1ko2 Citations

The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form.

J Mol Biol 375 604-11 (2008)
Cited: 76 times
EuropePMC logo PMID: 18061205

Abstract

The crystal structures of the universally widespread metallo-beta-lactamase (MBL) Verona integron-encoded MBL (VIM)-2 from Pseudomonas aeruginosa have been solved in their native form as well as in an unexpected oxidised form. This carbapenem-hydrolysing enzyme belongs to the so-called B1 subfamily of MBLs and shares the folding of alpha beta/beta alpha sandwich, consisting of a core of beta-sheet surrounded by alpha-helices. Surprisingly, it showed a high tendency to be strongly oxidised at the catalytic cysteine located in the Cys site, Cys221, which, in the oxidised structure, becomes a cysteinesulfonic residue. Its native structure was obtained only in the presence of Tris(2-carboxyethyl)phosphine. This oxidation might be a consequence of a lower affinity for the second Zn located in the Cys site that would also explain the observed susceptibility of VIM-2 to chelating agents. This modification, if present in nature, might play a role in catalytic down-regulation. Comparison between native and oxidised VIM-2 and a predicted model of VIM-1 (which shows one residue different in the Cys site compared with VIM-2) is performed to explain the different activities and antibiotic specificities.

Reviews - 1ko2 mentioned but not cited (1)

  1. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Jeon JH, Lee JH, Lee JJ, Park KS, Karim AM, Lee CR, Jeong BC, Lee SH. Int J Mol Sci 16 9654-9692 (2015)

Articles - 1ko2 mentioned but not cited (5)

  1. The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Bebrone C, Delbrück H, Kupper MB, Schlömer P, Willmann C, Frère JM, Fischer R, Galleni M, Hoffmann KM. Antimicrob Agents Chemother 53 4464-4471 (2009)
  2. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. J Med Chem 53 3013-3027 (2010)
  3. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Aitha M, Marts AR, Bergstrom A, Møller AJ, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW. Biochemistry 53 7321-7331 (2014)
  4. Cephalosporins inhibit human metallo β-lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo. Lee SY, Brem J, Pettinati I, Claridge TD, Gileadi O, Schofield CJ, McHugh PJ. Chem Commun (Camb) 52 6727-6730 (2016)
  5. Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Skagseth S, Christopeit T, Akhter S, Bayer A, Samuelsen Ø, Leiros HS. Antimicrob Agents Chemother 61 e02602-16 (2017)


Reviews citing this publication (10)

  1. Metallo-β-lactamase structure and function. Palzkill T. Ann N Y Acad Sci 1277 91-104 (2013)
  2. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. J Mol Biol 431 3472-3500 (2019)
  3. B1-Metallo-β-Lactamases: Where Do We Stand? Mojica MF, Bonomo RA, Fast W. Curr Drug Targets 17 1029-1050 (2016)
  4. Overcoming differences: The catalytic mechanism of metallo-β-lactamases. Meini MR, Llarrull LI, Vila AJ. FEBS Lett 589 3419-3432 (2015)
  5. Resistance to antibiotics targeted to the bacterial cell wall. Nikolaidis I, Favini-Stabile S, Dessen A. Protein Sci 23 243-259 (2014)
  6. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Bahr G, González LJ, Vila AJ. Chem Rev 121 7957-8094 (2021)
  7. A variety of roles for versatile zinc in metallo-β-lactamases. Karsisiotis AI, Damblon CF, Roberts GC. Metallomics 6 1181-1197 (2014)
  8. Targeting metallo-β-lactamase enzymes in antibiotic resistance. King DT, Strynadka NC. Future Med Chem 5 1243-1263 (2013)
  9. Approaches for the discovery of metallo-β-lactamase inhibitors: A review. Shi C, Chen J, Kang X, Shen X, Lao X, Zheng H. Chem Biol Drug Des 94 1427-1440 (2019)
  10. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. RSC Med Chem 13 1276-1299 (2022)

Articles citing this publication (60)

  1. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Antimicrob Agents Chemother 53 5046-5054 (2009)
  2. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. King D, Strynadka N. Protein Sci 20 1484-1491 (2011)
  3. Research Support, Non-U.S. Gov't Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. Liu B, Trout REL, Chu GH, McGarry D, Jackson RW, Hamrick JC, Daigle DM, Cusick SM, Pozzi C, De Luca F, Benvenuti M, Mangani S, Docquier JD, Weiss WJ, Pevear DC, Xerri L, Burns CJ. J Med Chem 63 2789-2801 (2020)
  4. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Guo Y, Wang J, Niu G, Shui W, Sun Y, Zhou H, Zhang Y, Yang C, Lou Z, Rao Z. Protein Cell 2 384-394 (2011)
  5. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine- and Metallo-β-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Hamrick JC, Docquier JD, Uehara T, Myers CL, Six DA, Chatwin CL, John KJ, Vernacchio SF, Cusick SM, Trout REL, Pozzi C, De Luca F, Benvenuti M, Mangani S, Liu B, Jackson RW, Moeck G, Xerri L, Burns CJ, Pevear DC, Daigle DM. Antimicrob Agents Chemother 64 e01963-19 (2020)
  6. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Brem J, van Berkel SS, Zollman D, Lee SY, Gileadi O, McHugh PJ, Walsh TR, McDonough MA, Schofield CJ. Antimicrob Agents Chemother 60 142-150 (2016)
  7. Structure of apo- and monometalated forms of NDM-1--a highly potent carbapenem-hydrolyzing metallo-β-lactamase. Kim Y, Tesar C, Mire J, Jedrzejczak R, Binkowski A, Babnigg G, Sacchettini J, Joachimiak A. PLoS One 6 e24621 (2011)
  8. Assay platform for clinically relevant metallo-β-lactamases. van Berkel SS, Brem J, Rydzik AM, Salimraj R, Cain R, Verma A, Owens RJ, Fishwick CW, Spencer J, Schofield CJ. J Med Chem 56 6945-6953 (2013)
  9. VIM-19, a metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli and Klebsiella pneumoniae. Rodriguez-Martinez JM, Nordmann P, Fortineau N, Poirel L. Antimicrob Agents Chemother 54 471-476 (2010)
  10. Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Samuelsen Ø, Toleman MA, Hasseltvedt V, Fuursted K, Leegaard TM, Walsh TR, Sundsfjord A, Giske CG. Clin Microbiol Infect 17 1811-1816 (2011)
  11. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chiou J, Wan S, Chan KF, So PK, He D, Chan EW, Chan TH, Wong KY, Tao J, Chen S. Chem Commun (Camb) 51 9543-9546 (2015)
  12. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Borgianni L, Vandenameele J, Matagne A, Bini L, Bonomo RA, Frère JM, Rossolini GM, Docquier JD. Antimicrob Agents Chemother 54 3197-3204 (2010)
  13. Biochemical and structural characterization of the subclass B1 metallo-β-lactamase VIM-4. Lassaux P, Traoré DA, Loisel E, Favier A, Docquier JD, Sohier JS, Laurent C, Bebrone C, Frère JM, Ferrer JL, Galleni M. Antimicrob Agents Chemother 55 1248-1255 (2011)
  14. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Meini MR, Llarrull LI, Vila AJ. Antibiotics (Basel) 3 285-316 (2014)
  15. Novel VIM metallo-beta-lactamase variant from clinical isolates of Enterobacteriaceae from Algeria. Robin F, Aggoune-Khinache N, Delmas J, Naim M, Bonnet R. Antimicrob Agents Chemother 54 466-470 (2010)
  16. Simplified captopril analogues as NDM-1 inhibitors. Li N, Xu Y, Xia Q, Bai C, Wang T, Wang L, He D, Xie N, Li L, Wang J, Zhou HG, Xu F, Yang C, Zhang Q, Yin Z, Guo Y, Chen Y. Bioorg Med Chem Lett 24 386-389 (2014)
  17. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. Biochemistry 54 3183-3196 (2015)
  18. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. Borra PS, Leiros HK, Ahmad R, Spencer J, Leiros I, Walsh TR, Sundsfjord A, Samuelsen O. J Mol Biol 411 174-189 (2011)
  19. Differential binding of Co(II) and Zn(II) to metallo-beta-lactamase Bla2 from Bacillus anthracis. Hawk MJ, Breece RM, Hajdin CE, Bender KM, Hu Z, Costello AL, Bennett B, Tierney DL, Crowder MW. J Am Chem Soc 131 10753-10762 (2009)
  20. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Minond D, Saldanha SA, Subramaniam P, Spaargaren M, Spicer T, Fotsing JR, Weide T, Fokin VV, Sharpless KB, Galleni M, Bebrone C, Lassaux P, Hodder P. Bioorg Med Chem 17 5027-5037 (2009)
  21. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. Wang JF, Chou KC. PLoS One 6 e18414 (2011)
  22. Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles. Makena A, Düzgün AÖ, Brem J, McDonough MA, Rydzik AM, Abboud MI, Saral A, Çiçek AÇ, Sandalli C, Schofield CJ. Antimicrob Agents Chemother 60 1377-1384 (2015)
  23. Kinetic characterization of VIM-7, a divergent member of the VIM metallo-beta-lactamase family. Samuelsen Ø, Castanheira M, Walsh TR, Spencer J. Antimicrob Agents Chemother 52 2905-2908 (2008)
  24. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O, Balbeur D, Damblon C, Marchot P, De Pauw E, Roberts GC, Frère JM, Matagne A. J Mol Biol 392 1278-1291 (2009)
  25. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Chiou J, Leung TY, Chen S. Antimicrob Agents Chemother 58 5372-5378 (2014)
  26. Biochemical characterization of metallo-beta-lactamase VIM-11 from a Pseudomonas aeruginosa clinical strain. Marchiaro P, Tomatis PE, Mussi MA, Pasteran F, Viale AM, Limansky AS, Vila AJ. Antimicrob Agents Chemother 52 2250-2252 (2008)
  27. Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. Baier F, Hong N, Yang G, Pabis A, Miton CM, Barrozo A, Carr PD, Kamerlin SC, Jackson CJ, Tokuriki N. Elife 8 e40789 (2019)
  28. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases. Merino M, Pérez-Llarena FJ, Kerff F, Poza M, Mallo S, Rumbo-Feal S, Beceiro A, Juan C, Oliver A, Bou G. J Antimicrob Chemother 65 1950-1954 (2010)
  29. 1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases. Sevaille L, Gavara L, Bebrone C, De Luca F, Nauton L, Achard M, Mercuri P, Tanfoni S, Borgianni L, Guyon C, Lonjon P, Turan-Zitouni G, Dzieciolowski J, Becker K, Bénard L, Condon C, Maillard L, Martinez J, Frère JM, Dideberg O, Galleni M, Docquier JD, Hernandez JF. ChemMedChem 12 972-985 (2017)
  30. Bulgecin A as a β-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms. Skalweit MJ, Li M. Drug Des Devel Ther 10 3013-3020 (2016)
  31. Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Morán-Barrio J, Lisa MN, Larrieux N, Drusin SI, Viale AM, Moreno DM, Buschiazzo A, Vila AJ. Antimicrob Agents Chemother 60 6013-6022 (2016)
  32. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases. Salimraj R, Hinchliffe P, Kosmopoulou M, Tyrrell JM, Brem J, van Berkel SS, Verma A, Owens RJ, McDonough MA, Walsh TR, Schofield CJ, Spencer J. FEBS J 286 169-183 (2019)
  33. Crystal structures of Pseudomonas aeruginosa GIM-1: active-site plasticity in metallo-β-lactamases. Borra PS, Samuelsen Ø, Spencer J, Walsh TR, Lorentzen MS, Leiros HK. Antimicrob Agents Chemother 57 848-854 (2013)
  34. VIM-15 and VIM-16, two new VIM-2-like metallo-beta-lactamases in Pseudomonas aeruginosa isolates from Bulgaria and Germany. Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. Antimicrob Agents Chemother 52 2977-2979 (2008)
  35. Biochemical characteristics of New Delhi metallo-β-lactamase-1 show unexpected difference to other MBLs. Li T, Wang Q, Chen F, Li X, Luo S, Fang H, Wang D, Li Z, Hou X, Wang H. PLoS One 8 e61914 (2013)
  36. Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution. Yamaguchi Y, Takashio N, Wachino J, Yamagata Y, Arakawa Y, Matsuda K, Kurosaki H. J Biochem 147 905-915 (2010)
  37. Use of ferrous iron by metallo-β-lactamases. Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J. J Inorg Biochem 163 185-193 (2016)
  38. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases. Leiros HK, Edvardsen KS, Bjerga GE, Samuelsen Ø. FEBS J 282 1031-1042 (2015)
  39. His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7. Leiros HK, Skagseth S, Edvardsen KS, Lorentzen MS, Bjerga GE, Leiros I, Samuelsen Ø. Antimicrob Agents Chemother 58 4826-4836 (2014)
  40. SAR Studies Leading to the Identification of a Novel Series of Metallo-β-lactamase Inhibitors for the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections That Display Efficacy in an Animal Infection Model. Leiris S, Coelho A, Castandet J, Bayet M, Lozano C, Bougnon J, Bousquet J, Everett M, Lemonnier M, Sprynski N, Zalacain M, Pallin TD, Cramp MC, Jennings N, Raphy G, Jones MW, Pattipati R, Shankar B, Sivasubrahmanyam R, Soodhagani AK, Juventhala RR, Pottabathini N, Pothukanuri S, Benvenuti M, Pozzi C, Mangani S, De Luca F, Cerboni G, Docquier JD, Davies DT. ACS Infect Dis 5 131-140 (2019)
  41. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. Chen JZ, Fowler DM, Tokuriki N. Elife 9 e56707 (2020)
  42. A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions. Cheng Z, Shurina BA, Bethel CR, Thomas PW, Marshall SH, Thomas CA, Yang K, Kimble RL, Montgomery JS, Orischak MG, Miller CM, Tennenbaum JL, Nix JC, Tierney DL, Fast W, Bonomo RA, Page RC, Crowder MW. mBio 10 e02412-19 (2019)
  43. Letter Comment on: role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-β-lactamases. Castanheira M, Deshpande LM, Mendes RE, Rodriguez-Noriega E, Jones RN, Morfin-Otero R. J Antimicrob Chemother 66 684-5; author reply 686 (2011)
  44. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors. Brindisi M, Brogi S, Giovani S, Gemma S, Lamponi S, De Luca F, Novellino E, Campiani G, Docquier JD, Butini S. J Enzyme Inhib Med Chem 31 98-109 (2016)
  45. Crystal structure of IMP-2 metallo-β-lactamase from Acinetobacter spp.: comparison of active-site loop structures between IMP-1 and IMP-2. Yamaguchi Y, Matsueda S, Matsunaga K, Takashio N, Toma-Fukai S, Yamagata Y, Shibata N, Wachino J, Shibayama K, Arakawa Y, Kurosaki H. Biol Pharm Bull 38 96-101 (2015)
  46. Suppression of β-Lactam Resistance by Aspergillomarasmine A Is Influenced by both the Metallo-β-Lactamase Target and the Antibiotic Partner. Rotondo CM, Sychantha D, Koteva K, Wright GD. Antimicrob Agents Chemother 64 e01386-19 (2020)
  47. The three-dimensional structure of VIM-31--a metallo-β-lactamase from Enterobacter cloacae in its native and oxidized form. Kupper MB, Herzog K, Bennink S, Schlömer P, Bogaerts P, Glupczynski Y, Fischer R, Bebrone C, Hoffmann KM. FEBS J 282 2352-2360 (2015)
  48. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. J Chem Inf Model 58 1902-1914 (2018)
  49. Detection and characterization of VIM-31, a new variant of VIM-2 with Tyr224His and His252Arg mutations, in a clinical isolate of Enterobacter cloacae. Bogaerts P, Bebrone C, Huang TD, Bouchahrouf W, Degheldre Y, Deplano A, Hoffmann K, Glupczynski Y. Antimicrob Agents Chemother 56 3283-3287 (2012)
  50. A Lysine-Targeted Affinity Label for Serine-β-Lactamase Also Covalently Modifies New Delhi Metallo-β-lactamase-1 (NDM-1). Thomas PW, Cammarata M, Brodbelt JS, Monzingo AF, Pratt RF, Fast W. Biochemistry 58 2834-2843 (2019)
  51. Molecular Bases of the Membrane Association Mechanism Potentiating Antibiotic Resistance by New Delhi Metallo-β-lactamase 1. Prunotto A, Bahr G, González LJ, Vila AJ, Dal Peraro M. ACS Infect Dis 6 2719-2731 (2020)
  52. Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Skagseth S, Carlsen TJ, Bjerga GE, Spencer J, Samuelsen Ø, Leiros HK. Antimicrob Agents Chemother 60 990-1002 (2016)
  53. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HS. J Antimicrob Chemother 75 2554-2563 (2020)
  54. Specific Protein-Membrane Interactions Promote Packaging of Metallo-β-Lactamases into Outer Membrane Vesicles. López C, Prunotto A, Bahr G, Bonomo RA, González LJ, Dal Peraro M, Vila AJ. Antimicrob Agents Chemother 65 e0050721 (2021)
  55. ZN148 Is a Modular Synthetic Metallo-β-Lactamase Inhibitor That Reverses Carbapenem Resistance in Gram-Negative Pathogens In Vivo. Samuelsen Ø, Åstrand OAH, Fröhlich C, Heikal A, Skagseth S, Carlsen TJO, Leiros HS, Bayer A, Schnaars C, Kildahl-Andersen G, Lauksund S, Finke S, Huber S, Gjøen T, Andresen AMS, Økstad OA, Rongved P. Antimicrob Agents Chemother 64 e02415-19 (2020)
  56. Crystal Structure of DIM-1, an Acquired Subclass B1 Metallo-β-Lactamase from Pseudomonas stutzeri. Booth MP, Kosmopoulou M, Poirel L, Nordmann P, Spencer J. PLoS One 10 e0140059 (2015)
  57. Shaping Substrate Selectivity in a Broad-Spectrum Metallo-β-Lactamase. González LJ, Stival C, Puzzolo JL, Moreno DM, Vila AJ. Antimicrob Agents Chemother 62 e02079-17 (2018)
  58. Kinetic, Thermodynamic, and Crystallographic Studies of 2-Triazolylthioacetamides as Verona Integron-Encoded Metallo-β-Lactamase 2 (VIM-2) Inhibitor. Xiang Y, Zhang YJ, Ge Y, Zhou Y, Chen C, Wahlgren WY, Tan X, Chen X, Yang KW. Biomolecules 10 E72 (2020)
  59. Detection and Characterization of VIM-52, a New Variant of VIM-1 from a Klebsiella pneumoniae Clinical Isolate. de Barsy M, Mercuri PS, Oueslati S, Elisée E, Huang TD, Sacré P, Iorga BI, Naas T, Galleni M, Bogaerts P. Antimicrob Agents Chemother 65 e0266020 (2021)
  60. Structural insights into the substrate specificity of IMP-6 and IMP-1 metallo-β-lactamases. Yamamoto K, Tanaka H, Kurisu G, Nakano R, Yano H, Sakai H. J Biochem 173 21-30 (2022)