1jao Citations

X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.

Eur J Biochem 228 830-41 (1995)

Abstract

Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases involved in tissue remodeling. They have also been implicated in various disease processes including tumour invasion and joint destruction and are therefore attractive targets for inhibitor design. For rational drug design, information of inhibitor binding at the atomic level is essential. Recently, we have published the refined high-resolution crystal structure of the catalytic domain of human neutrophil collagenase (HNC) complexed with the inhibitor Pro-Leu-Gly-NHOH, which is a mimic for the unprimed (P3-P1) residues of a bound peptide substrate. We have now determined two additional HNC complexes formed with the thiol inhibitor HSCH2CH(CH2Ph)CO-L-Ala-Gly-NH2 and another hydroxamate inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, which were both refined to R-values of 0.183/0.198 at 0.240/0.225-nm resolution. The inhibitor thiol and hydroxamate groups ligand the catalytic zinc, giving rise to a slightly distorted tetrahedral and trigonal-bipyramidal coordination sphere, respectively. The thiol inhibitor diastereomer with S-configuration at the P1' residue (corresponding to an L-amino acid analog) binds to HNC. Its peptidyl moiety mimics binding of primed (P1'-P3') residues of the substrate. In combination with our first structure a continuous hexapeptide corresponding to a peptide substrate productively bound to HNC was constructed and energy-minimized. Proteolytic cleavage of this Michaelis complex is probably general base-catalyzed as proposed for thermolysin, i.e. a glutamate assists nucleophilic attack of a water molecule. Although there are many structural and mechanistic similarities to thermolysin, substrate binding to MMPs differs due to the interactions beyond S1'-P1'. While thermolysin binds substrates with a kink at P1', substrates are bound in an extended conformation in the collagenases. This property explains the tolerance of thermolysin for D-amino acid residues at the P1' position, in contrast to the collagenases. The third inhibitor, HONHCOCH(iBu)CO-L-Ala-Gly-NH2, unexpectedly binds in a different manner than anticipated from its design and binding mode in thermolysin. Its hydroxamate group obviously interacts with the catalytic zinc in a favourable bidentate manner, but in contrast its isobutyl (iBu) side chain remains outside of the S1' pocket, presumably due to severe constraints imposed by the adjacent planar hydroxamate group. Instead, the C-terminal Ala-Gly-NH2 tail adopts a bent conformation and inserts into this S1' pocket, presumably in a non-optimized manner. Both the isobutyl side chain and the C-terminal peptide tail could be replaced by other, better fitting groups.(ABSTRACT TRUNCATED AT 250 WORDS)

Articles - 1jao mentioned but not cited (4)



Reviews citing this publication (22)

  1. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Hu J, Van den Steen PE, Sang QX, Opdenakker G. Nat Rev Drug Discov 6 480-498 (2007)
  2. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Rüth FX, McKay DB, Bode W. Protein Sci 4 823-840 (1995)
  3. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Verma RP, Hansch C. Bioorg Med Chem 15 2223-2268 (2007)
  4. In search of partners: linking extracellular proteases to substrates. Overall CM, Blobel CP. Nat Rev Mol Cell Biol 8 245-257 (2007)
  5. Structural aspects of the metzincin clan of metalloendopeptidases. Gomis-Rüth FX. Mol Biotechnol 24 157-202 (2003)
  6. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Nagase H, Fields GB. Biopolymers 40 399-416 (1996)
  7. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Cawston TE. Pharmacol Ther 70 163-182 (1996)
  8. Matrix metalloproteinases and collagen catabolism. Lauer-Fields JL, Juska D, Fields GB. Biopolymers 66 19-32 (2002)
  9. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Stöcker W, Bode W. Curr Opin Struct Biol 5 383-390 (1995)
  10. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Maskos K. Biochimie 87 249-263 (2005)
  11. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Bode W, Maskos K. Biol Chem 384 863-872 (2003)
  12. Collagenase: a key enzyme in collagen turnover. Shingleton WD, Hodges DJ, Brick P, Cawston TE. Biochem Cell Biol 74 759-775 (1996)
  13. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, Yiotakis A, Dive V. Biochimie 87 393-402 (2005)
  14. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Maskos K, Bode W. Mol Biotechnol 25 241-266 (2003)
  15. A helping hand for collagenases: the haemopexin-like domain. Bode W. Structure 3 527-530 (1995)
  16. Matrix metalloproteases: variations on a theme. Borkakoti N. Prog Biophys Mol Biol 70 73-94 (1998)
  17. Structural and functional aspects of calcium binding in extracellular matrix proteins. Maurer P, Hohenester E. Matrix Biol 15 569-80; discussion 581 (1997)
  18. Triple-helical peptide analysis of collagenolytic protease activity. Lauer-Fields JL, Fields GB. Biol Chem 383 1095-1105 (2002)
  19. Conformational homogeneity in molecular recognition by proteolytic enzymes. Tyndall JD, Fairlie DP. J Mol Recognit 12 363-370 (1999)
  20. Preclinical development of metalloproteasis inhibitors in cancer therapy. Giavazzi R, Taraboletti G. Crit Rev Oncol Hematol 37 53-60 (2001)
  21. Endoproteinase-protein inhibitor interactions. Bode W, Fernandez-Catalan C, Nagase H, Maskos K. APMIS 107 3-10 (1999)
  22. Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. Ledwoń P, Papini AM, Rovero P, Latajka R. Materials (Basel) 14 3217 (2021)

Articles citing this publication (58)

  1. Analysis of zinc binding sites in protein crystal structures. Alberts IL, Nadassy K, Wodak SJ. Protein Sci 7 1700-1716 (1998)
  2. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Maskos K, Fernandez-Catalan C, Huber R, Bourenkov GP, Bartunik H, Ellestad GA, Reddy P, Wolfson MF, Rauch CT, Castner BJ, Davis R, Clarke HR, Petersen M, Fitzner JN, Cerretti DP, March CJ, Paxton RJ, Black RA, Bode W. Proc Natl Acad Sci U S A 95 3408-3412 (1998)
  3. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC. Nat Struct Mol Biol 11 60-66 (2004)
  4. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H. Proc Natl Acad Sci U S A 109 12461-12466 (2012)
  5. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Huber R, Hof P, Duarte RO, Moura JJ, Moura I, Liu MY, LeGall J, Hille R, Archer M, Romão MJ. Proc Natl Acad Sci U S A 93 8846-8851 (1996)
  6. Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity. Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Pourmotabbed T, Bode W, Goettig P. J Mol Biol 371 989-1006 (2007)
  7. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Ottl J, Gabriel D, Murphy G, Knäuper V, Tominaga Y, Nagase H, Kröger M, Tschesche H, Bode W, Moroder L. Chem Biol 7 119-132 (2000)
  8. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S. J Med Chem 48 5437-5447 (2005)
  9. The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. Brandstetter H, Grams F, Glitz D, Lang A, Huber R, Bode W, Krell HW, Engh RA. J Biol Chem 276 17405-17412 (2001)
  10. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. Bertini I, Fragai M, Luchinat C, Melikian M, Toccafondi M, Lauer JL, Fields GB. J Am Chem Soc 134 2100-2110 (2012)
  11. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure. Lang R, Kocourek A, Braun M, Tschesche H, Huber R, Bode W, Maskos K. J Mol Biol 312 731-742 (2001)
  12. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63). Schlagenhauf E, Etges R, Metcalf P. Structure 6 1035-1046 (1998)
  13. Crystal structure of the catalytic domain of human ADAM33. Orth P, Reichert P, Wang W, Prosise WW, Yarosh-Tomaine T, Hammond G, Ingram RN, Xiao L, Mirza UA, Zou J, Strickland C, Taremi SS, Le HV, Madison V. J Mol Biol 335 129-137 (2004)
  14. Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. Stultz CM. J Mol Biol 319 997-1003 (2002)
  15. Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors. Grams F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G, Gram F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi VMenta E, Oliva A, Zimmermann G. Biol Chem 382 1277-1285 (2001)
  16. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. Hu X, Shelver WH. J Mol Graph Model 22 115-126 (2003)
  17. Substrate recognition and selectivity of peptide deformylase. Similarities and differences with metzincins and thermolysin. Ragusa S, Mouchet P, Lazennec C, Dive V, Meinnel T. J Mol Biol 289 1445-1457 (1999)
  18. A practical approach to docking of zinc metalloproteinase inhibitors. Hu X, Balaz S, Shelver WH. J Mol Graph Model 22 293-307 (2004)
  19. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, Paul LN, Das C. Biochemistry 53 3199-3217 (2014)
  20. Human ADAM33: protein maturation and localization. Garlisi CG, Zou J, Devito KE, Tian F, Zhu FX, Liu J, Shah H, Wan Y, Motasim Billah M, Egan RW, Umland SP. Biochem Biophys Res Commun 301 35-43 (2003)
  21. pH- and temperature-dependence of functional modulation in metalloproteinases. A comparison between neutrophil collagenase and gelatinases A and B. Fasciglione GF, Marini S, D'Alessio S, Politi V, Coletta M. Biophys J 79 2138-2149 (2000)
  22. 1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Betz M, Huxley P, Davies SJ, Mushtaq Y, Pieper M, Tschesche H, Bode W, Gomis-Rüth FX. Eur J Biochem 247 356-363 (1997)
  23. Crystal structure of the catalytic domain of MMP-16/MT3-MMP: characterization of MT-MMP specific features. Lang R, Braun M, Sounni NE, Noel A, Frankenne F, Foidart JM, Bode W, Maskos K. J Mol Biol 336 213-225 (2004)
  24. Structures of adamalysin II with peptidic inhibitors. Implications for the design of tumor necrosis factor alpha convertase inhibitors. Gomis-Rüth FX, Meyer EF, Kress LF, Politi V. Protein Sci 7 283-292 (1998)
  25. Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I. Temperini C, Innocenti A, Guerri A, Scozzafava A, Rusconi S, Supuran CT. Bioorg Med Chem Lett 17 2210-2215 (2007)
  26. Carbonic anhydrase inhibitors: inhibition of cytosolic/tumor-associated isoforms I, II, and IX with iminodiacetic carboxylates/hydroxamates also incorporating benzenesulfonamide moieties. Santos MA, Marques S, Vullo D, Innocenti A, Scozzafava A, Supuran CT. Bioorg Med Chem Lett 17 1538-1543 (2007)
  27. Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues. Huang KF, Chiou SH, Ko TP, Wang AH. Eur J Biochem 269 3047-3056 (2002)
  28. Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Marino G, Huesgen PF, Eckhard U, Overall CM, Schröder WP, Funk C. Biochem J 457 335-346 (2014)
  29. Crystal structure of full-length human collagenase 3 (MMP-13) with peptides in the active site defines exosites in the catalytic domain. Stura EA, Visse R, Cuniasse P, Dive V, Nagase H. FASEB J 27 4395-4405 (2013)
  30. Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). Nagase H, Suzuki K, Cawston TE, Brew K. Biochem J 325 ( Pt 1) 163-167 (1997)
  31. Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data. Brandstetter H, Engh RA, Von Roedern EG, Moroder L, Huber R, Bode W, Grams F. Protein Sci 7 1303-1309 (1998)
  32. 2 angstrom X-ray structure of adamalysin II complexed with a peptide phosphonate inhibitor adopting a retro-binding mode. Cirilli M, Gallina C, Gavuzzo E, Giordano C, Gomis-Rüth FX, Gorini B, Kress LF, Mazza F, Paradisi MP, Pochetti G, Politi V. FEBS Lett 418 319-322 (1997)
  33. Highly sensitive single-fibril erosion assay demonstrates mechanochemical switch in native collagen fibrils. Flynn BP, Tilburey GE, Ruberti JW. Biomech Model Mechanobiol 12 291-300 (2013)
  34. N-hydroxyurea--a versatile zinc binding function in the design of metalloenzyme inhibitors. Temperini C, Innocenti A, Scozzafava A, Supuran CT. Bioorg Med Chem Lett 16 4316-4320 (2006)
  35. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes. Terp GE, Christensen IT, Jørgensen FS. J Biomol Struct Dyn 17 933-946 (2000)
  36. Design, synthesis, and activity of caffeoyl pyrrolidine derivatives as potential gelatinase inhibitors. Li YL, Xu WF. Bioorg Med Chem 12 5171-5180 (2004)
  37. Protease inhibitors - part 5. Alkyl/arylsulfonyl- and arylsulfonylureido-/arylureido- glycine hydroxamate inhibitors of Clostridium histolyticum collagenase. Scozzafava A, Supuran CT. Eur J Med Chem 35 299-307 (2000)
  38. Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design, synthesis and structure-activity relationship. Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann K, Wollmann T. Bioorg Med Chem 10 3529-3544 (2002)
  39. Conformational selection and collagenolysis in type III collagen. Salsas-Escat R, Stultz CM. Proteins 78 325-335 (2010)
  40. Design, modelling, synthesis and biological evaluation of peptidomimetic phosphinates as inhibitors of matrix metalloproteinases MMP-2 and MMP-8. Bianchini G, Aschi M, Cavicchio G, Crucianelli M, Preziuso S, Gallina C, Nastari A, Gavuzzo E, Mazza F. Bioorg Med Chem 13 4740-4749 (2005)
  41. Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Hermenean A, Mariasiu T, Navarro-González I, Vegara-Meseguer J, Miuțescu E, Chakraborty S, Pérez-Sánchez H. Exp Ther Med 13 1671-1680 (2017)
  42. The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity. Knäuper V, Patterson ML, Gomis-Rüth FX, Smith B, Lyons A, Docherty AJ, Murphy G. Eur J Biochem 268 1888-1896 (2001)
  43. Enzyme-catalyzed gel proteolysis: an anomalous diffusion-controlled mechanism. Fadda GC, Lairez D, Arrio B, Carton JP, Larreta-Garde V. Biophys J 85 2808-2817 (2003)
  44. Comparison of the structure of human recombinant short form stromelysin by multidimensional heteronuclear NMR and X-ray crystallography. Gooley PR, O'Connell JF, Marcy AI, Cuca GC, Axel MG, Caldwell CG, Hagmann WK, Becker JW. J Biomol NMR 7 8-28 (1996)
  45. A novel mechanism of latency in matrix metalloproteinases. López-Pelegrín M, Ksiazek M, Karim AY, Guevara T, Arolas JL, Potempa J, Gomis-Rüth FX. J Biol Chem 290 4728-4740 (2015)
  46. A peptide hydroxamate library for enrichment of metalloproteinases: towards an affinity-based metalloproteinase profiling protocol. Geurink P, Klein T, Leeuwenburgh M, van der Marel G, Kauffman H, Bischoff R, Overkleeft H. Org Biomol Chem 6 1244-1250 (2008)
  47. Protease inhibitors. Part 12. Synthesis of potent matrix metalloproteinase and bacterial collagenase inhibitors incorporating sulfonylated N-4-nitrobenzyl-beta-alanine hydroxamate moieties. Scozzafava A, Ilies MA, Manole G, Supuran CT. Eur J Pharm Sci 11 69-79 (2000)
  48. Protease inhibitors. Part 8: synthesis of potent Clostridium histolyticum collagenase inhibitors incorporating sulfonylated L-alanine hydroxamate moieties. Scozzafava A, Supuran CT. Bioorg Med Chem 8 637-645 (2000)
  49. Protease inhibitors: Synthesis of L-alanine hydroxamate sulfonylated derivatives as inhibitors of clostridium histolyticum collagenase. Supuran CT, Briganti F, Mincione G, Scozzafava A. J Enzyme Inhib 15 111-128 (2000)
  50. The synthesis and biological evaluation of non-peptidic matrix metalloproteinase inhibitors. Martin FM, Beckett RP, Bellamy CL, Courtney PF, Davies SJ, Drummond AH, Dodd R, Pratt LM, Patel SR, Ricketts ML, Todd RS, Tuffnell AR, Ward JW, Whittaker M. Bioorg Med Chem Lett 9 2887-2892 (1999)
  51. Three-dimensional structure of fibrolase, the fibrinolytic enzyme from southern copperhead venom, modeled from the X-ray structure of adamalysin II and atrolysin C. Bolger MB, Swenson S, Markland FS. AAPS PharmSci 3 E16 (2001)
  52. Computational study of the catalytic domain of human neutrophil collagenase. specific role of the S3 and S'3 subsites in the interaction with a phosphonate inhibitor. Aschi M, Roccatano D, Di Nola A, Gallina C, Gavuzzo E, Pochetti G, Pieper M, Tschesche H, Mazza F. J Comput Aided Mol Des 16 213-225 (2002)
  53. QM/MM linear response method distinguishes ligand affinities for closely related metalloproteins. Khandelwal A, Balaz S. Proteins 69 326-339 (2007)
  54. Non-peptidic cysteine derivatives as inhibitors of matrix metalloproteinases. Müller JC, von Roedern EG, Grams F, Nagase H, Moroder L. Biol Chem 378 1475-1480 (1997)
  55. Expression of human membrane type 1 matrix metalloproteinase in Pichia pastoris. Roderfeld M, Büttner FH, Bartnik E, Tschesche H. Protein Expr Purif 19 369-374 (2000)
  56. Potent tumor targeting drug release system comprising MMP-2 specific peptide fragment with self-assembling characteristics. Hua D, Kong W, Zheng X, Zhou Z, Yu B, Li Y, Wang Y, Yang X, Liu C, Tang L, Li Y, Gong M. Drug Des Devel Ther 8 1839-1849 (2014)
  57. Phosphonate inhibitors of adamalysin II and matrix metalloproteinases. Gallina C, Gavuzzo E, Giordano C, Gorini B, Mazza F, Paglialunga-Paradisi M, Panini G, Pochetti G, Politi V. Ann N Y Acad Sci 878 700-702 (1999)
  58. A new class of potent reversible inhibitors of metallo-proteinases: C-terminal thiol-peptides as zinc-coordinating ligands. Peters K, Jahreis G, Kotters EM. J Enzyme Inhib 16 339-350 (2001)


Related citations provided by authors (2)

  1. The X-Ray Crystal Structure of the Catalytic Domain of Human Neutrophil Collagenase Inhibited by a Substrate Analogue Reveals the Essentials for Catalysis and Specificity. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H EMBO J. 13 1263- (1994)
  2. Structural Implications for the Role of the N Terminus in the 'Superactivation' of Collagenases. A Crystallographic Study. Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W FEBS Lett. 338 227- (1994)