1khx Citations

Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.

Abstract

Ligand-induced phosphorylation of the receptor-regulated Smads (R-Smads) is essential in the receptor Ser/Thr kinase-mediated TGF-beta signaling. The crystal structure of a phosphorylated Smad2, at 1.8 A resolution, reveals the formation of a homotrimer mediated by the C-terminal phosphoserine (pSer) residues. The pSer binding surface on the MH2 domain, frequently targeted for inactivation in cancers, is highly conserved among the Co- and R-Smads. This finding, together with mutagenesis data, pinpoints a functional interface between Smad2 and Smad4. In addition, the pSer binding surface on the MH2 domain coincides with the surface on R-Smads that is required for docking interactions with the serine-phosphorylated receptor kinases. These observations define a bifunctional role for the MH2 domain as a pSer-X-pSer binding module in receptor Ser/Thr kinase signaling pathways.

Reviews - 1khx mentioned but not cited (2)

  1. Chemoenzymatic Semisynthesis of Proteins. Thompson RE, Muir TW. Chem Rev 120 3051-3126 (2020)
  2. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1khx mentioned but not cited (19)

  1. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Aragón E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massagué J, Macias MJ. Genes Dev 25 1275-1288 (2011)
  2. Phosphorylation in protein-protein binding: effect on stability and function. Nishi H, Hashimoto K, Panchenko AR. Structure 19 1807-1815 (2011)
  3. Sequence comparison by sequence harmony identifies subtype-specific functional sites. Pirovano W, Feenstra KA, Heringa J. Nucleic Acids Res 34 6540-6548 (2006)
  4. Multi-Harmony: detecting functional specificity from sequence alignment. Brandt BW, Feenstra KA, Heringa J. Nucleic Acids Res 38 W35-40 (2010)
  5. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Bourgeois B, Gilquin B, Tellier-Lebègue C, Östlund C, Wu W, Pérez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. Sci Signal 6 ra49 (2013)
  6. Structural and functional impact of cancer-related missense somatic mutations. Shi Z, Moult J. J Mol Biol 413 495-512 (2011)
  7. Covalent capture of phospho-dependent protein oligomerization by site-specific incorporation of a diazirine photo-cross-linker. Vila-Perelló M, Pratt MR, Tulin F, Muir TW. J Am Chem Soc 129 8068-8069 (2007)
  8. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. F1000Res 10 127 (2021)
  9. RGS5-TGFβ-Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Dasgupta S, Ghosh T, Dhar J, Bhuniya A, Nandi P, Das A, Saha A, Das J, Guha I, Banerjee S, Chakravarti M, Dasgupta PS, Alam N, Chakrabarti J, Majumdar S, Chakrabarti P, Storkus WJ, Baral R, Bose A. Cell Death Differ 28 3052-3076 (2021)
  10. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  11. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, Carmignac V, Faivre L, Joshi D, Kjær S, Hill CS. Elife 10 e63545 (2021)
  12. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census. Malhotra S, Alsulami AF, Heiyun Y, Ochoa BM, Jubb H, Forbes S, Blundell TL. PLoS One 14 e0219935 (2019)
  13. Structure of the N-terminal domain of the protein Expansion: an 'Expansion' to the Smad MH2 fold. Beich-Frandsen M, Aragón E, Llimargas M, Benach J, Riera A, Pous J, Macias MJ. Acta Crystallogr D Biol Crystallogr 71 844-853 (2015)
  14. Conformational landscape of multidomain SMAD proteins. Gomes T, Martin-Malpartida P, Ruiz L, Aragón E, Cordeiro TN, Macias MJ. Comput Struct Biotechnol J 19 5210-5224 (2021)
  15. Inhibition of transforming growth factor-beta by Tranilast reduces tumor growth and ameliorates fibrosis in colorectal cancer. Hashemzehi M, Yavari N, Rahmani F, Asgharzadeh F, Soleimani A, Shakour N, Avan A, Hadizadeh F, Fakhraie M, Marjaneh RM, Ferns GA, Reisi P, Ryzhikov M, Khazaei M, Hassanian SM. EXCLI J 20 601-613 (2021)
  16. Gastrodin attenuates renal injury and collagen deposition via suppression of the TGF-β1/Smad2/3 signaling pathway based on network pharmacology analysis. Wen Y, Zhang X, Wei L, Wu M, Cheng Y, Zheng H, Shen A, Fu C, Ali F, Long L, Lu Y, Li J, Peng J. Front Pharmacol 14 1082281 (2023)
  17. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  18. Integrating network pharmacology and experimental validation to decipher the pharmacological mechanism of DXXK in treating diabetic kidney injury. Zhang C, Ji Z, Xu N, Yuan J, Zeng W, Wang Y, He Q, Dong J, Zhang X, Yang D, Jiang W, Yan Y, Shang W, Chu J, Chu Q. Sci Rep 14 22319 (2024)
  19. Molecular docking analysis of imiquimod with the TGF-β targets for oral carcinoma. Pazhani J, Veeraraghavan VP, Jayaraman S. Bioinformation 19 467-470 (2023)


Reviews citing this publication (57)

  1. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Shi Y, Massagué J. Cell 113 685-700 (2003)
  2. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Derynck R, Zhang YE. Nature 425 577-584 (2003)
  3. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  4. The logic of TGFbeta signaling. Massagué J, Gomis RR. FEBS Lett 580 2811-2820 (2006)
  5. Two major Smad pathways in TGF-beta superfamily signalling. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Genes Cells 7 1191-1204 (2002)
  6. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat Rev Mol Cell Biol 7 473-483 (2006)
  7. Semisynthesis of proteins by expressed protein ligation. Muir TW. Annu Rev Biochem 72 249-289 (2003)
  8. Specificity, versatility, and control of TGF-β family signaling. Derynck R, Budi EH. Sci Signal 12 eaav5183 (2019)
  9. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. Bone Res 3 15005 (2015)
  10. TGF-β Signaling. Tzavlaki K, Moustakas A. Biomolecules 10 E487 (2020)
  11. Chemoselective ligation and modification strategies for peptides and proteins. Hackenberger CP, Schwarzer D. Angew Chem Int Ed Engl 47 10030-10074 (2008)
  12. TGF-β - an excellent servant but a bad master. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. J Transl Med 10 183 (2012)
  13. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Seoane J, Gomis RR. Cold Spring Harb Perspect Biol 9 a022277 (2017)
  14. How the Smads regulate transcription. Ross S, Hill CS. Int J Biochem Cell Biol 40 383-408 (2008)
  15. Role of Smads in TGFβ signaling. Heldin CH, Moustakas A. Cell Tissue Res 347 21-36 (2012)
  16. Protein ligation: an enabling technology for the biophysical analysis of proteins. Muralidharan V, Muir TW. Nat Methods 3 429-438 (2006)
  17. Structural determinants of Smad function in TGF-β signaling. Macias MJ, Martin-Malpartida P, Massagué J. Trends Biochem Sci 40 296-308 (2015)
  18. Nucleocytoplasmic shuttling of signal transducers. Xu L, Massagué J. Nat Rev Mol Cell Biol 5 209-219 (2004)
  19. Nucleocytoplasmic shuttling of Smad proteins. Hill CS. Cell Res 19 36-46 (2009)
  20. Regulation of TGF-beta signaling and its roles in progression of tumors. Miyazono K, Suzuki H, Imamura T. Cancer Sci 94 230-234 (2003)
  21. TGF-beta and the Smad signal transduction pathway. Mehra A, Wrana JL. Biochem Cell Biol 80 605-622 (2002)
  22. Integration of the TGF-beta pathway into the cellular signalling network. Lutz M, Knaus P. Cell Signal 14 977-988 (2002)
  23. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. Jin G, Hong W, Guo Y, Bai Y, Chen B. J Cancer 11 1505-1515 (2020)
  24. Microbes-induced EMT at the crossroad of inflammation and cancer. Hofman P, Vouret-Craviari V. Gut Microbes 3 176-185 (2012)
  25. Alterations in the Smad pathway in human cancers. Samanta D, Datta PK. Front Biosci (Landmark Ed) 17 1281-1293 (2012)
  26. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Yaffe MB, Smerdon SJ. Annu Rev Biophys Biomol Struct 33 225-244 (2004)
  27. Histone acetyltransferases: Rising ancient counterparts to protein kinases. Yuan H, Marmorstein R. Biopolymers 99 98-111 (2013)
  28. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Chaikuad A, Bullock AN. Cold Spring Harb Perspect Biol 8 a022111 (2016)
  29. Expressed protein ligation: a resourceful tool to study protein structure and function. Berrade L, Camarero JA. Cell Mol Life Sci 66 3909-3922 (2009)
  30. TGF-β signaling in health, disease, and therapeutics. Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. Signal Transduct Target Ther 9 61 (2024)
  31. Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ. J Diabetes 2 233-242 (2010)
  32. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma. Mahmoudvand S, Shokri S, Taherkhani R, Farshadpour F. World J Gastroenterol 25 42-58 (2019)
  33. Recent advances in the application of expressed protein ligation to protein engineering. Hofmann RM, Muir TW. Curr Opin Biotechnol 13 297-303 (2002)
  34. Protein semi-synthesis: new proteins for functional and structural studies. Durek T, Becker CF. Biomol Eng 22 153-172 (2005)
  35. Molecular mechanism of TGF-β signaling pathway in colon carcinogenesis and status of curcumin as chemopreventive strategy. Ramamoorthi G, Sivalingam N. Tumour Biol 35 7295-7305 (2014)
  36. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Abdel Mouti M, Pauklin S. Mol Ther 29 920-936 (2021)
  37. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ. Clin Exp Pharmacol Physiol 39 661-667 (2012)
  38. Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads. Dupont S, Inui M, Newfeld SJ. FEBS Lett 586 1913-1920 (2012)
  39. Transforming growth factor-β in tumour development. Trelford CB, Dagnino L, Di Guglielmo GM. Front Mol Biosci 9 991612 (2022)
  40. Crosstalk between TGF-β signaling and epigenome. Bai J, Xi Q. Acta Biochim Biophys Sin (Shanghai) 50 60-67 (2018)
  41. Dissection of genetic pathways in C. elegans. Wang Z, Sherwood DR. Methods Cell Biol 106 113-157 (2011)
  42. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  43. Informatics approaches to understanding TGFbeta pathway regulation. Kahlem P, Newfeld SJ. Development 136 3729-3740 (2009)
  44. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. Cancers (Basel) 10 E247 (2018)
  45. Inteins: Localized Distribution, Gene Regulation, and Protein Engineering for Biological Applications. Pavankumar TL. Microorganisms 6 E19 (2018)
  46. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Garcia J, Delany AM. Bone 143 115791 (2021)
  47. The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Su E, Han X, Jiang G. Tumori 96 659-666 (2010)
  48. Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. Peng Y, Liu J, Inuzuka H, Wei W. J Biol Chem 299 104572 (2023)
  49. Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. Elorza Ridaura I, Sorrentino S, Moroni L. Adv Sci (Weinh) 8 e2101837 (2021)
  50. The structures that underlie normal reproductive function. Lerch TF, Xu M, Jardetzky TS, Mayo KE, Radhakrishnan I, Kazer R, Shea LD, Woodruff TK. Mol Cell Endocrinol 267 1-5 (2007)
  51. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Cate RL. Front Endocrinol (Lausanne) 13 905324 (2022)
  52. Linking chemistry and biology for the study of protein function. Rauh D, Waldmann H. Angew Chem Int Ed Engl 46 826-829 (2007)
  53. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Lee S, Bae YS. Mol Cells 33 325-334 (2012)
  54. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Int J Mol Sci 24 6423 (2023)
  55. Smads "freeze" when they ski. Frederick JP, Wang XF. Structure 10 1607-1611 (2002)
  56. MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis. Hussein MA, Valinezhad K, Adel E, Munirathinam G. Cancers (Basel) 16 234 (2024)
  57. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. Miyazawa K, Itoh Y, Fu H, Miyazono K. J Biol Chem 300 107256 (2024)

Articles citing this publication (108)

  1. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. Science 347 aaa2630 (2015)
  2. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH. Cell 125 915-928 (2006)
  3. Balancing BMP signaling through integrated inputs into the Smad1 linker. Sapkota G, Alarcón C, Spagnoli FM, Brivanlou AH, Massagué J. Mol Cell 25 441-454 (2007)
  4. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massagué J. Cell 125 929-941 (2006)
  5. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Inman GJ, Nicolás FJ, Hill CS. Mol Cell 10 283-294 (2002)
  6. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Hu B, Wu Z, Phan SH. Am J Respir Cell Mol Biol 29 397-404 (2003)
  7. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Xu L, Kang Y, Cöl S, Massagué J. Mol Cell 10 271-282 (2002)
  8. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K. Nat Struct Biol 10 913-921 (2003)
  9. TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Zheng X, Wang J, Haerry TE, Wu AY, Martin J, O'Connor MB, Lee CH, Lee T. Cell 112 303-315 (2003)
  10. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Mol Cell Biol 24 2546-2559 (2004)
  11. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. Zheng L, Settle M, Brubaker G, Schmitt D, Hazen SL, Smith JD, Kinter M. J Biol Chem 280 38-47 (2005)
  12. Acetylation-dependent signal transduction for type I interferon receptor. Tang X, Gao JS, Guan YJ, McLane KE, Yuan ZL, Ramratnam B, Chin YE. Cell 131 93-105 (2007)
  13. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Wu JW, Krawitz AR, Chai J, Li W, Zhang F, Luo K, Shi Y. Cell 111 357-367 (2002)
  14. Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for signaling. Shiozaki EN, Gu L, Yan N, Shi Y. Mol Cell 14 405-412 (2004)
  15. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P, Bullock AN. J Biol Chem 287 36990-36998 (2012)
  16. Chk2 activation and phosphorylation-dependent oligomerization. Xu X, Tsvetkov LM, Stern DF. Mol Cell Biol 22 4419-4432 (2002)
  17. X-ray crystal structure of IRF-3 and its functional implications. Takahasi K, Suzuki NN, Horiuchi M, Mori M, Suhara W, Okabe Y, Fukuhara Y, Terasawa H, Akira S, Fujita T, Inagaki F. Nat Struct Biol 10 922-927 (2003)
  18. Biological applications of protein splicing. Vila-Perelló M, Muir TW. Cell 143 191-200 (2010)
  19. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H. Oncogene 26 500-508 (2007)
  20. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. Ramachandran A, Vizán P, Das D, Chakravarty P, Vogt J, Rogers KW, Müller P, Hinck AP, Sapkota GP, Hill CS. Elife 7 e31756 (2018)
  21. Crystal structure of IRF-3 in complex with CBP. Qin BY, Liu C, Srinath H, Lam SS, Correia JJ, Derynck R, Lin K. Structure 13 1269-1277 (2005)
  22. Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5. Chen W, Lam SS, Srinath H, Jiang Z, Correia JJ, Schiffer CA, Fitzgerald KA, Lin K, Royer WE. Nat Struct Mol Biol 15 1213-1220 (2008)
  23. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Qin BY, Lam SS, Correia JJ, Lin K. Genes Dev 16 1950-1963 (2002)
  24. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Miller ML, Reznik E, Gauthier NP, Aksoy BA, Korkut A, Gao J, Ciriello G, Schultz N, Sander C. Cell Syst 1 197-209 (2015)
  25. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Elife 2 e00691 (2013)
  26. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Kurisaki A, Kurisaki K, Kowanetz M, Sugino H, Yoneda Y, Heldin CH, Moustakas A. Mol Cell Biol 26 1318-1332 (2006)
  27. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204. Millet C, Yamashita M, Heller M, Yu LR, Veenstra TD, Zhang YE. J Biol Chem 284 19808-19816 (2009)
  28. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Breinig S, Kervinen J, Stith L, Wasson AS, Fairman R, Wlodawer A, Zdanov A, Jaffe EK. Nat Struct Biol 10 757-763 (2003)
  29. Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Satow R, Kurisaki A, Chan TC, Hamazaki TS, Asashima M. Dev Cell 11 763-774 (2006)
  30. Msk is required for nuclear import of TGF-{beta}/BMP-activated Smads. Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT. J Cell Biol 178 981-994 (2007)
  31. Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch. Guthridge MA, Powell JA, Barry EF, Stomski FC, McClure BJ, Ramshaw H, Felquer FA, Dottore M, Thomas DT, To B, Begley CG, Lopez AF. EMBO J 25 479-489 (2006)
  32. Structure of Smad1 MH1/DNA complex reveals distinctive rearrangements of BMP and TGF-beta effectors. BabuRajendran N, Palasingam P, Narasimhan K, Sun W, Prabhakar S, Jauch R, Kolatkar PR. Nucleic Acids Res 38 3477-3488 (2010)
  33. Gut-enriched Krüppel-like factor interaction with Smad3 inhibits myofibroblast differentiation. Hu B, Wu Z, Liu T, Ullenbruch MR, Jin H, Phan SH. Am J Respir Cell Mol Biol 36 78-84 (2007)
  34. SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains. Huang YH, Jankowski A, Cheah KS, Prabhakar S, Jauch R. Sci Rep 5 10398 (2015)
  35. Maternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic Bmp signaling. Kramer C, Mayr T, Nowak M, Schumacher J, Runke G, Bauer H, Wagner DS, Schmid B, Imai Y, Talbot WS, Mullins MC, Hammerschmidt M. Dev Biol 250 263-279 (2002)
  36. Negative regulation of bone morphogenetic protein/Smad signaling by Cas-interacting zinc finger protein in osteoblasts. Shen ZJ, Nakamoto T, Tsuji K, Nifuji A, Miyazono K, Komori T, Hirai H, Noda M. J Biol Chem 277 29840-29846 (2002)
  37. Streamlined expressed protein ligation using split inteins. Vila-Perelló M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW. J Am Chem Soc 135 286-292 (2013)
  38. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. De Bosscher K, Hill CS, Nicolás FJ. Biochem J 379 209-216 (2004)
  39. Nuclear targeting of transforming growth factor-beta-activated Smad complexes. Chen HB, Rud JG, Lin K, Xu L. J Biol Chem 280 21329-21336 (2005)
  40. Transforming growth factor beta depletion is the primary determinant of Smad signaling kinetics. Clarke DC, Brown ML, Erickson RA, Shi Y, Liu X. Mol Cell Biol 29 2443-2455 (2009)
  41. BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells. Wang JH, Liu YZ, Yin LJ, Chen L, Huang J, Liu Y, Zhang RX, Zhou LY, Yang QJ, Luo JY, Zuo GW, Deng ZL, He BC. Bone 57 311-321 (2013)
  42. Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, through caging of activating phosphoserines. Hahn ME, Muir TW. Angew Chem Int Ed Engl 43 5800-5803 (2004)
  43. Dpp-responsive silencers are bound by a trimeric Mad-Medea complex. Gao S, Steffen J, Laughon A. J Biol Chem 280 36158-36164 (2005)
  44. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif. Randall RA, Howell M, Page CS, Daly A, Bates PA, Hill CS. Mol Cell Biol 24 1106-1121 (2004)
  45. Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. Chung SW, Miles FL, Sikes RA, Cooper CR, Farach-Carson MC, Ogunnaike BA. Biophys J 96 1733-1750 (2009)
  46. PepCyber:P~PEP: a database of human protein protein interactions mediated by phosphoprotein-binding domains. Gong W, Zhou D, Ren Y, Wang Y, Zuo Z, Shen Y, Xiao F, Zhu Q, Hong A, Zhou X, Gao X, Li T. Nucleic Acids Res 36 D679-83 (2008)
  47. Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers. Baburajendran N, Jauch R, Tan CY, Narasimhan K, Kolatkar PR. Nucleic Acids Res 39 8213-8222 (2011)
  48. Smad2 functions as a co-activator of canonical Wnt/beta-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS. Cell Signal 20 1632-1641 (2008)
  49. Smad4 cooperates with lymphoid enhancer-binding factor 1/T cell-specific factor to increase c-myc expression in the absence of TGF-beta signaling. Lim SK, Hoffmann FM. Proc Natl Acad Sci U S A 103 18580-18585 (2006)
  50. The role of COX-2 in mediating the effect of PTEN on BMP9 induced osteogenic differentiation in mouse embryonic fibroblasts. Huang J, Yuan SX, Wang DX, Wu QX, Wang X, Pi CJ, Zou X, Chen L, Ying LJ, Wu K, Yang JQ, Sun WJ, Deng ZL, He BC. Biomaterials 35 9649-9659 (2014)
  51. XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, Zampetaki A, Yin X, Mayr M, Mori K, Wang W, Hu Y, Xu Q. Arterioscler Thromb Vasc Biol 35 2134-2144 (2015)
  52. BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans. Madaan U, Yzeiraj E, Meade M, Clark JF, Rushlow CA, Savage-Dunn C. Genetics 210 1355-1367 (2018)
  53. HILI inhibits TGF-β signaling by interacting with Hsp90 and promoting TβR degradation. Zhang K, Lu Y, Yang P, Li C, Sun H, Tao D, Liu Y, Zhang S, Ma Y. PLoS One 7 e41973 (2012)
  54. Synthesis and crystal structure of a phosphorylated estrogen receptor ligand binding domain. Möcklinghoff S, Rose R, Carraz M, Visser A, Ottmann C, Brunsveld L. Chembiochem 11 2251-2254 (2010)
  55. A computational method for the analysis and prediction of protein:phosphopeptide-binding sites. Joughin BA, Tidor B, Yaffe MB. Protein Sci 14 131-139 (2005)
  56. NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Lee GI, Ding Z, Walker JC, Van Doren SR. Proc Natl Acad Sci U S A 100 11261-11266 (2003)
  57. Covalent capture: merging covalent and noncovalent synthesis. Prins LJ, Scrimin P. Angew Chem Int Ed Engl 48 2288-2306 (2009)
  58. Novel SMAD4 mutation causing Myhre syndrome. Caputo V, Bocchinfuso G, Castori M, Traversa A, Pizzuti A, Stella L, Grammatico P, Tartaglia M. Am J Med Genet A 164A 1835-1840 (2014)
  59. Activin receptor signaling regulates prostatic epithelial cell adhesion and viability. Simon DP, Vadakkadath Meethal S, Wilson AC, Gallego MJ, Weinecke SL, Bruce E, Lyons PF, Haasl RJ, Bowen RL, Atwood CS. Neoplasia 11 365-376 (2009)
  60. p21-Activated kinase 2 (PAK2) inhibits TGF-β signaling in Madin-Darby canine kidney (MDCK) epithelial cells by interfering with the receptor-Smad interaction. Yan X, Zhang J, Sun Q, Tuazon PT, Wu X, Traugh JA, Chen YG. J Biol Chem 287 13705-13712 (2012)
  61. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein. Prokova V, Mavridou S, Papakosta P, Kardassis D. Nucleic Acids Res 33 3708-3721 (2005)
  62. Somatic SMAD3-activating mutations cause melorheostosis by up-regulating the TGF-β/SMAD pathway. Kang H, Jha S, Ivovic A, Fratzl-Zelman N, Deng Z, Mitra A, Cabral WA, Hanson EP, Lange E, Cowen EW, Katz J, Roschger P, Klaushofer K, Dale RK, Siegel RM, Bhattacharyya T, Marini JC. J Exp Med 217 e20191499 (2020)
  63. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Galka-Marciniak P, Urbanek-Trzeciak MO, Nawrocka PM, Kozlowski P. Nucleic Acids Res 49 601-620 (2021)
  64. SMAD4 Y353C promotes the progression of PDAC. Wang Z, Li Y, Zhan S, Zhang L, Zhang S, Tang Q, Li M, Tan Z, Liu S, Xing X. BMC Cancer 19 1037 (2019)
  65. Fibroblast growth factor receptor 2 phosphorylation on serine 779 couples to 14-3-3 and regulates cell survival and proliferation. Lonic A, Barry EF, Quach C, Kobe B, Saunders N, Guthridge MA. Mol Cell Biol 28 3372-3385 (2008)
  66. Structure-function relationship of inhibitory Smads: Structural flexibility contributes to functional divergence. Hariharan R, Pillai MR. Proteins 71 1853-1862 (2008)
  67. Hydrophobic patches on SMAD2 and SMAD3 determine selective binding to cofactors. Miyazono KI, Moriwaki S, Ito T, Kurisaki A, Asashima M, Tanokura M, Tanokura M. Sci Signal 11 eaao7227 (2018)
  68. News TGF-beta signaling from a three-dimensional perspective: insight into selection of partners. Souchelnytskyi S, Moustakas A, Heldin CH. Trends Cell Biol 12 304-307 (2002)
  69. Studying protein structure and function using semisynthesis. Muir TW. Biopolymers 90 743-750 (2008)
  70. The Alzheimer's disease related tau protein as a new target for chemical protein engineering. Broncel M, Krause E, Schwarzer D, Hackenberger CP. Chemistry 18 2488-2492 (2012)
  71. Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. Khatibi S, Zhu HJ, Wagner J, Tan CW, Manton JH, Burgess AW. BMC Syst Biol 11 48 (2017)
  72. Nuclear Smad7 Overexpressed in Mesenchymal Cells Acts as a Transcriptional Corepressor by Interacting with HDAC-1 and E2F to Regulate Cell Cycle. Emori T, Kitamura K, Okazaki K. Biol Open 1 247-260 (2012)
  73. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes. Wang B, Suzuki H, Kato M. Biochem Biophys Res Commun 376 288-292 (2008)
  74. Dynamic analysis of the expression of the TGFbeta/SMAD2 pathway and CCN2/CTGF during early steps of tooth development. Pacheco MS, Reis AH, Aguiar DP, Lyons KM, Abreu JG. Cells Tissues Organs 187 199-210 (2008)
  75. Lysine conservation and context in TGFbeta and Wnt signaling suggest new targets and general themes for posttranslational modification. Konikoff CE, Wisotzkey RG, Newfeld SJ. J Mol Evol 67 323-333 (2008)
  76. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. Schiro MM, Stauber SE, Peterson TL, Krueger C, Darnell SJ, Satyshur KA, Drinkwater NR, Newton MA, Hoffmann FM. PLoS One 6 e25021 (2011)
  77. microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis. Wang S, Zhang M, Zhang T, Deng J, Xia X, Fang X. Arch Gynecol Obstet 301 707-714 (2020)
  78. Phosphoserine-dependent regulation of protein-protein interactions in the Smad pathway. Wrana JL. Structure 10 5-7 (2002)
  79. SMAD3 inducing the transcription of  STYK1 to promote the EMT process and improve the tolerance of ovarian carcinoma cells to paclitaxel. Shi Y, Zhang J, Liu M, Huang Y, Yin L. J Cell Biochem 120 10796-10811 (2019)
  80. Evidence for a role of Smad3 and Smad2 in stabilization of the tumor-derived mutant Smad2.Q407R. Dumont E, Lallemand F, Prunier C, Ferrand N, Guillouzo A, Clément B, Atfi A, Théret N. J Biol Chem 278 24881-24887 (2003)
  81. Fos and pERK immunoreactivity in spinal cord slices: Comparative analysis of in vitro models for testing putative antinociceptive molecules. Ferrini F, Russo A, Salio C. Ann Anat 196 217-223 (2014)
  82. Role of p38 MAPK pathway in BMP4-mediated Smad-dependent premature senescence in lung cancer cells. Su D, Peng X, Zhu S, Huang Y, Dong Z, Zhang Y, Zhang J, Liang Q, Lu J, Huang B. Biochem J 433 333-343 (2011)
  83. Coupling of dephosphorylation and nuclear export of Smads in TGF-beta signaling. Dai F, Duan X, Liang YY, Lin X, Feng XH. Methods Mol Biol 647 125-137 (2010)
  84. Reduced SMAD2/3 activation independently predicts increased depth of human cutaneous squamous cell carcinoma. Rose AM, Spender LC, Stephen C, Mitchell A, Rickaby W, Bray S, Evans AT, Dayal J, Purdie KJ, Harwood CA, Proby CM, Leigh IM, Coates PJ, Inman GJ. Oncotarget 9 14552-14566 (2018)
  85. Increased pSmad2 expression and cytoplasmic predominant presence of TGF-βRII in breast cancer tissue are associated with poor prognosis: results from the Shanghai Breast Cancer Study. Qiu Q, Su Y, Zheng Y, Cai H, Wu S, Lu W, Zheng W, Shu XO, Cai Q. Breast Cancer Res Treat 149 467-477 (2015)
  86. Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor β signaling. Wilkes MC, Repellin CE, Kang JH, Andrianifahanana M, Yin X, Leof EB. Mol Biol Cell 26 3879-3891 (2015)
  87. Methods and Applications of Expressed Protein Ligation. Wang ZA, Cole PA. Methods Mol Biol 2133 1-13 (2020)
  88. Structure, molecular dynamics simulation, and docking studies of Dictyostelium discoideum and human STRAPs. Kumar R, Saran S. J Cell Biochem 119 7177-7191 (2018)
  89. Transforming growth factor-beta signaling is differentially inhibited by Smad2D450E and Smad3D407E. Kondo M, Suzuki H, Takehara K, Miyazono K, Kato M. Cancer Sci 95 12-17 (2004)
  90. Visualizing Smad1/4 signaling response to bone morphogenetic protein-4 activation by FRET biosensors. Gromova KV, Friedrich M, Noskov A, Harms GS. Biochim Biophys Acta 1773 1759-1773 (2007)
  91. Conservation and evolutionary divergence in the activity of receptor-regulated smads. Sorrentino GM, Gillis WQ, Oomen-Hajagos J, Thomsen GH. Evodevo 3 22 (2012)
  92. Celastrol improves self-renewal and differentiation of human tendon-derived stem cells by suppressing Smad7 through hypoxia. Wu T, Liu S, Wen G, Xu J, Yu Y, Chai Y. Stem Cell Res Ther 8 274 (2017)
  93. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Front Genet 13 990849 (2022)
  94. Measuring the absolute abundance of the Smad transcription factors using quantitative immunoblotting. Clarke DC, Liu X. Methods Mol Biol 647 357-376 (2010)
  95. Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling. Imoto S, Sugiyama K, Sekine Y, Matsuda T. FEBS Lett 579 2853-2862 (2005)
  96. Selective Disruption of Synaptic BMP Signaling by a Smad Mutation Adjacent to the Highly Conserved H2 Helix. Nguyen TH, Han TH, Newfeld SJ, Serpe M. Genetics 216 159-175 (2020)
  97. Smad4 suppresses the progression of renal cell carcinoma via the activation of forkhead box protein H1. Liu Y, Xu Y, Li X, Chen Z. Mol Med Rep 11 2717-2722 (2015)
  98. Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression. Stavropoulos I, Golla K, Moran N, Martin F, Shields DC. Bioarchitecture 4 103-110 (2014)
  99. Jagged1 intracellular domain/SMAD3 complex transcriptionally regulates TWIST1 to drive glioma invasion. Kim JY, Hong N, Park S, Ham SW, Kim EJ, Kim SO, Jang J, Kim Y, Kim JK, Kim SC, Park JW, Kim H. Cell Death Dis 14 822 (2023)
  100. Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines. Grider A, Lewis RD, Laing EM, Bakre AA, Tripp RA. Biometals 28 959-966 (2015)
  101. Crystal optimization and preliminary diffraction data analysis of the Smad1 MH1 domain bound to a palindromic SBE DNA element. Baburajendran N, Palasingam P, Ng CK, Jauch R, Kolatkar PR. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 1105-1109 (2009)
  102. An Enterobacteriaceae bloom in aging animals is restrained by the gut microbiome. Choi R, Bodkhe R, Pees B, Kim D, Berg M, Monnin D, Cho J, Narayan V, Deller E, Savage-Dunn C, Shapira M. Aging Biol 2 20240024 (2024)
  103. Crystal structure of the MH2 domain of Drosophila Mad. WANG C, CHEN L, WANG L, WU J. Sci China C Life Sci 52 539-544 (2009)
  104. News Pellino proteins splitting up the FHAmily! Pennell S, Smerdon SJ. Structure 16 1752-1754 (2008)
  105. Smad2 phosphorylation by type I receptor: contribution of arginine 462 and cysteine 463 In the C terminus of Smad2 for specificity. Yakymovych I, Heldin CH, Souchelnytskyi S. J Biol Chem 279 35781-35787 (2004)
  106. Computational and Experimental Analyses for Pathogenicity Prediction of ACVRL1 Missense Variants in Hereditary Hemorrhagic Telangiectasia. Iwasa T, Urasaki A, Kakihana Y, Nagata-Akaho N, Harada Y, Takeda S, Kawamura T, Shiraishi I, Kurosaki K, Morisaki H, Yamada O, Nakagawa O. J Clin Med 12 5002 (2023)
  107. EPRS1 Controls the TGF-β Signaling Pathway via Interaction with TβRI in Hepatic Stellate Cell. Yoon I, Song JA, Suh JH, Kim S, Son J, Kim JH, Jang SY, Hwang KY, Kim MH, Kim S. Mol Cell Biol 43 223-240 (2023)
  108. Myocardin regulates fibronectin expression and secretion from human pleural mesothelial cells. Sakai T, Choo YY, Mitsuhashi S, Ikebe R, Jeffers A, Idell S, Tucker TA, Ikebe M. Am J Physiol Lung Cell Mol Physiol 326 L419-L430 (2024)