth RL, van der Westhuyzen CW, Parkinson CJ. BMC Res Notes 5 131 (2012)
  39. Identification of novel mutations of PKD1 gene in Chinese patients with autosomal dominant polycystic kidney disease by targeted next-generation sequencing. Yang T, Meng Y, Wei X, Shen J, Zhang M, Qi C, Wang C, Liu J, Ma M, Huang S. Clin Chim Acta 433 12-19 (2014)
  40. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  41. 1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases. Misra RN, Rawlins DB, Xiao HY, Shan W, Bursuker I, Kellar KA, Mulheron JG, Sack JS, Tokarski JS, Kimball SD, Webster KR. Bioorg Med Chem Lett 13 1133-1136 (2003)
  42. Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. Zhan C, Yang J, Dong XC, Wang YL. J Mol Graph Model 26 20-31 (2007)
  43. Structural interpretation of site-directed mutagenesis and specificity of the catalytic subunit of protein kinase CK2 using comparative modelling. Srinivasan N, Antonelli M, Jacob G, Korn I, Romero F, Jedlicki A, Dhanaraj V, Sayed MF, Blundell TL, Allende CC, Allende JE. Protein Eng 12 119-127 (1999)
  44. Study of the inhibition of cyclin-dependent kinases with roscovitine and indirubin-3'-oxime from molecular dynamics simulations. Zhang B, Tan VB, Lim KM, Tay TE, Zhuang S. J Mol Model 13 79-89 (2007)
  45. Coupling structure-based design with combinatorial chemistry: application of active site derived pharmacophores with informative library design. Eksterowicz JE, Evensen E, Lemmen C, Brady GP, Lanctot JK, Bradley EK, Saiah E, Robinson LA, Grootenhuis PD, Blaney JM. J Mol Graph Model 20 469-477 (2002)
  46. Identification of SRC as a potent drug target for asthma, using an integrative approach of protein interactome analysis and in silico drug discovery. Randhawa V, Bagler G. OMICS 16 513-526 (2012)
  47. Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4). Wang L, Ferrao R, Li Q, Hatcher JM, Choi HG, Buhrlage SJ, Gray NS, Wu H. J Biol Chem 294 4511-4519 (2019)
  48. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Lim MP, Firdaus-Raih M, Nathan S. Front Microbiol 7 1436 (2016)
  49. Predicting the impact of single-nucleotide polymorphisms in CDK2-flavopiridol complex by molecular dynamics analysis. Nagasundaram N, Doss CG. Cell Biochem Biophys 66 681-695 (2013)
  50. Structure prediction and validation of the ERK8 kinase domain. Strambi A, Mori M, Rossi M, Colecchia D, Manetti F, Carlomagno F, Botta M, Chiariello M. PLoS One 8 e52011 (2013)
  51. Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2. Gu J, Bourne PE. BMC Bioinformatics 8 45 (2007)
  52. Molecular modeling and dynamics simulation of human cyclin-dependent kinase 3 complexed with inhibitors. Perez PC, Caceres RA, Canduri F, de Azevedo WF. Comput Biol Med 39 130-140 (2009)
  53. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor. Opoku-Temeng C, Dayal N, Hernandez DE, Naganna N, Sintim HO. Chem Commun (Camb) 54 4521-4524 (2018)
  54. A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. Romano V, de Beer TA, Schwede T. BMC Res Notes 10 104 (2017)
  55. Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk). Umaña AC, Iwahori S, Kalejta RF. ACS Chem Biol 13 189-199 (2018)
  56. Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae. Guo J, Wei X, Li M, Pan X, Chang W, Liu Z. Protein Cell 4 607-619 (2013)
  57. Polyphony: superposition independent methods for ensemble-based drug discovery. Pitt WR, Montalvão RW, Blundell TL. BMC Bioinformatics 15 324 (2014)
  58. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Front Plant Sci 8 852 (2017)
  59. Comparative analysis of the surface interaction properties of the binding sites of CDK2, CDK4, and ERK2. Kelly MD, Mancera RL. ChemMedChem 1 366-375 (2006)
  60. Haptic-driven, interactive drug design: implementing a GPU-based approach to evaluate the induced fit effect. Anthopoulos A, Pasqualetto G, Grimstead I, Brancale A. Faraday Discuss 169 323-342 (2014)
  61. LASSBio-1829 Hydrochloride: Development of a New Orally Active N-Acylhydrazone IKK2 Inhibitor with Anti-inflammatory Properties. Guedes IA, Freitas RH, Cordeiro NM, do Nascimento TS, Valerio TS, Fernandes PD, Dardenne LE, Fraga CA. ChemMedChem 11 234-244 (2016)
  62. Morphogenesis signaling components influence cell cycle regulation by cyclin dependent kinase. Tobe BT, Kitazono AA, Garcia JS, Gerber RA, Bevis BJ, Choy JS, Chasman D, Kron SJ. Cell Div 4 12 (2009)
  63. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. Verkhivker GM. Mol Biosyst 13 2235-2253 (2017)
  64. Signals of positive selection in mitochondrial protein-coding genes of woolly mammoth: Adaptation to extreme environments? Ngatia JN, Lan TM, Dinh TD, Zhang L, Ahmed AK, Xu YC. Ecol Evol 9 6821-6832 (2019)
  65. Cell cycle kinases predicted from conserved biophysical properties. Wrzeszczynski KO, Rost B. Proteins 74 655-668 (2009)
  66. Crystal structure of the CDK11 kinase domain bound to the small-molecule inhibitor OTS964. Kelso S, O'Brien S, Kurinov I, Angers S, Sicheri F. Structure 30 1615-1625.e4 (2022)
  67. Emerging approaches to CDK inhibitor development, a structural perspective. Hope I, Endicott JA, Watt JE. RSC Chem Biol 4 146-164 (2023)
  68. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation. Wei X, Wang Y, Zhang S, Gu T, Steinmetz G, Yu H, Guo G, Liu X, Fan S, Wang F, Gu Y, Xin F. Plant Commun 3 100301 (2022)
  69. Biolayer Interferometry Assay for Cyclin-Dependent Kinase-Cyclin Association Reveals Diverse Effects of Cdk2 Inhibitors on Cyclin Binding Kinetics. Tambo CS, Tripathi S, Perera BGK, Maly DJ, Bridges AJ, Kiss G, Rubin SM. ACS Chem Biol 18 431-440 (2023)
  70. Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism. Li P, Xu D, Ma T, Wang D, Li W, He J, Ran T, Wang W. Biochem J 475 2209-2224 (2018)
  71. Development of Novel Markers for Yield in Hevea brasiliensis Muell. Arg. Based on Candidate Genes from Biosynthetic Pathways Associated with Latex Production. Bini K, Saha T, Radhakrishnan S, Ravindran M, Uthup TK. Biochem Genet 60 2171-2199 (2022)
  72. Expression, purification, and circular dichroism analysis of human CDK9. Leopoldino AM, Canduri F, Cabral H, Junqueira M, de Marqui AB, Apponi LH, da Fonseca IO, Domont GB, Santos DS, Valentini S, Bonilla-Rodriguez GO, Fossey MA, de Azevedo WF, Tajara EH. Protein Expr Purif 47 614-620 (2006)
  73. Mapping protein pockets through their potential small-molecule binding volumes: QSCD applied to biological protein structures. Mason K, Patel NM, Ledel A, Moallemi CC, Wintner EA. J Comput Aided Mol Des 18 55-70 (2004)
  74. Molecular Simulations of Conformational Transitions within the Insulin Receptor Kinase Reveal Consensus Features in a Multistep Activation Pathway. Nam K, Tao Y, Ovchinnikov V. J Phys Chem B 127 5789-5798 (2023)


Related citations provided by authors (2)

  1. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine.. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH Proteins 22 378-91 (1995)
  2. Crystal Structure of Cyclin-Dependent Kinase 2. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH Nature 363 595- (1993)