1j1d Citations

Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form.

Nature 424 35-41 (2003)
Cited: 490 times
EuropePMC logo PMID: 12840750

Abstract

Troponin is essential in Ca(2+) regulation of skeletal and cardiac muscle contraction. It consists of three subunits (TnT, TnC and TnI) and, together with tropomyosin, is located on the actin filament. Here we present crystal structures of the core domains (relative molecular mass of 46,000 and 52,000) of human cardiac troponin in the Ca(2+)-saturated form. Analysis of the four-molecule structures reveals that the core domain is further divided into structurally distinct subdomains that are connected by flexible linkers, making the entire molecule highly flexible. The alpha-helical coiled-coil formed between TnT and TnI is integrated in a rigid and asymmetric structure (about 80 angstrom long), the IT arm, which bridges putative tropomyosin-anchoring regions. The structures of the troponin ternary complex imply that Ca(2+) binding to the regulatory site of TnC removes the carboxy-terminal portion of TnI from actin, thereby altering the mobility and/or flexibility of troponin and tropomyosin on the actin filament.

Reviews - 1j1d mentioned but not cited (3)

  1. Troponin structure and function: a view of recent progress. Marston S, Zamora JE. J Muscle Res Cell Motil 41 71-89 (2020)
  2. Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. Bullard B, Pastore A. J Muscle Res Cell Motil 40 99-110 (2019)
  3. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Kachooei E, Cordina NM, Brown LJ. Biophys Rev 11 621-639 (2019)

Articles - 1j1d mentioned but not cited (35)



Reviews citing this publication (100)

  1. Troponin: the biomarker of choice for the detection of cardiac injury. Babuin L, Jaffe AS. CMAJ 173 1191-1202 (2005)
  2. Calcium, thin filaments, and the integrative biology of cardiac contractility. Kobayashi T, Solaro RJ. Annu Rev Physiol 67 39-67 (2005)
  3. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  4. Target selectivity in EF-hand calcium binding proteins. Bhattacharya S, Bunick CG, Chazin WJ. Biochim Biophys Acta 1742 69-79 (2004)
  5. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. J Mol Cell Cardiol 48 882-892 (2010)
  6. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Apostolovic B, Danial M, Klok HA. Chem Soc Rev 39 3541-3575 (2010)
  7. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Tardiff JC. Heart Fail Rev 10 237-248 (2005)
  8. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Metzger JM, Westfall MV. Circ Res 94 146-158 (2004)
  9. Thin filament mutations: developing an integrative approach to a complex disorder. Tardiff JC. Circ Res 108 765-782 (2011)
  10. Biology of the troponin complex in cardiac myocytes. Parmacek MS, Solaro RJ. Prog Cardiovasc Dis 47 159-176 (2004)
  11. Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Wei B, Jin JP. Arch Biochem Biophys 505 144-154 (2011)
  12. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Wei B, Jin JP. Gene 582 1-13 (2016)
  13. Structural based insights into the role of troponin in cardiac muscle pathophysiology. Li MX, Wang X, Sykes BD. J Muscle Res Cell Motil 25 559-579 (2004)
  14. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Solaro RJ, Rosevear P, Kobayashi T. Biochem Biophys Res Commun 369 82-87 (2008)
  15. Comprehensive analysis of protein modifications by top-down mass spectrometry. Zhang H, Ge Y. Circ Cardiovasc Genet 4 711 (2011)
  16. Integration of troponin I phosphorylation with cardiac regulatory networks. Solaro RJ, Henze M, Kobayashi T. Circ Res 112 355-366 (2013)
  17. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, Plein S, Mueller C, Haaf P. Intern Emerg Med 12 147-155 (2017)
  18. Protein phosphorylation and signal transduction in cardiac thin filaments. Solaro RJ, Kobayashi T. J Biol Chem 286 9935-9940 (2011)
  19. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Grabarek Z. Biochim Biophys Acta 1813 913-921 (2011)
  20. Molecular and cellular aspects of troponin cardiomyopathies. Gomes AV, Potter JD. Ann N Y Acad Sci 1015 214-224 (2004)
  21. Pyrene: a probe to study protein conformation and conformational changes. Bains G, Patel AB, Narayanaswami V. Molecules 16 7909-7935 (2011)
  22. Targeting the sarcomere to correct muscle function. Hwang PM, Sykes BD. Nat Rev Drug Discov 14 313-328 (2015)
  23. High-sensitivity assays for troponin in patients with cardiac disease. Westermann D, Neumann JT, Sörensen NA, Blankenberg S. Nat Rev Cardiol 14 472-483 (2017)
  24. Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Sumandea MP, Burkart EM, Kobayashi T, De Tombe PP, Solaro RJ. Ann N Y Acad Sci 1015 39-52 (2004)
  25. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Sheng JJ, Jin JP. Gene 576 385-394 (2016)
  26. The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Sorsa T, Pollesello P, Solaro RJ. Mol Cell Biochem 266 87-107 (2004)
  27. Ca(2+) exchange with troponin C and cardiac muscle dynamics. Davis JP, Tikunova SB. Cardiovasc Res 77 619-626 (2008)
  28. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, Ruslinda AR, Nuzaihan M N M, Azman AH, Zaki M, Tang TH. Biosens Bioelectron 70 209-220 (2015)
  29. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Li MX, Hwang PM. Gene 571 153-166 (2015)
  30. Autoimmune myocarditis: past, present and future. Leuschner F, Katus HA, Kaya Z. J Autoimmun 33 282-289 (2009)
  31. Cardiac thin filament regulation and the Frank-Starling mechanism. Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, Minamisawa S, Ishiwata S, Fukuda N. J Physiol Sci 64 221-232 (2014)
  32. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y. Biotechnol Adv 35 575-596 (2017)
  33. Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca(2+)-sensitivity in the pathogenesis of cardiomyopathy. Messer AE, Marston SB. Front Physiol 5 315 (2014)
  34. Historical perspective on heart function: the Frank-Starling Law. Sequeira V, van der Velden J. Biophys Rev 7 421-447 (2015)
  35. Muscle Fatigue from the Perspective of a Single Crossbridge. Debold EP, Fitts RH, Sundberg CW, Nosek TM. Med Sci Sports Exerc 48 2270-2280 (2016)
  36. Cardiac troponins and autoimmunity: their role in the pathogenesis of myocarditis and of heart failure. Kaya Z, Katus HA, Rose NR. Clin Immunol 134 80-88 (2010)
  37. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Johnston JR, Chase PB, Pinto JR. Oncotarget 9 1461-1482 (2018)
  38. Designing heart performance by gene transfer. Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Physiol Rev 88 1567-1651 (2008)
  39. The molecular basis of the steep force-calcium relation in heart muscle. Sun YB, Irving M. J Mol Cell Cardiol 48 859-865 (2010)
  40. Regulating the contraction of insect flight muscle. Bullard B, Pastore A. J Muscle Res Cell Motil 32 303-313 (2011)
  41. Cardiac troponin mutations and restrictive cardiomyopathy. Parvatiyar MS, Pinto JR, Dweck D, Potter JD. J Biomed Biotechnol 2010 350706 (2010)
  42. Potential molecular mechanisms underlying muscle fatigue mediated by reactive oxygen and nitrogen species. Debold EP. Front Physiol 6 239 (2015)
  43. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Sheng JJ, Jin JP. Front Physiol 5 165 (2014)
  44. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. Day SM, Westfall MV, Metzger JM. J Mol Med (Berl) 85 911-921 (2007)
  45. Posttranslational modifications of cardiac troponin T: an overview. Streng AS, de Boer D, van der Velden J, van Dieijen-Visser MP, Wodzig WK. J Mol Cell Cardiol 63 47-56 (2013)
  46. Sarcomere control mechanisms and the dynamics of the cardiac cycle. Solaro RJ. J Biomed Biotechnol 2010 105648 (2010)
  47. Troponin: regulatory function and disorders. Ohtsuki I, Morimoto S. Biochem Biophys Res Commun 369 62-73 (2008)
  48. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Li MX, Robertson IM, Sykes BD. Biochem Biophys Res Commun 369 88-99 (2008)
  49. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Cheng Y, Regnier M. Arch Biochem Biophys 601 11-21 (2016)
  50. EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view. Capozzi F, Casadei F, Luchinat C. J Biol Inorg Chem 11 949-962 (2006)
  51. Inherited cardiomyopathies as a troponin disease. Harada K, Morimoto S. Jpn J Physiol 54 307-318 (2004)
  52. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Tobacman LS. Biophys J 120 1-9 (2021)
  53. Structures reveal details of small molecule binding to cardiac troponin. Cai F, Li MX, Pineda-Sanabria SE, Gelozia S, Lindert S, West F, Sykes BD, Hwang PM. J Mol Cell Cardiol 101 134-144 (2016)
  54. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Peng Y, Ayaz-Guner S, Yu D, Ge Y. Proteomics Clin Appl 8 554-568 (2014)
  55. Heart failure, myocardial stunning, and troponin: a key regulator of the cardiac myofilament. Murphy AM. Congest Heart Fail 12 32-8; quiz 39-40 (2006)
  56. Review article: elevated troponin: diagnostic gold or fool's gold? Rahman A, Broadley SA. Emerg Med Australas 26 125-130 (2014)
  57. Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Cimiotti D, Budde H, Hassoun R, Jaquet K. Int J Mol Sci 22 E558 (2021)
  58. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies. Kalyva A, Parthenakis FI, Marketou ME, Kontaraki JE, Vardas PE. J Muscle Res Cell Motil 35 161-178 (2014)
  59. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Marques MA, de Oliveira GA. Front Physiol 7 429 (2016)
  60. Fluorescent Immunoassays for Detection and Quantification of Cardiac Troponin I: A Short Review. Radha R, Shahzadi SK, Al-Sayah MH. Molecules 26 4812 (2021)
  61. Moving beyond simple answers to complex disorders in sarcomeric cardiomyopathies: the role of integrated systems. Deranek AE, Klass MM, Tardiff JC. Pflugers Arch 471 661-671 (2019)
  62. Targeted proteomics of myofilament phosphorylation and other protein posttranslational modifications. Ramirez-Correa GA, Martinez-Ferrando MI, Zhang P, Murphy AM. Proteomics Clin Appl 8 543-553 (2014)
  63. Three-dimensional structure of the human myosin thick filament: clinical implications. Al-Khayat HA. Glob Cardiol Sci Pract 2013 280-302 (2013)
  64. Development of optical biosensor technologies for cardiac troponin recognition. Abdolrahim M, Rabiee M, Alhosseini SN, Tahriri M, Yazdanpanah S, Tayebi L. Anal Biochem 485 1-10 (2015)
  65. Fifty years of contractility research post sliding filament hypothesis. Sellers JR. J Muscle Res Cell Motil 25 475-482 (2004)
  66. Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis. Wakabayashi T. Proc Jpn Acad Ser B Phys Biol Sci 91 321-350 (2015)
  67. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Philos Trans R Soc Lond B Biol Sci 377 20210325 (2022)
  68. Order-Disorder Transitions in the Cardiac Troponin Complex. Metskas LA, Rhoades E. J Mol Biol 428 2965-2977 (2016)
  69. Present and future biochemical markers for detection of acute coronary syndrome. Eriksson S, Wittfooth S, Pettersson K. Crit Rev Clin Lab Sci 43 427-495 (2006)
  70. Troponin I modulation of cardiac performance: Plasticity in the survival switch. Biesiadecki BJ, Westfall MV. Arch Biochem Biophys 664 9-14 (2019)
  71. Use and interpretation of cardiac troponins in the ED. Tsai SH, Chu SJ, Hsu CW, Cheng SM, Yang SP. Am J Emerg Med 26 331-341 (2008)
  72. Biomarkers of cardiac disease. Marian AJ, Nambi V. Expert Rev Mol Diagn 4 805-820 (2004)
  73. In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart. Shimozawa T, Hirokawa E, Kobirumaki-Shimozawa F, Oyama K, Shintani SA, Terui T, Kushida Y, Tsukamoto S, Fujii T, Ishiwata S, Fukuda N. Prog Biophys Mol Biol 124 31-40 (2017)
  74. Troponin levels after cardiac electrophysiology procedures: review of the literature. Alaiti MA, Maroo A, Edel TB. Pacing Clin Electrophysiol 32 800-810 (2009)
  75. Biophysical Derangements in Genetic Cardiomyopathies. Lynn ML, Lehman SJ, Tardiff JC. Heart Fail Clin 14 147-159 (2018)
  76. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Mondal A, Jin JP. Front Physiol 7 449 (2016)
  77. Use of biomarkers in the emergency department and chest pain unit. Jaffe AS. Cardiol Clin 23 453-65, vi (2005)
  78. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential. Thompson BR, Metzger JM. Anat Rec (Hoboken) 297 1663-1669 (2014)
  79. Decreased Myofilament Calcium Sensitivity Plays a Significant Role in Muscle Fatigue. Debold EP. Exerc Sport Sci Rev 44 144-149 (2016)
  80. Molecular cardiology in translation: gene, cell and chemical-based experimental therapeutics for the failing heart. Turner I, Belema-Bedada F, Martindale J, Townsend D, Wang W, Palpant N, Yasuda SC, Barnabei M, Fomicheva E, Metzger JM. J Cardiovasc Transl Res 1 317-327 (2008)
  81. The Importance of Intrinsically Disordered Segments of Cardiac Troponin in Modulating Function by Phosphorylation and Disease-Causing Mutations. Papadaki M, Marston SB. Front Physiol 7 508 (2016)
  82. Modeling Human Cardiac Thin Filament Structures. Rynkiewicz MJ, Pavadai E, Lehman W. Front Physiol 13 932333 (2022)
  83. Clostridial myonecrosis, haemolytic anaemia, hepatopathy, osteitis and transient hypertrophic cardiomyopathy after intramuscular injection in a Thoroughbred gelding. Anderson FL, Secombe CJ, Lester GD. Aust Vet J 91 204-208 (2013)
  84. Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A. Marston S. J Muscle Res Cell Motil 44 201-208 (2023)
  85. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Szikora S, Görög P, Mihály J. Int J Mol Sci 23 5306 (2022)
  86. The missing links within troponin. Marques MA, Parvatiyar MS, Yang W, de Oliveira GAP, Pinto JR. Arch Biochem Biophys 663 95-100 (2019)
  87. The structure of the vertebrate striated muscle thin filament: a tribute to the contributions of Jean Hanson. Lehman W, Craig R. J Muscle Res Cell Motil 25 455-466 (2004)
  88. Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics. van de Locht M, Borsboom TC, Winter JM, Ottenheijm CAC. Int J Mol Sci 22 9187 (2021)
  89. High sensitivity troponins in contemporary cardiology practice: are we turning a corner? Mariathas M, Olechowski B, Mahmoudi M, Curzen N. Expert Rev Cardiovasc Ther 16 49-57 (2018)
  90. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Lu Y, Jeffries CM, Trewhella J. Biopolymers 95 505-516 (2011)
  91. Cardiac Sarcomere Signaling in Health and Disease. Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Int J Mol Sci 23 16223 (2022)
  92. Cardiac Troponin, Cognitive Function, and Dementia: A Systematic Review. Zonneveld MH, Abbel D, le Cessie S, Jukema JW, Noordam R, Trompet S. Aging Dis 14 386-397 (2023)
  93. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy. England J, Loughna S, Rutland CS. J Cardiovasc Dev Dis 4 E8 (2017)
  94. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Rasmi Y, Mosa OF, Alipour S, Heidari N, Javanmard F, Golchin A, Gholizadeh-Ghaleh Aziz S. Front Mol Biosci 9 821155 (2022)
  95. The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. Bevere M, Morabito C, Mariggiò MA, Guarnieri S. Oxid Med Cell Longev 2022 7714542 (2022)
  96. Differentiating Cardiac Troponin Levels During Cardiac Myosin Inhibition or Cardiac Myosin Activation Treatments: Drug Effect or the Canary in the Coal Mine? Lee MMY, Masri A. Curr Heart Fail Rep (2023)
  97. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Arata T. Int J Mol Sci 21 E672 (2020)
  98. Nucleus Mechanosensing in Cardiomyocytes. Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Int J Mol Sci 24 13341 (2023)
  99. Role of the interaction between troponin T and AMP deaminase by zinc bridge in modulating muscle contraction and ammonia production. Ronca F, Raggi A. Mol Cell Biochem (2023)
  100. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. Matsuo T, Peters J. Life (Basel) 12 1259 (2022)

Articles citing this publication (352)



Related citations provided by authors (2)