1iuh Citations

Crystal structure of the 2'-5' RNA ligase from Thermus thermophilus HB8.

Abstract

The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.

Articles - 1iuh mentioned but not cited (7)

  1. C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification. Mroczek S, Krwawicz J, Kutner J, Lazniewski M, Kuciński I, Ginalski K, Dziembowski A. Genes Dev 26 1911-1925 (2012)
  2. AKAP18 contains a phosphoesterase domain that binds AMP. Gold MG, Smith FD, Scott JD, Barford D. J Mol Biol 375 1329-1343 (2008)
  3. Myelin 2',3'-cyclic nucleotide 3'-phosphodiesterase: active-site ligand binding and molecular conformation. Myllykoski M, Raasakka A, Han H, Kursula P. PLoS One 7 e32336 (2012)
  4. Structural basis for 2'-5'-oligoadenylate binding and enzyme activity of a viral RNase L antagonist. Ogden KM, Hu L, Jha BK, Sankaran B, Weiss SR, Silverman RH, Patton JT, Prasad BV. J Virol 89 6633-6645 (2015)
  5. Characterization of a heat-stable enzyme possessing GTP-dependent RNA ligase activity from a hyperthermophilic archaeon, Pyrococcus furiosus. Kanai A, Sato A, Fukuda Y, Okada K, Matsuda T, Sakamoto T, Muto Y, Yokoyama S, Kawai G, Tomita M. RNA 15 420-431 (2009)
  6. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase. Myllykoski M, Kursula P. PLoS One 12 e0170355 (2017)
  7. The structure of Pyrococcus horikoshii 2'-5' RNA ligase at 1.94 A resolution reveals a possible open form with a wider active-site cleft. Gao YG, Yao M, Okada A, Tanaka I. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 1196-1200 (2006)


Reviews citing this publication (1)

Articles citing this publication (22)

  1. Transcriptome-wide discovery of circular RNAs in Archaea. Danan M, Schwartz S, Edelheit S, Sorek R. Nucleic Acids Res 40 3131-3142 (2012)
  2. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Mol Cell 18 319-329 (2005)
  3. Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. Hilcenko C, Simpson PJ, Finch AJ, Bowler FR, Churcher MJ, Jin L, Packman LC, Shlien A, Campbell P, Kirwan M, Dokal I, Warren AJ. Blood 121 1028-1038 (2013)
  4. Structure-function analysis of the kinase-CPD domain of yeast tRNA ligase (Trl1) and requirements for complementation of tRNA splicing by a plant Trl1 homolog. Wang LK, Schwer B, Englert M, Beier H, Shuman S. Nucleic Acids Res 34 517-527 (2006)
  5. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells. Lee J, O'Neill RC, Park MW, Gravel M, Braun PE. Mol Cell Neurosci 31 446-462 (2006)
  6. Crystal structure of the catalytic fragment of human brain 2',3'-cyclic-nucleotide 3'-phosphodiesterase. Sakamoto Y, Tanaka N, Ichimiya T, Kurihara T, Nakamura KT. J Mol Biol 346 789-800 (2005)
  7. 2',3'-Cyclic nucleotide 3'-phosphodiesterase: a novel RNA-binding protein that inhibits protein synthesis. Gravel M, Robert F, Kottis V, Gallouzi IE, Pelletier J, Braun PE. J Neurosci Res 87 1069-1079 (2009)
  8. Letter Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo. Schwer B, Aronova A, Ramirez A, Braun P, Shuman S. RNA 14 204-210 (2008)
  9. Crystal structure of the RNA 2'-phosphotransferase from Aeropyrum pernix K1. Kato-Murayama M, Bessho Y, Shirouzu M, Yokoyama S. J Mol Biol 348 295-305 (2005)
  10. Crystallographic analysis of the reaction cycle of 2',3'-cyclic nucleotide 3'-phosphodiesterase, a unique member of the 2H phosphoesterase family. Myllykoski M, Raasakka A, Lehtimäki M, Han H, Kursula I, Kursula P. J Mol Biol 425 4307-4322 (2013)
  11. Structure and mechanism of E. coli RNA 2',3'-cyclic phosphodiesterase. Remus BS, Jacewicz A, Shuman S. RNA 20 1697-1705 (2014)
  12. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Didychuk AL, Montemayor EJ, Carrocci TJ, DeLaitsch AT, Lucarelli SE, Westler WM, Brow DA, Hoskins AA, Butcher SE. Nat Commun 8 497 (2017)
  13. An unsuspected ecdysteroid/steroid phosphatase activity in the key T-cell regulator, Sts-1: surprising relationship to insect ecdysteroid phosphate phosphatase. Davies L, Anderson IP, Turner PC, Shirras AD, Rees HH, Rigden DJ. Proteins 67 720-731 (2007)
  14. Crystal structure of the C-terminal 2',5'-phosphodiesterase domain of group A rotavirus protein VP3. Brandmann T, Jinek M. Proteins 83 997-1002 (2015)
  15. Letter Squamous cell carcinoma in a child with Clericuzio-type poikiloderma with neutropenia. Rodgers W, Ancliff P, Ponting CP, Sanchez-Pulido L, Burns S, Hayman M, Kimonis V, Sebire N, Bulstrode N, Harper JI. Br J Dermatol 168 665-667 (2013)
  16. Structural and mechanistic basis for preferential deadenylation of U6 snRNA by Usb1. Nomura Y, Roston D, Montemayor EJ, Cui Q, Butcher SE. Nucleic Acids Res 46 11488-11501 (2018)
  17. Crystal structure of B. subtilis YjcG characterizing the YjcG-like group of 2H phosphoesterase superfamily. Li D, Liu C, Liang YH, Li LF, Su XD. Proteins 72 1071-1076 (2008)
  18. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase. Molina-Serrano D, Marqués J, Nohales MÁ, Flores R, Daròs JA. RNA Biol 9 326-333 (2012)
  19. Preparation, crystallization and preliminary X-ray analysis of YjcG protein from Bacillus subtilis. Li D, Chan C, Liang YH, Zheng X, Li L, Su XD. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 496-498 (2005)
  20. Crystal structure of the RNA 2',3'-cyclic phosphodiesterase from Deinococcus radiodurans. Han W, Cheng J, Zhou C, Hua Y, Zhao Y. Acta Crystallogr F Struct Biol Commun 73 276-280 (2017)
  21. Preparation, crystallization and preliminary X-ray analysis of protein YtlP from Bacillus subtilis. Liu C, Li D, Hederstedt L, Li L, Liang YH, Su XD. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 967-969 (2006)
  22. Structural basis for the evolution of cyclic phosphodiesterase activity in the U6 snRNA exoribonuclease Usb1. Nomura Y, Montemayor EJ, Virta JM, Hayes SM, Butcher SE. Nucleic Acids Res 48 1423-1434 (2020)