1khx Citations

Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.

Abstract

Ligand-induced phosphorylation of the receptor-regulated Smads (R-Smads) is essential in the receptor Ser/Thr kinase-mediated TGF-beta signaling. The crystal structure of a phosphorylated Smad2, at 1.8 A resolution, reveals the formation of a homotrimer mediated by the C-terminal phosphoserine (pSer) residues. The pSer binding surface on the MH2 domain, frequently targeted for inactivation in cancers, is highly conserved among the Co- and R-Smads. This finding, together with mutagenesis data, pinpoints a functional interface between Smad2 and Smad4. In addition, the pSer binding surface on the MH2 domain coincides with the surface on R-Smads that is required for docking interactions with the serine-phosphorylated receptor kinases. These observations define a bifunctional role for the MH2 domain as a pSer-X-pSer binding module in receptor Ser/Thr kinase signaling pathways.

Reviews - 1khx mentioned but not cited (2)

  1. Chemoenzymatic Semisynthesis of Proteins. Thompson RE, Muir TW. Chem Rev 120 3051-3126 (2020)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1khx mentioned but not cited (19)



Reviews citing this publication (57)

  1. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Shi Y, Massagué J. Cell 113 685-700 (2003)
  2. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Derynck R, Zhang YE. Nature 425 577-584 (2003)
  3. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  4. The logic of TGFbeta signaling. Massagué J, Gomis RR. FEBS Lett 580 2811-2820 (2006)
  5. Two major Smad pathways in TGF-beta superfamily signalling. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Genes Cells 7 1191-1204 (2002)
  6. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat Rev Mol Cell Biol 7 473-483 (2006)
  7. Semisynthesis of proteins by expressed protein ligation. Muir TW. Annu Rev Biochem 72 249-289 (2003)
  8. Specificity, versatility, and control of TGF-β family signaling. Derynck R, Budi EH. Sci Signal 12 eaav5183 (2019)
  9. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. Bone Res 3 15005 (2015)
  10. TGF-β Signaling. Tzavlaki K, Moustakas A. Biomolecules 10 E487 (2020)
  11. Chemoselective ligation and modification strategies for peptides and proteins. Hackenberger CP, Schwarzer D. Angew Chem Int Ed Engl 47 10030-10074 (2008)
  12. TGF-β - an excellent servant but a bad master. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. J Transl Med 10 183 (2012)
  13. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Seoane J, Gomis RR. Cold Spring Harb Perspect Biol 9 a022277 (2017)
  14. How the Smads regulate transcription. Ross S, Hill CS. Int J Biochem Cell Biol 40 383-408 (2008)
  15. Role of Smads in TGFβ signaling. Heldin CH, Moustakas A. Cell Tissue Res 347 21-36 (2012)
  16. Protein ligation: an enabling technology for the biophysical analysis of proteins. Muralidharan V, Muir TW. Nat Methods 3 429-438 (2006)
  17. Structural determinants of Smad function in TGF-β signaling. Macias MJ, Martin-Malpartida P, Massagué J. Trends Biochem Sci 40 296-308 (2015)
  18. Nucleocytoplasmic shuttling of signal transducers. Xu L, Massagué J. Nat Rev Mol Cell Biol 5 209-219 (2004)
  19. Nucleocytoplasmic shuttling of Smad proteins. Hill CS. Cell Res 19 36-46 (2009)
  20. Regulation of TGF-beta signaling and its roles in progression of tumors. Miyazono K, Suzuki H, Imamura T. Cancer Sci 94 230-234 (2003)
  21. TGF-beta and the Smad signal transduction pathway. Mehra A, Wrana JL. Biochem Cell Biol 80 605-622 (2002)
  22. Integration of the TGF-beta pathway into the cellular signalling network. Lutz M, Knaus P. Cell Signal 14 977-988 (2002)
  23. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. Jin G, Hong W, Guo Y, Bai Y, Chen B. J Cancer 11 1505-1515 (2020)
  24. Microbes-induced EMT at the crossroad of inflammation and cancer. Hofman P, Vouret-Craviari V. Gut Microbes 3 176-185 (2012)
  25. Alterations in the Smad pathway in human cancers. Samanta D, Datta PK. Front Biosci (Landmark Ed) 17 1281-1293 (2012)
  26. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Yaffe MB, Smerdon SJ. Annu Rev Biophys Biomol Struct 33 225-244 (2004)
  27. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Yuan H, Marmorstein R. Biopolymers 99 98-111 (2013)
  28. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 a022111 (2016)
  29. Expressed protein ligation: a resourceful tool to study protein structure and function. Berrade L, Camarero JA. Cell Mol Life Sci 66 3909-3922 (2009)
  30. TGF-β signaling in health, disease, and therapeutics. Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. Signal Transduct Target Ther 9 61 (2024)
  31. Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ. J Diabetes 2 233-242 (2010)
  32. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. World J Gastroenterol 25 42-58 (2019)
  33. Recent advances in the application of expressed protein ligation to protein engineering. Hofmann RM, Muir TW. Curr Opin Biotechnol 13 297-303 (2002)
  34. Protein semi-synthesis: new proteins for functional and structural studies. Durek T, Becker CF. Biomol Eng 22 153-172 (2005)
  35. Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Ramamoorthi G, Sivalingam N. Tumour Biol 35 7295-7305 (2014)
  36. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Abdel Mouti M, Pauklin S. Mol Ther 29 920-936 (2021)
  37. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ. Clin Exp Pharmacol Physiol 39 661-667 (2012)
  38. Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads. Dupont S, Inui M, Newfeld SJ. FEBS Lett 586 1913-1920 (2012)
  39. Transforming growth factor-β in tumour development. Trelford CB, Dagnino L, Di Guglielmo GM. Front Mol Biosci 9 991612 (2022)
  40. Crosstalk between TGF-β signaling and epigenome. Bai J, Xi Q. Acta Biochim Biophys Sin (Shanghai) 50 60-67 (2018)
  41. Dissection of genetic pathways in C. elegans. Wang Z, Sherwood DR. Methods Cell Biol 106 113-157 (2011)
  42. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  43. Informatics approaches to understanding TGFbeta pathway regulation. Kahlem P, Newfeld SJ. Development 136 3729-3740 (2009)
  44. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. Cancers (Basel) 10 E247 (2018)
  45. Inteins: Localized Distribution, Gene Regulation, and Protein Engineering for Biological Applications. Pavankumar TL. Microorganisms 6 E19 (2018)
  46. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Garcia J, Delany AM. Bone 143 115791 (2021)
  47. The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Su E, Han X, Jiang G. Tumori 96 659-666 (2010)
  48. Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. Peng Y, Liu J, Inuzuka H, Wei W. J Biol Chem 299 104572 (2023)
  49. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. Elorza Ridaura I, Sorrentino S, Moroni L. Adv Sci (Weinh) 8 e2101837 (2021)
  50. The structures that underlie normal reproductive function. Lerch TF, Xu M, Jardetzky TS, Mayo KE, Radhakrishnan I, Kazer R, Shea LD, Woodruff TK. Mol Cell Endocrinol 267 1-5 (2007)
  51. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Cate RL. Front Endocrinol (Lausanne) 13 905324 (2022)
  52. Linking chemistry and biology for the study of protein function. Rauh D, Waldmann H. Angew Chem Int Ed Engl 46 826-829 (2007)
  53. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Lee S, Bae YS. Mol Cells 33 325-334 (2012)
  54. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Int J Mol Sci 24 6423 (2023)
  55. Smads "freeze" when they ski. Frederick JP, Wang XF. Structure 10 1607-1611 (2002)
  56. MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis. Hussein MA, Valinezhad K, Adel E, Munirathinam G. Cancers (Basel) 16 234 (2024)
  57. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Miyazawa K, Itoh Y, Fu H, Miyazono K. J Biol Chem 300 107256 (2024)

Articles citing this publication (108)