1klt Citations

Crystal structure of phenylmethanesulfonyl fluoride-treated human chymase at 1.9 A.

Biochemistry 36 14318-24 (1997)
Cited: 30 times
EuropePMC logo PMID: 9400368

Abstract

The X-ray crystal structure of human chymase has been determined to 1.9 A resolution using molecular replacement methods. This first structure of human chymase is present as the Ser 195 ester of alpha-toluenesulfonic acid. The refined structure (Rcryst = 0.183) shows that the inhibitor phenyl moiety lies at the top of the major specificity pocket, S1, while the sulfur is covalently linked to Ser 195-O gamma. The sulfonyl oxygens interact with the oxyanion hole and with His 57-N delta 1. The presence of the inhibitor disturbs the usual gauche position of His 57 and forces it to the trans conformer. Though the primary binding pockets are similarly specific in chymase and chymotrypsin, examination of the extended substrate binding sites reveals the structural basis for chymase's greater discrimination in choosing substrates. The larger 30s loop and its proximity to the active site indicates that it contacts substrate residues C-terminal to the scissile bond. Modeling of substrate at the chymase active site suggests that binding energy may be gained by three main-chain hydrogen bonds provided by substrate residues P2' and P4' and that discriminating interactions with substrate side chains are also likely. The presence of Lys 40 in S1' of human chymase explains its preference for Asp/Glu at P1'. Moreover, the cationic nature of S1' provides a structural basis for human chymase's poor catalytic efficiency when angiotensin II is the substrate.

Articles - 1klt mentioned but not cited (7)

  1. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Mol Cancer Ther 9 1872-1883 (2010)
  2. A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. Arooj M, Sakkiah S, Kim S, Arulalapperumal V, Lee KW. PLoS One 8 e63030 (2013)
  3. Inhibition of thrombin formation by active site mutated (S360A) activated protein C. Nicolaes GA, Bock PE, Segers K, Wildhagen KC, Dahlbäck B, Rosing J. J Biol Chem 285 22890-22900 (2010)
  4. Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Michino M, Brooks CL. Proteins 77 448-453 (2009)
  5. The structure of PhaZ7 at atomic (1.2 A) resolution reveals details of the active site and suggests a substrate-binding mode. Wakadkar S, Hermawan S, Jendrossek D, Papageorgiou AC. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 648-654 (2010)
  6. Crystal structure of a complex of human chymase with its benzimidazole derived inhibitor. Matsumoto Y, Kakuda S, Koizumi M, Mizuno T, Muroga Y, Kawamura T, Takimoto-Kamimura M. J Synchrotron Radiat 20 914-918 (2013)
  7. A new definition and properties of the similarity value between two protein structures. Saberi Fathi SM. J Biol Phys 42 621-636 (2016)


Reviews citing this publication (1)

  1. Structural and energetic determinants of the S1-site specificity in serine proteases. Czapinska H, Otlewski J. Eur J Biochem 260 571-595 (1999)

Articles citing this publication (22)

  1. The extended cleavage specificity of the rodent beta-chymases rMCP-1 and mMCP-4 reveal major functional similarities to the human mast cell chymase. Andersson MK, Karlson U, Hellman L. Mol Immunol 45 766-775 (2008)
  2. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase: molecular mechanisms and anti-inflammatory activity in vivo. de Garavilla L, Greco MN, Sukumar N, Chen ZW, Pineda AO, Mathews FS, Di Cera E, Giardino EC, Wells GI, Haertlein BJ, Kauffman JA, Corcoran TW, Derian CK, Eckardt AJ, Damiano BP, Andrade-Gordon P, Maryanoff BE. J Biol Chem 280 18001-18007 (2005)
  3. The 2.2-A crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features. Hink-Schauer C, Estébanez-Perpiñá E, Wilharm E, Fuentes-Prior P, Klinkert W, Bode W, Jenne DE. J Biol Chem 277 50923-50933 (2002)
  4. A despecialization step underlying evolution of a family of serine proteases. Wouters MA, Liu K, Riek P, Husain A. Mol Cell 12 343-354 (2003)
  5. Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue. Estébanez-Perpiña E, Fuentes-Prior P, Belorgey D, Braun M, Kiefersauer R, Maskos K, Huber R, Rubin H, Bode W. Biol Chem 381 1203-1214 (2000)
  6. The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile. Andersson MK, Enoksson M, Gallwitz M, Hellman L. Int Immunol 21 95-104 (2009)
  7. The 2.2 A crystal structure of human chymase in complex with succinyl-Ala-Ala-Pro-Phe-chloromethylketone: structural explanation for its dipeptidyl carboxypeptidase specificity. Pereira PJ, Wang ZM, Rubin H, Huber R, Bode W, Schechter NM, Strobl S. J Mol Biol 286 163-173 (1999)
  8. Arg143 and Lys192 of the human mast cell chymase mediate the preference for acidic amino acids in position P2' of substrates. Andersson MK, Thorpe M, Hellman L. FEBS J 277 2255-2267 (2010)
  9. Inhibition of human chymase by 2-amino-3,1-benzoxazin-4-ones. Neumann U, Schechter NM, Gütschow M. Bioorg Med Chem 9 947-954 (2001)
  10. Molecular cloning and sequencing of the cDNA for rat mesenteric arterial bed elastase-2, an angiotensin II-forming enzyme. Santos CF, Oliveira EB, Salgado MC, Greene AS. J Cardiovasc Pharmacol 39 628-635 (2002)
  11. Human chymase inhibitors based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold. Groutas WC, Schechter NM, He S, Yu H, Huang P, Tu J. Bioorg Med Chem Lett 9 2199-2204 (1999)
  12. Sheep mast-cell proteinases-1 and -3: cDNA cloning, primary structure and molecular modelling of the enzymes and further studies on substrate specificity. McAleese SM, Pemberton AD, McGrath ME, Huntley JF, Miller HR. Biochem J 333 ( Pt 3) 801-809 (1998)
  13. Thermal aggregation of alpha-chymotrypsin: role of hydrophobic and electrostatic interactions. Rezaei-Ghaleh N, Ramshini H, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M. Biophys Chem 132 23-32 (2008)
  14. Identification of a stable chymase inhibitor using a pharmacophore-Based database search. Koide Y, Tatsui A, Hasegawa T, Murakami A, Satoh S, Yamada H, Kazayama S, Takahashi A. Bioorg Med Chem Lett 13 25-29 (2003)
  15. Experimental Arthritis Is Dependent on Mouse Mast Cell Protease-5. Stevens RL, McNeil HP, Wensing LA, Shin K, Wong GW, Hansbro PM, Krilis SA. J Biol Chem 292 5392-5404 (2017)
  16. The active site of phosphorylating glyceraldehyde-3-phosphate dehydrogenase is not designed to increase the nucleophilicity of a serine residue. Boschi-Muller S, Branlant G. Arch Biochem Biophys 363 259-266 (1999)
  17. Study of cosolvent-induced alpha-chymotrypsin fibrillogenesis: does protein surface hydrophobicity trigger early stages of aggregation reaction? Khodarahmi R, Soori H, Amani M. Protein J 28 349-361 (2009)
  18. A Pulmonary Perspective on GASPIDs: Granule-Associated Serine Peptidases of Immune Defense. Caughey GH. Curr Respir Med Rev 2 263-277 (2006)
  19. Structure-activity relationship of benzo[b]thiophene-2-sulfonamide derivatives as novel human chymase inhibitors. Masaki H, Mizuno Y, Tatui A, Murakami A, Koide Y, Satoh S, Takahashi A. Bioorg Med Chem Lett 13 4085-4088 (2003)
  20. Discriminating between the activities of human cathepsin G and chymase using fluorogenic substrates. Korkmaz B, Jégot G, Lau LC, Thorpe M, Pitois E, Juliano L, Walls AF, Hellman L, Gauthier F. FEBS J 278 2635-2646 (2011)
  21. Inhibitory mechanism of daphnodorins for human chymase. Sakaguchi M, Yamamoto D, Takai S, Jin D, Taniguchi M, Baba K, Miyazaki M. Biochem Biophys Res Commun 283 831-836 (2001)
  22. Recombinant maize 9-lipoxygenase: expression, purification, and properties. Osipova EV, Chechetkin IR, Gogolev YV, Tarasova NB. Biochemistry (Mosc) 75 861-865 (2010)


Related citations provided by authors (1)

  1. Production of Crystallizable Human Chymase from a Bacillus Subtilis System. Mcgrath ME, Osawa AE, Barnes MG, Clark JM, Mortara KD, Schmidt BF FEBS Lett. 413 486- (1997)