1j53 Citations

Structural basis for proofreading during replication of the Escherichia coli chromosome.

Structure 10 535-46 (2002)
Cited: 96 times
EuropePMC logo PMID: 11937058

Abstract

The epsilon subunit of the Escherichia coli replicative DNA polymerase III is the proofreading 3'-5' exonuclease. Structures of its catalytic N-terminal domain (epsilon186) were determined at two pH values (5.8 and 8.5) at resolutions of 1.7-1.8 A, in complex with two Mn(II) ions and a nucleotide product of its reaction, thymidine 5'-monophosphate. The protein structure is built around a core five-stranded beta sheet that is a common feature of members of the DnaQ superfamily. The structures were identical, except for differences in the way TMP and water molecules are coordinated to the binuclear metal center in the active site. These data are used to develop a mechanism for epsilon and to produce a plausible model of the complex of epsilon186 with DNA.

Reviews - 1j53 mentioned but not cited (1)

  1. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Robinson A, Causer RJ, Dixon NE. Curr Drug Targets 13 352-372 (2012)

Articles - 1j53 mentioned but not cited (17)

  1. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. J Mol Biol 331 991-1004 (2003)
  2. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z. Proc Natl Acad Sci U S A 112 9436-9441 (2015)
  3. Structural insight into poly(A) binding and catalytic mechanism of human PARN. Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H. EMBO J 24 4082-4093 (2005)
  4. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, Kawamura-Tsuzuku J, Takahasi K, Yamamoto T, Inagaki F. J Biol Chem 284 13244-13255 (2009)
  5. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch. Zhang D, Xiong H, Shan J, Xia X, Trudeau VL. Biol Direct 3 48 (2008)
  6. Crystallographic structure of the nuclease domain of 3'hExo, a DEDDh family member, bound to rAMP. Cheng Y, Patel DJ. J Mol Biol 343 305-312 (2004)
  7. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Zuo Y, Zheng H, Wang Y, Chruszcz M, Cymborowski M, Skarina T, Savchenko A, Malhotra A, Minor W. Structure 15 417-428 (2007)
  8. Structure of the Escherichia coli DNA polymerase III epsilon-HOT proofreading complex. Kirby TW, Harvey S, DeRose EF, Chalov S, Chikova AK, Perrino FW, Schaaper RM, London RE, Pedersen LC. J Biol Chem 281 38466-38471 (2006)
  9. Protein-protein HADDocking using exclusively pseudocontact shifts. Schmitz C, Bonvin AM. J Biomol NMR 50 263-266 (2011)
  10. Genetic and biochemical characterization of Drosophila Snipper: A promiscuous member of the metazoan 3'hExo/ERI-1 family of 3' to 5' exonucleases. Kupsco JM, Wu MJ, Marzluff WF, Thapar R, Duronio RJ. RNA 12 2103-2117 (2006)
  11. CoViTris2020 and ChloViD2020: a striking new hope in COVID-19 therapy. Rabie AM. Mol Divers 25 1839-1854 (2021)
  12. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists. Chen KM, Campbell E, Pandey RR, Yang Z, McCarthy AA, Pillai RS. RNA 21 833-839 (2015)
  13. Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. Huang KW, Liu TC, Liang RY, Chu LY, Cheng HL, Chu JW, Hsiao YY. PLoS Biol 16 e2005653 (2018)
  14. Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. Chaves OA, Fintelman-Rodrigues N, Wang X, Sacramento CQ, Temerozo JR, Ferreira AC, Mattos M, Pereira-Dutra F, Bozza PT, Castro-Faria-Neto HC, Russo JJ, Ju J, Souza TML. Viruses 14 1458 (2022)
  15. The structure of human EXD2 reveals a chimeric 3' to 5' exonuclease domain that discriminates substrates via metal coordination. Park J, Lee SY, Jeong H, Kang MG, Van Haute L, Minczuk M, Seo JK, Jun Y, Myung K, Rhee HW, Lee C. Nucleic Acids Res 47 7078-7093 (2019)
  16. Recognition and processing of double-stranded DNA by ExoX, a distributive 3'-5' exonuclease. Wang T, Sun HL, Cheng F, Zhang XE, Bi L, Jiang T. Nucleic Acids Res 41 7556-7565 (2013)
  17. DnaQ mediates directional spacer acquisition in the CRISPR-Cas system by a time-dependent mechanism. Tang D, Jia T, Luo Y, Mou B, Cheng J, Qi S, Yao S, Su Z, Yu Y, Chen Q. Innovation (Camb) 4 100495 (2023)


Reviews citing this publication (14)

  1. Cellular DNA replicases: components and dynamics at the replication fork. Johnson A, O'Donnell M. Annu Rev Biochem 74 283-315 (2005)
  2. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Snijder EJ, Decroly E, Ziebuhr J. Adv Virus Res 96 59-126 (2016)
  3. Nucleases: diversity of structure, function and mechanism. Yang W. Q Rev Biophys 44 1-93 (2011)
  4. Protein NMR using paramagnetic ions. Otting G. Annu Rev Biophys 39 387-405 (2010)
  5. DNA replicases from a bacterial perspective. McHenry CS. Annu Rev Biochem 80 403-436 (2011)
  6. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Nishino T, Morikawa K. Oncogene 21 9022-9032 (2002)
  7. Replicative DNA polymerases. Johansson E, Dixon N. Cold Spring Harb Perspect Biol 5 a012799 (2013)
  8. Protein--protein interactions in the eubacterial replisome. Schaeffer PM, Headlam MJ, Dixon NE. IUBMB Life 57 5-12 (2005)
  9. Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Robinson A, Brzoska AJ, Turner KM, Withers R, Harry EJ, Lewis PJ, Dixon NE. Microbiol Mol Biol Rev 74 273-297 (2010)
  10. A structural view of bacterial DNA replication. Oakley AJ. Protein Sci 28 990-1004 (2019)
  11. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Hastie KM, Bale S, Kimberlin CR, Saphire EO. Curr Opin Virol 2 151-156 (2012)
  12. Proteomic dissection of DNA polymerization. Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Expert Rev Proteomics 3 197-211 (2006)
  13. Nano-RNases: oligo- or dinucleases? Lee VT, Sondermann H, Winkler WC. FEMS Microbiol Rev 46 fuac038 (2022)
  14. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Kuznetsova AA, Fedorova OS, Kuznetsov NA. Int J Mol Sci 23 6373 (2022)

Articles citing this publication (64)

  1. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Kennedy S, Wang D, Ruvkun G. Nature 427 645-649 (2004)
  2. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Proc Natl Acad Sci U S A 108 2396-2401 (2011)
  3. QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Maiti M, Lee HC, Liu Y. Genes Dev 21 590-600 (2007)
  4. The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering. de Silva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T. J Biol Chem 282 10537-10543 (2007)
  5. Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y. Science 373 1142-1146 (2021)
  6. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. Isabella VM, Clark VL. BMC Genomics 12 51 (2011)
  7. A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. Jergic S, Horan NP, Elshenawy MM, Mason CE, Urathamakul T, Ozawa K, Robinson A, Goudsmits JM, Wang Y, Pan X, Beck JL, van Oijen AM, Huber T, Hamdan SM, Dixon NE. EMBO J 32 1322-1333 (2013)
  8. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH. Elife 4 e11134 (2015)
  9. The theta subunit of Escherichia coli DNA polymerase III: a role in stabilizing the epsilon proofreading subunit. Taft-Benz SA, Schaaper RM. J Bacteriol 186 2774-2780 (2004)
  10. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ, Foo JL, Kim HK, Carr PD, Liu JW, Salem G, Ollis DL. J Mol Biol 375 1189-1196 (2008)
  11. Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease. Hastie KM, King LB, Zandonatti MA, Saphire EO. PLoS One 7 e44211 (2012)
  12. Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Marchetti A, Jehle S, Felletti M, Knight MJ, Wang Y, Xu ZQ, Park AY, Otting G, Lesage A, Emsley L, Dixon NE, Pintacuda G. Angew Chem Int Ed Engl 51 10756-10759 (2012)
  13. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Zuo Y, Wang Y, Malhotra A. Structure 13 973-984 (2005)
  14. The human TREX2 3' -> 5'-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. Perrino FW, Harvey S, McMillin S, Hollis T. J Biol Chem 280 15212-15218 (2005)
  15. Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease. Horio T, Murai M, Inoue T, Hamasaki T, Tanaka T, Ohgi T. FEBS Lett 577 111-116 (2004)
  16. The 1.4-A crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme. Jonstrup AT, Andersen KR, Van LB, Brodersen DE. Nucleic Acids Res 35 3153-3164 (2007)
  17. The DNA Exonucleases of Escherichia coli. Lovett ST. EcoSal Plus 4 (2011)
  18. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. Jackson CJ, Carr PD, Liu JW, Watt SJ, Beck JL, Ollis DL. J Mol Biol 367 1047-1062 (2007)
  19. Efficient chi-tensor determination and NH assignment of paramagnetic proteins. Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T. J Biomol NMR 35 79-87 (2006)
  20. Structure of the dimeric exonuclease TREX1 in complex with DNA displays a proline-rich binding site for WW Domains. Brucet M, Querol-Audí J, Serra M, Ramirez-Espain X, Bertlik K, Ruiz L, Lloberas J, Macias MJ, Fita I, Celada A. J Biol Chem 282 14547-14557 (2007)
  21. Reaction mechanism of the epsilon subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues. Cisneros GA, Perera L, Schaaper RM, Pedersen LC, London RE, Pedersen LG, Darden TA. J Am Chem Soc 131 1550-1556 (2009)
  22. Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. Toste Rêgo A, Holding AN, Kent H, Lamers MH. EMBO J 32 1334-1343 (2013)
  23. Self-correcting mismatches during high-fidelity DNA replication. Fernandez-Leiro R, Conrad J, Yang JC, Freund SM, Scheres SH, Lamers MH. Nat Struct Mol Biol 24 140-143 (2017)
  24. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. Luan G, Cai Z, Li Y, Ma Y. Biotechnol Biofuels 6 137 (2013)
  25. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography. Sauguet L, Raia P, Henneke G, Delarue M. Nat Commun 7 12227 (2016)
  26. Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation. Hsiao YY, Yang CC, Lin CL, Lin JL, Duh Y, Yuan HS. Nat Chem Biol 7 236-243 (2011)
  27. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system. Drabavicius G, Sinkunas T, Silanskas A, Gasiunas G, Venclovas Č, Siksnys V. EMBO Rep 19 e45543 (2018)
  28. Potential treatment with Chinese and Western medicine targeting NSP14 of SARS-CoV-2. Liu C, Zhu X, Lu Y, Zhang X, Jia X, Yang T. J Pharm Anal 11 272-277 (2021)
  29. Structure of the theta subunit of Escherichia coli DNA polymerase III in complex with the epsilon subunit. Keniry MA, Park AY, Owen EA, Hamdan SM, Pintacuda G, Otting G, Dixon NE. J Bacteriol 188 4464-4473 (2006)
  30. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Rannou O, Le Chatelier E, Larson MA, Nouri H, Dalmais B, Laughton C, Jannière L, Soultanas P. Nucleic Acids Res 41 5303-5320 (2013)
  31. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, epsilon, θ and β reveals a highly flexible arrangement of the proofreading domain. Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE. Nucleic Acids Res 41 5354-5367 (2013)
  32. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. Barnes RL, Shi H, Kolev NG, Tschudi C, Ullu E. PLoS Pathog 8 e1002678 (2012)
  33. Application of electrospray ionization mass spectrometry to study the hydrophobic interaction between the epsilon and theta subunits of DNA polymerase III. Gupta R, Hamdan SM, Dixon NE, Sheil MM, Beck JL. Protein Sci 13 2878-2887 (2004)
  34. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Hsiao YY, Duh Y, Chen YP, Wang YT, Yuan HS. Nucleic Acids Res 40 8144-8154 (2012)
  35. Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit. Su XC, Jergic S, Keniry MA, Dixon NE, Otting G. Nucleic Acids Res 35 2825-2832 (2007)
  36. Strategies for measurements of pseudocontact shifts in protein NMR spectroscopy. John M, Otting G. Chemphyschem 8 2309-2313 (2007)
  37. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Nat Commun 11 5379 (2020)
  38. The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III {theta} subunit. Chikova AK, Schaaper RM. J Bacteriol 187 5528-5536 (2005)
  39. Defects in DNA degradation revealed in crystal structures of TREX1 exonuclease mutations linked to autoimmune disease. Bailey SL, Harvey S, Perrino FW, Hollis T. DNA Repair (Amst) 11 65-73 (2012)
  40. A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor. Shen Y, Tang XF, Yokoyama H, Matsui E, Matsui I. Nucleic Acids Res 32 158-168 (2004)
  41. The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker. Ozawa K, Jergic S, Park AY, Dixon NE, Otting G. Nucleic Acids Res 36 5074-5082 (2008)
  42. Crystal structure of CRN-4: implications for domain function in apoptotic DNA degradation. Hsiao YY, Nakagawa A, Shi Z, Mitani S, Xue D, Yuan HS. Mol Cell Biol 29 448-457 (2009)
  43. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints. Kuenze G, Bonneau R, Leman JK, Meiler J. Structure 27 1721-1734.e5 (2019)
  44. Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Brucet M, Querol-Audí J, Bertlik K, Lloberas J, Fita I, Celada A. Protein Sci 17 2059-2069 (2008)
  45. The crystal structure of XC847 from Xanthomonas campestris: a 3'-5' oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix. Chin KH, Yang CY, Chou CC, Wang AH, Chou SH. Proteins 65 1036-1040 (2006)
  46. Phage like it HOT: solution structure of the bacteriophage P1-encoded HOT protein, a homolog of the theta subunit of E. coli DNA polymerase III. Derose EF, Kirby TW, Mueller GA, Chikova AK, Schaaper RM, London RE. Structure 12 2221-2231 (2004)
  47. DNA binding induces active site conformational change in the human TREX2 3'-exonuclease. de Silva U, Perrino FW, Hollis T. Nucleic Acids Res 37 2411-2417 (2009)
  48. Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core. Conte E, Vincelli G, Schaaper RM, Bressanin D, Stefan A, Dal Piaz F, Hochkoeppler A. Arch Biochem Biophys 523 135-143 (2012)
  49. Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy. John M, Headlam MJ, Dixon NE, Otting G. J Biomol NMR 37 43-51 (2007)
  50. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of XC847, a 3'-5' oligoribonuclease from Xanthomonas campestris. Wu YY, Chin KH, Chou CC, Lee CC, Shr HL, Gao FP, Lyu PC, Wang AH, Chou SH. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 902-905 (2005)
  51. Probing the roles of active site residues in the 3'-5' exonuclease of the Werner syndrome protein. Choi JM, Kang SY, Bae WJ, Jin KS, Ree M, Cho Y. J Biol Chem 282 9941-9951 (2007)
  52. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Nucleic Acids Res 45 12425-12440 (2017)
  53. Hydrolysis of the 5'-p-nitrophenyl ester of TMP by oligoribonucleases (ORN) from Escherichia coli, Mycobacterium smegmatis, and human. Young Park A, Elvin CM, Hamdan SM, Wood RJ, Liyou NE, Hamwood TE, Jennings PA, Dixon NE. Protein Expr Purif 57 180-187 (2008)
  54. Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids. Duh Y, Hsiao YY, Li CL, Huang JC, Yuan HS. Protein Sci 24 1934-1941 (2015)
  55. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Imprachim N, Yosaatmadja Y, Newman JA. Nucleic Acids Res 51 475-487 (2023)
  56. Dysfunctional proofreading in the Escherichia coli DNA polymerase III core. Lehtinen DA, Perrino FW. Biochem J 384 337-348 (2004)
  57. Mutator and antimutator effects of the bacteriophage P1 hot gene product. Chikova AK, Schaaper RM. J Bacteriol 188 5831-5838 (2006)
  58. Effects of DNA3'pp5'G capping on 3' end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance. Chauleau M, Das U, Shuman S. Nucleic Acids Res 43 3197-3207 (2015)
  59. Replisome Dynamics during Chromosome Duplication. Kurth I, O'Donnell M. EcoSal Plus 3 (2009)
  60. Mutations that Separate the Functions of the Proofreading Subunit of the Escherichia coli Replicase. Whatley Z, Kreuzer KN. G3 (Bethesda) 5 1301-1311 (2015)
  61. Overexpression and purification of isotopically labeled Escherichia coli MutH for NMR studies. Dutta A, Rao BJ, Chary KV. Protein Expr Purif 29 252-258 (2003)
  62. On the Weak Binding and Spectroscopic Signature of SARS-CoV-2 nsp14 Interaction with RNA. Hassan A, Hassan A, Sedenho GC, Vitale PAM, Oliviera MN, Crespilho FN. Chembiochem 22 3410-3413 (2021)
  63. μ3-Oxo stabilized by three metal cations is a sufficient nucleophile for enzymatic hydrolysis of phosphate monoesters. Ji JN, Chen SL. Dalton Trans 45 2517-2522 (2016)
  64. Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases. Betancurt-Anzola L, Martínez-Carranza M, Delarue M, Zatopek KM, Gardner AF, Sauguet L. Nat Commun 14 8306 (2023)