1iz3 Citations

Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau.

J Biol Chem 278 7558-63 (2003)
Cited: 81 times
EuropePMC logo PMID: 12482756

Abstract

The master switch of cellular hypoxia responses, hypoxia-inducible factor 1 (HIF-1), is hydroxylated by factor inhibiting HIF-1 (FIH-1) at a conserved asparagine residue under normoxia, which suppresses transcriptional activity of HIF-1 by abrogating its interaction with transcription coactivators. Here we report the crystal structure of human FIH-1 at 2.8-A resolution. The structural core of FIH-1 consists of a jellyroll-like beta-barrel containing the conserved ferrous-binding triad residues, confirming that FIH-1 is a member of the 2-oxoglutarate-dependent dioxygenase family. Except for the core structure and triad residues, FIH-1 has many structural deviations from other family members including N- and C-terminal insertions and various deletions in the middle of the structure. The ferrous-binding triad region is highly exposed to the solvent, which is connected to a prominent groove that may bind to a helix near the hydroxylation site of HIF-1. The structure, which is in a dimeric state, also reveals the putative von Hippel-Lindau-binding site that is distinctive to the putative HIF-1-binding site, supporting the formation of the ternary complex by FIH-1, HIF-1, and von Hippel-Lindau. The unique environment of the active site and cofactor-binding region revealed in the structure should allow design of selective drugs that can be used in ischemic diseases to promote hypoxia responses.

Articles - 1iz3 mentioned but not cited (4)

  1. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase. Yu Z, Genest PA, ter Riet B, Sweeney K, DiPaolo C, Kieft R, Christodoulou E, Perrakis A, Simmons JM, Hausinger RP, van Luenen HG, Rigden DJ, Sabatini R, Borst P. Nucleic Acids Res 35 2107-2115 (2007)
  2. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Kaczmarek M, Cachau RE, Topol IA, Kasprzak KS, Ghio A, Salnikow K. Toxicol Sci 107 394-403 (2009)
  3. Protein Flexibility of the α-Ketoglutarate-Dependent Oxygenase Factor-Inhibiting HIF-1: Implications for Substrate Binding, Catalysis, and Regulation. Martin CB, Chaplin VD, Eyles SJ, Knapp MJ. Biochemistry 58 4047-4057 (2019)
  4. The Regulation of Hypoxia Inducible Factor (HIF)1α Expression by Quercetin: an In Silico Study. Wahyuningsih SPA, Dewi FRP, Hsan ASY, Lee LM, Lim V, Aun LIL, Ling TC, Marviella ST. Acta Inform Med 30 96-99 (2022)


Reviews citing this publication (36)

  1. Intrinsically unstructured proteins and their functions. Dyson HJ, Wright PE. Nat Rev Mol Cell Biol 6 197-208 (2005)
  2. Oxygen sensing by HIF hydroxylases. Schofield CJ, Ratcliffe PJ. Nat Rev Mol Cell Biol 5 343-354 (2004)
  3. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Semenza GL. Physiology (Bethesda) 19 176-182 (2004)
  4. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. Uversky VN, Oldfield CJ, Dunker AK. J Mol Recognit 18 343-384 (2005)
  5. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. Chiche J, Brahimi-Horn MC, Pouysségur J. J Cell Mol Med 14 771-794 (2010)
  6. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Prabhakar NR, Semenza GL. Physiol Rev 92 967-1003 (2012)
  7. Regulation of angiogenesis by hypoxia-inducible factor 1. Hirota K, Semenza GL. Crit Rev Oncol Hematol 59 15-26 (2006)
  8. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ. J Inorg Biochem 100 644-669 (2006)
  9. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Fraisl P, Aragonés J, Carmeliet P. Nat Rev Drug Discov 8 139-152 (2009)
  10. Von Hippel-Lindau disease. Kaelin WG. Annu Rev Pathol 2 145-173 (2007)
  11. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Kietzmann T, Görlach A. Semin Cell Dev Biol 16 474-486 (2005)
  12. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Baltz RH, Miao V, Wrigley SK. Nat Prod Rep 22 717-741 (2005)
  13. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Ozer A, Bruick RK. Nat Chem Biol 3 144-153 (2007)
  14. Structural studies on human 2-oxoglutarate dependent oxygenases. McDonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Curr Opin Struct Biol 20 659-672 (2010)
  15. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Hirota K, Semenza GL. Biochem Biophys Res Commun 338 610-616 (2005)
  16. The rules of disorder or why disorder rules. Gsponer J, Babu MM. Prog Biophys Mol Biol 99 94-103 (2009)
  17. The HIF pathway as a therapeutic target. Hewitson KS, Schofield CJ. Drug Discov Today 9 704-711 (2004)
  18. HIF hydroxylation and cellular oxygen sensing. Metzen E, Ratcliffe PJ. Biol Chem 385 223-230 (2004)
  19. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer. Hayashi Y, Yokota A, Harada H, Huang G. Cancer Sci 110 1510-1517 (2019)
  20. Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. Markolovic S, Wilkins SE, Schofield CJ. J Biol Chem 290 20712-20722 (2015)
  21. Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? Correia SC, Moreira PI. J Neurochem 112 1-12 (2010)
  22. Hypoxia-inducible factor prolyl hydroxylase inhibition: robust new target or another big bust for stroke therapeutics? Karuppagounder SS, Ratan RR. J Cereb Blood Flow Metab 32 1347-1361 (2012)
  23. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases. Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. Curr Opin Struct Biol 41 62-72 (2016)
  24. von Hippel-Lindau tumor suppressor: not only HIF's executioner. Czyzyk-Krzeska MF, Meller J. Trends Mol Med 10 146-149 (2004)
  25. The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes. Purpero V, Moran GR. J Biol Inorg Chem 12 587-601 (2007)
  26. Dioxygenases as O2-dependent regulators of the hypoxic response pathway. Dann CE, Bruick RK. Biochem Biophys Res Commun 338 639-647 (2005)
  27. HIF and oxygen sensing; as important to life as the air we breathe? Wiesener MS, Maxwell PH. Ann Med 35 183-190 (2003)
  28. The oxygen sensing signal cascade under the influence of reactive oxygen species. Acker H. Philos Trans R Soc Lond B Biol Sci 360 2201-2210 (2005)
  29. Changing story of the receptor for phosphatidylserine-dependent clearance of apoptotic cells. Wolf A, Schmitz C, Böttger A. EMBO Rep 8 465-469 (2007)
  30. HIF-1α Metabolic Pathways in Human Cancer. Elzakra N, Kim Y. Adv Exp Med Biol 1280 243-260 (2021)
  31. Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. Rani S, Roy S, Singh M, Kaithwas G. Oxid Med Cell Longev 2022 2407223 (2022)
  32. Modulation of TRP Channel Activity by Hydroxylation and Its Therapeutic Potential. Nagarajan Y, Rychkov GY, Peet DJ. Pharmaceuticals (Basel) 10 E35 (2017)
  33. Oxygen sensing in cancer. Pugh CW. Ann Med 35 380-390 (2003)
  34. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ, Schofield CJ. Chem Rec 18 1760-1781 (2018)
  35. The Novel Protease Activities of JMJD5-JMJD6-JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Liu H, Wei P, Zhang Q, Chen Z, Liu J, Zhang G. Biomolecules 12 347 (2022)
  36. Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival. Park H. Toxicol Res 24 101-107 (2008)

Articles citing this publication (41)

  1. JmjC-domain-containing proteins and histone demethylation. Klose RJ, Kallin EM, Zhang Y. Nat Rev Genet 7 715-727 (2006)
  2. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Cell 125 467-481 (2006)
  3. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K. Nature 442 307-311 (2006)
  4. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). McDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Liénard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ. Proc Natl Acad Sci U S A 103 9814-9819 (2006)
  5. The hypoxia-inducible factor 2alpha N-terminal and C-terminal transactivation domains cooperate to promote renal tumorigenesis in vivo. Yan Q, Bartz S, Mao M, Li L, Kaelin WG. Mol Cell Biol 27 2092-2102 (2007)
  6. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. Cangul H. BMC Genet 5 27 (2004)
  7. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS. Mol Cell Biol 23 4959-4971 (2003)
  8. Expanding the proteome: disordered and alternatively folded proteins. Dyson HJ. Q Rev Biophys 44 467-518 (2011)
  9. Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate. Vissers MC, Gunningham SP, Morrison MJ, Dachs GU, Currie MJ. Free Radic Biol Med 42 765-772 (2007)
  10. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme. Zhang Z, Ren JS, Clifton IJ, Schofield CJ. Chem Biol 11 1383-1394 (2004)
  11. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. Cikala M, Alexandrova O, David CN, Pröschel M, Stiening B, Cramer P, Böttger A. BMC Cell Biol 5 26 (2004)
  12. HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Lee HY, Choi K, Oh H, Park YK, Park H. Mol Cells 37 43-50 (2014)
  13. A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J. Cancer Microenviron 1 53-68 (2008)
  14. Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma. Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H, Kishida T, Yao M, Schraml P, Richards FM, Latif F, Maher ER. J Clin Pathol 57 706-711 (2004)
  15. Structural insights into a novel histone demethylase PHF8. Yu L, Wang Y, Huang S, Wang J, Deng Z, Zhang Q, Wu W, Zhang X, Liu Z, Gong W, Chen Z. Cell Res 20 166-173 (2010)
  16. The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Valegård K, Terwisscha van Scheltinga AC, Dubus A, Ranghino G, Oster LM, Hajdu J, Andersson I. Nat Struct Mol Biol 11 95-101 (2004)
  17. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Lancaster DE, McNeill LA, McDonough MA, Aplin RT, Hewitson KS, Pugh CW, Ratcliffe PJ, Schofield CJ. Biochem J 383 429-437 (2004)
  18. Evidence that two enzyme-derived histidine ligands are sufficient for iron binding and catalysis by factor inhibiting HIF (FIH). Hewitson KS, Holmes SL, Ehrismann D, Hardy AP, Chowdhury R, Schofield CJ, McDonough MA. J Biol Chem 283 25971-25978 (2008)
  19. Fe(II)/alpha-ketoglutarate hydroxylases involved in nucleobase, nucleoside, nucleotide, and chromatin metabolism. Simmons JM, Müller TA, Hausinger RP. Dalton Trans 5132-5142 (2008)
  20. Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer. Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SB. Breast Cancer Res 9 R89 (2007)
  21. Erythropoietin inhibits HIF-1α expression via upregulation of PHD-2 transcription and translation in an in vitro model of hypoxia-ischemia. Souvenir R, Flores JJ, Ostrowski RP, Manaenko A, Duris K, Tang J. Transl Stroke Res 5 118-127 (2014)
  22. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP. Wotzlaw C, Otto T, Berchner-Pfannschmidt U, Metzen E, Acker H, Fandrey J. FASEB J 21 700-707 (2007)
  23. Factor inhibiting HIF (FIH) recognizes distinct molecular features within hypoxia-inducible factor-α (HIF-α) versus ankyrin repeat substrates. Wilkins SE, Karttunen S, Hampton-Smith RJ, Murchland I, Chapman-Smith A, Peet DJ. J Biol Chem 287 8769-8781 (2012)
  24. Control of histone H3 lysine 9 (H3K9) methylation state via cooperative two-step demethylation by Jumonji domain containing 1A (JMJD1A) homodimer. Goda S, Isagawa T, Chikaoka Y, Kawamura T, Aburatani H. J Biol Chem 288 36948-36956 (2013)
  25. Coordination changes and auto-hydroxylation of FIH-1: uncoupled O2-activation in a human hypoxia sensor. Chen YH, Comeaux LM, Herbst RW, Saban E, Kennedy DC, Maroney MJ, Knapp MJ. J Inorg Biochem 102 2120-2129 (2008)
  26. Crystal structure of prolyl 4-hydroxylase from Bacillus anthracis. Culpepper MA, Scott EE, Limburg J. Biochemistry 49 124-133 (2010)
  27. The second coordination sphere of FIH controls hydroxylation. Saban E, Chen YH, Hangasky JA, Taabazuing CY, Holmes BE, Knapp MJ. Biochemistry 50 4733-4740 (2011)
  28. Activation of C-transactivation domain is essential for optimal HIF-1 alpha-mediated transcriptional and angiogenic effects. Tal R, Shaish A, Bangio L, Peled M, Breitbart E, Harats D. Microvasc Res 76 1-6 (2008)
  29. Conformational flexibility of the C terminus with implications for substrate binding and catalysis revealed in a new crystal form of deacetoxycephalosporin C synthase. Oster LM, van Scheltinga AC, Valegård K, Hose AM, Dubus A, Hajdu J, Andersson I. J Mol Biol 343 157-171 (2004)
  30. Protein kinase C-mediated modulation of FIH-1 expression by the homeodomain protein CDP/Cut/Cux. Li J, Wang E, Dutta S, Lau JS, Jiang SW, Datta K, Mukhopadhyay D. Mol Cell Biol 27 7345-7353 (2007)
  31. Studies on the specificity of unprocessed and mature forms of phytanoyl-CoA 2-hydroxylase and mutation of the iron binding ligands. Searls T, Butler D, Chien W, Mukherji M, Lloyd MD, Schofield CJ. J Lipid Res 46 1660-1667 (2005)
  32. The zinc chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, increases the level of nonfunctional HIF-1alpha protein in normoxic cells. Choi SM, Choi KO, Lee N, Oh M, Park H. Biochem Biophys Res Commun 343 1002-1008 (2006)
  33. Structural insights into histone demethylase NO66 in interaction with osteoblast-specific transcription factor osterix and gene repression. Tao Y, Wu M, Zhou X, Yin W, Hu B, de Crombrugghe B, Sinha KM, Zang J. J Biol Chem 288 16430-16437 (2013)
  34. Crystal structures of human FIH-1 in complex with quinol family inhibitors. Moon H, Han S, Park H, Choe J. Mol Cells 29 471-474 (2010)
  35. Letter Hypoxic reprograming of H3K27me3 and H3K4me3 at the INK4A locus. Chang S, Park B, Choi K, Moon Y, Lee HY, Park H. FEBS Lett 590 3407-3415 (2016)
  36. Molecular characterisation, evolution and expression of hypoxia-inducible factor in Aurelia sp.1. Wang G, Yu Z, Zhen Y, Mi T, Shi Y, Wang J, Wang M, Sun S. PLoS One 9 e100057 (2014)
  37. Molecular characterization and expression regulation of the factor-inhibiting HIF-1 (FIH-1) gene under hypoxic stress in bighead carp (Aristichthys nobilis). Feng X, Yu X, Pang M, Tong J. Fish Physiol Biochem 45 657-665 (2019)
  38. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. J Biol Chem 295 16545-16561 (2020)
  39. Featured Article: Hypoxia-inducible factor-1α dependent nuclear entry of factor inhibiting HIF-1. Liang K, Ding XQ, Lin C, Kang YJ. Exp Biol Med (Maywood) 240 1446-1451 (2015)
  40. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Hangasky JA, Ivison GT, Knapp MJ. Biochemistry 53 5750-5758 (2014)
  41. Molecular response and association analysis of Megalobrama amblycephala fih-1 with hypoxia. Zhang B, Chen N, Huang C, Huang C, Chen B, Liu H, Wang W, Gul Y, Wang H. Mol Genet Genomics 291 1615-1624 (2016)