1kp8 Citations

Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution.

J Mol Biol 327 843-55 (2003)
Cited: 100 times
EuropePMC logo PMID: 12654267

Abstract

Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.

Reviews - 1kp8 mentioned but not cited (3)

  1. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. Gohara DW, Di Cera E. J Biol Chem 291 20840-20848 (2016)
  2. Chaperonins: Nanocarriers with Biotechnological Applications. Pipaón S, Gragera M, Bueno-Carrasco MT, García-Bernalt Diego J, Cantero M, Cuéllar J, Fernández-Fernández MR, Valpuesta JM. Nanomaterials (Basel) 11 503 (2021)
  3. Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates. Yagi-Utsumi M, Kato K. Molecules 27 4787 (2022)

Articles - 1kp8 mentioned but not cited (41)

  1. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. Cell 149 113-123 (2012)
  2. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. Scrima A, Wittinghofer A. EMBO J 25 2940-2951 (2006)
  3. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A. Proc Natl Acad Sci U S A 112 6044-6049 (2015)
  4. Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. Qamra R, Mande SC. J Bacteriol 186 8105-8113 (2004)
  5. Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations. Jolley CC, Wells SA, Fromme P, Thorpe MF. Biophys J 94 1613-1621 (2008)
  6. The structural basis of ATP as an allosteric modulator. Lu S, Huang W, Wang Q, Shen Q, Li S, Nussinov R, Zhang J. PLoS Comput Biol 10 e1003831 (2014)
  7. High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching. Xu M, Beck M, Alber F. J Struct Biol 178 152-164 (2012)
  8. Image restoration in cryo-electron microscopy. Penczek PA. Methods Enzymol 482 35-72 (2010)
  9. De Novo Structural Pattern Mining in Cellular Electron Cryotomograms. Xu M, Singla J, Tocheva EI, Chang YW, Stevens RC, Jensen GJ, Alber F. Structure 27 679-691.e14 (2019)
  10. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY. Elife 7 e37373 (2018)
  11. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. Hevler JF, Lukassen MV, Cabrera-Orefice A, Arnold S, Pronker MF, Franc V, Heck AJR. EMBO J 40 e106174 (2021)
  12. LoTToR: An Algorithm for Missing-Wedge Correction of the Low-Tilt Tomographic 3D Reconstruction of a Single-Molecule Structure. Zhai X, Lei D, Zhang M, Liu J, Wu H, Yu Y, Zhang L, Ren G. Sci Rep 10 10489 (2020)
  13. Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Inobe T, Takahashi K, Maki K, Enoki S, Kamagata K, Kadooka A, Arai M, Kuwajima K. Biophys J 94 1392-1402 (2008)
  14. Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations. Skjaerven L, Grant B, Muga A, Teigen K, McCammon JA, Reuter N, Martinez A. PLoS Comput Biol 7 e1002004 (2011)
  15. Estimation of the quality of refined protein crystal structures. Wang J. Protein Sci 24 661-669 (2015)
  16. FOLD-EM: automated fold recognition in medium- and low-resolution (4-15 Å) electron density maps. Saha M, Morais MC. Bioinformatics 28 3265-3273 (2012)
  17. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. Costa MP, McCulloch JA, Almeida SS, Dorella FA, Fonseca CT, Oliveira DM, Teixeira MF, Laskowska E, Lipinska B, Meyer R, Portela RW, Oliveira SC, Miyoshi A, Azevedo V. BMC Res Notes 4 243 (2011)
  18. Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change. Liu J, Sankar K, Wang Y, Jia K, Jernigan RL. Biophys J 112 1561-1570 (2017)
  19. High precision alignment of cryo-electron subtomograms through gradient-based parallel optimization. Xu M, Alber F. BMC Syst Biol 6 Suppl 1 S18 (2012)
  20. Distinct Conformation of ATP Molecule in Solution and on Protein. Kobayashi E, Yura K, Nagai Y. Biophysics (Nagoya-shi) 9 1-12 (2013)
  21. Features of large hinge-bending conformational transitions. Prediction of closed structure from open state. Uyar A, Kantarci-Carsibasi N, Haliloglu T, Doruker P. Biophys J 106 2656-2666 (2014)
  22. IDSS: deformation invariant signatures for molecular shape comparison. Liu YS, Fang Y, Ramani K. BMC Bioinformatics 10 157 (2009)
  23. TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis. Frazier Z, Xu M, Alber F. Structure 25 951-961.e2 (2017)
  24. Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations. Sliozberg Y, Abrams CF. Biophys J 93 1906-1916 (2007)
  25. Adversarial domain adaptation for cross data source macromolecule in situ structural classification in cellular electron cryo-tomograms. Lin R, Zeng X, Kitani K, Xu M. Bioinformatics 35 i260-i268 (2019)
  26. Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions. Kiser PD, Lodowski DT, Palczewski K. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 457-461 (2007)
  27. Self-adaptive multiscaling algorithm for efficient simulations of many-protein systems in crowded conditions. Hassan SA. Phys Chem Chem Phys 20 28544-28557 (2018)
  28. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  29. Conformational shift in the closed state of GroEL induced by ATP-binding triggers a transition to the open state. Suzuki Y, Yura K. Biophys Physicobiol 13 127-134 (2016)
  30. Fine-grained alignment of cryo-electron subtomograms based on MPI parallel optimization. Lü Y, Zeng X, Zhao X, Li S, Li H, Gao X, Xu M. BMC Bioinformatics 20 443 (2019)
  31. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation. Dalton KM, Frydman J, Pande VS. PLoS One 10 e0117724 (2015)
  32. An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification. Zhao Y, Zeng X, Guo Q, Xu M. Bioinformatics 34 i227-i236 (2018)
  33. Gradient-based high precision alignment of cryo-electron subtomograms. Xu M, Alber F. IEEE Int Conf Systems Biol 279-284 (2011)
  34. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Nguyen B, Ma R, Tang WK, Shi D, Tolia NH. Sci Rep 11 5930 (2021)
  35. DEEP LEARNING BASED SUPERVISED SEMANTIC SEGMENTATION OF ELECTRON CRYO-SUBTOMOGRAMS. Liu C, Zeng X, Lin R, Liang X, Freyberg Z, Xing E, Xu M. Proc Int Conf Image Proc 2018 1578-1582 (2018)
  36. Multi-task Learning for Macromolecule Classification, Segmentation and Coarse Structural Recovery in Cryo-Tomography. Liu C, Zeng X, Wang KW, Guo Q, Xu M. BMVC 2018 1007 (2018)
  37. The Functional Differences between the GroEL Chaperonin of Escherichia coli and the HtpB Chaperonin of Legionella pneumophila Can Be Mapped to Specific Amino Acid Residues. Valenzuela-Valderas KN, Moreno-Hagelsieb G, Rohde JR, Garduño RA. Biomolecules 12 59 (2021)
  38. fSUB: normal mode analysis with flexible substructures. Lu M, Ming D, Ma J. J Phys Chem B 116 8636-8645 (2012)
  39. Assessment of scoring functions to rank the quality of 3D subtomogram clusters from cryo-electron tomography. Singla J, White KL, Stevens RC, Alber F. J Struct Biol 213 107727 (2021)
  40. Epitope determination of immunogenic proteins of Neisseria gonorrhoeae. Connor DO, Danckert L, Hoppe S, Bier FF, von Nickisch-Rosenegk M. PLoS One 12 e0180962 (2017)
  41. How soluble misfolded proteins bypass chaperones at the molecular level. Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. Nat Commun 14 3689 (2023)


Reviews citing this publication (10)

  1. Role of Na+ and K+ in enzyme function. Page MJ, Di Cera E. Physiol Rev 86 1049-1092 (2006)
  2. Assessing and maximizing data quality in macromolecular crystallography. Karplus PA, Diederichs K. Curr Opin Struct Biol 34 60-68 (2015)
  3. Allosteric regulation of chaperonins. Horovitz A, Willison KR. Curr Opin Struct Biol 15 646-651 (2005)
  4. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. Wang J. J Struct Biol 148 259-267 (2004)
  5. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  6. The unusual chaperonins of Mycobacterium tuberculosis. Qamra R, Mande SC, Coates AR, Henderson B. Tuberculosis (Edinb) 85 385-394 (2005)
  7. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  8. Molecular chaperones: guardians of the proteome in normal and disease states. Jeng W, Lee S, Sung N, Lee J, Tsai FT. F1000Res 4 F1000 Faculty Rev-1448 (2015)
  9. Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Fislage M, Wauters L, Versées W. Biopolymers 105 568-579 (2016)
  10. Systemic Overview of Microstrip Patch Antenna's for Different Biomedical Applications. Arora G, Maman P, Sharma A, Verma N, Puri V. Adv Pharm Bull 11 439-449 (2021)

Articles citing this publication (46)

  1. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. Chaudhry C, Horwich AL, Brunger AT, Adams PD. J Mol Biol 342 229-245 (2004)
  2. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Proc Natl Acad Sci U S A 114 8259-8264 (2017)
  3. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Herruzo ET, Asakawa H, Fukuma T, Garcia R. Nanoscale 5 2678-2685 (2013)
  4. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Hao P, Zhu J, Gu A, Lv D, Ge P, Chen G, Li X, Yan Y. Proteomics 15 1544-1563 (2015)
  5. Potassium-activated GTPase reaction in the G Protein-coupled ferrous iron transporter B. Ash MR, Guilfoyle A, Clarke RJ, Guss JM, Maher MJ, Jormakka M. J Biol Chem 285 14594-14602 (2010)
  6. Crystal structure of wild-type chaperonin GroEL. Bartolucci C, Lamba D, Grazulis S, Manakova E, Heumann H. J Mol Biol 354 940-951 (2005)
  7. Insights into base selectivity from the 1.8 Å resolution structure of an RB69 DNA polymerase ternary complex. Wang M, Xia S, Blaha G, Steitz TA, Konigsberg WH, Wang J. Biochemistry 50 581-590 (2011)
  8. Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange. Ye X, Lorimer GH. Proc Natl Acad Sci U S A 110 E4289-97 (2013)
  9. The unfolding action of GroEL on a protein substrate. van der Vaart A, Ma J, Karplus M. Biophys J 87 562-573 (2004)
  10. Alignment of protein structures in the presence of domain motions. Mosca R, Brannetti B, Schneider TR. BMC Bioinformatics 9 352 (2008)
  11. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution. Fei X, Yang D, LaRonde-LeBlanc N, Lorimer GH. Proc Natl Acad Sci U S A 110 E2958-66 (2013)
  12. Cooperativity in the thermosome. Bigotti MG, Clarke AR. J Mol Biol 348 13-26 (2005)
  13. Domain motions in GroEL upon binding of an oligopeptide. Wang J, Chen L. J Mol Biol 334 489-499 (2003)
  14. Setting the chaperonin timer: a two-stroke, two-speed, protein machine. Grason JP, Gresham JS, Lorimer GH. Proc Natl Acad Sci U S A 105 17339-17344 (2008)
  15. Setting the chaperonin timer: the effects of K+ and substrate protein on ATP hydrolysis. Grason JP, Gresham JS, Widjaja L, Wehri SC, Lorimer GH. Proc Natl Acad Sci U S A 105 17334-17338 (2008)
  16. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. Cossio P, Hummer G. J Struct Biol 184 427-437 (2013)
  17. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. Kusmierczyk AR, Martin J. FEBS Lett 547 201-204 (2003)
  18. Modeling oligomers with Cn or Dn symmetry: application to CAPRI target 10. Berchanski A, Segal D, Eisenstein M. Proteins 60 202-206 (2005)
  19. In Situ Structural Restraints from Cross-Linking Mass Spectrometry in Human Mitochondria. Ryl PSJ, Bohlke-Schneider M, Lenz S, Fischer L, Budzinski L, Stuiver M, Mendes MML, Sinn L, O'Reilly FJ, Rappsilber J. J Proteome Res 19 327-336 (2020)
  20. Inclusion of weak high-resolution X-ray data for improvement of a group II intron structure. Wang J. Acta Crystallogr D Biol Crystallogr 66 988-1000 (2010)
  21. Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Zhang Q, Chen J, Kuwajima K, Zhang HM, Xian F, Young NL, Marshall AG. Sci Rep 3 1247 (2013)
  22. Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy. Nishida N, Motojima F, Idota M, Fujikawa H, Yoshida M, Shimada I, Kato K. J Biochem 140 591-598 (2006)
  23. Exploring potassium-dependent GTP hydrolysis in TEES family GTPases. Rafay A, Majumdar S, Prakash B. FEBS Open Bio 2 173-177 (2012)
  24. Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. Kim SY, Semyonov AN, Twieg RJ, Horwich AL, Frydman J, Moerner WE. J Phys Chem B 109 24517-24525 (2005)
  25. Serum biomarkers of Burkholderia mallei infection elucidated by proteomic imaging of skin and lung abscesses. Glaros TG, Blancett CD, Bell TM, Natesan M, Ulrich RG. Clin Proteomics 12 7 (2015)
  26. The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N. J Mol Biol 412 192-203 (2011)
  27. Crystal structure of Sa239 reveals the structural basis for the activation of ribokinase by monovalent cations. Li J, Wang C, Wu Y, Wu M, Wang L, Wang Y, Zang J. J Struct Biol 177 578-582 (2012)
  28. Structural insight into the cooperation of chloroplast chaperonin subunits. Zhang S, Zhou H, Yu F, Bai C, Zhao Q, He J, Liu C. BMC Biol 14 29 (2016)
  29. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Wang J, Wing RA. Acta Crystallogr D Biol Crystallogr 70 1491-1497 (2014)
  30. Structural basis for differential insertion kinetics of dNMPs opposite a difluorotoluene nucleotide residue. Xia S, Eom SH, Konigsberg WH, Wang J. Biochemistry 51 1476-1485 (2012)
  31. The Cpn10(1) co-chaperonin of A. thaliana functions only as a hetero-oligomer with Cpn20. Vitlin Gruber A, Zizelski G, Azem A, Weiss C. PLoS One 9 e113835 (2014)
  32. The N terminus of the head protein of T4 bacteriophage directs proteins to the GroEL chaperonin. Snyder L, Tarkowski HJ. J Mol Biol 345 375-386 (2005)
  33. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL. Koike-Takeshita A, Mitsuoka K, Taguchi H. J Biol Chem 289 30005-30011 (2014)
  34. Asymmetric binding of membrane proteins to GroEL. Sun J, Savva CG, Deaton J, Kaback HR, Svrakic M, Young R, Holzenburg A. Arch Biochem Biophys 434 352-357 (2005)
  35. The TCP1γ subunit of Leishmania donovani forms a biologically active homo-oligomeric complex. Bhaskar, Mitra K, Kuldeep J, Siddiqi MI, Goyal N. FEBS J 282 4607-4619 (2015)
  36. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PM. Environ Microbiol 13 2232-2249 (2011)
  37. Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures. Fan H, Mark AE. Protein Sci 15 441-448 (2006)
  38. Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Kudryavtseva SS, Pichkur EB, Yaroshevich IA, Mamchur AA, Panina IS, Moiseenko AV, Sokolova OS, Muronetz VI, Stanishneva-Konovalova TB. Sci Rep 11 18241 (2021)
  39. Heat shock protein 60 of filarial parasite Brugia malayi: cDNA cloning, expression, purification and in silico modeling and analysis of its ATP binding site. Misra RC, Verma AK, Verma SK, Kumar V, Siddiqui WA, Siddiqi MI, Murthy PK. Exp Parasitol 132 257-266 (2012)
  40. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Skjaerven L, Muga A, Reuter N, Martinez A. Proteins 80 2333-2346 (2012)
  41. Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Sarkar S, Swami S, Soni SK, Holien JK, Khan A, Korwar AM, Likhite AP, Joshi RA, Joshi RR, Sarkar D. Mol Divers 26 2535-2548 (2022)
  42. Activation parameters for the spontaneous and pressure-induced phases of the dissociation of single-ring GroEL (SR1) chaperonin. Panda M, Horowitz PM. Protein J 23 85-94 (2004)
  43. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex. Chandra D, Sankalia N, Arcibal I, Banta S, Cropek D, Karande P. Biopolymers 102 97-106 (2014)
  44. Missense Mutations of Human Hsp60: A Computational Analysis to Unveil Their Pathological Significance. Vitale AM, Conway de Macario E, Alessandro R, Cappello F, Macario AJL, Marino Gammazza A. Front Genet 11 969 (2020)
  45. Probing the dynamic process of encapsulation in Escherichia coli GroEL. Mizuta T, Ando K, Uemura T, Kawata Y, Mizobata T. PLoS One 8 e78135 (2013)
  46. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. J Phys Chem Lett 14 6513-6521 (2023)


Related citations provided by authors (4)

  1. The 2.4 A Crystal Structure of the Bacterial Chaperonin GroEL Complexed with ATP Gamma S. Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB Nat. Struct. Biol. 3 170-177 (1996)
  2. The Crystal Structure of the Bacterial Chaperonin GroEL at 2.8 A. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB Nature 371 578-586 (1994)
  3. Conformational Variability in the Refined Structure of the Chaperonin GroEL at 2.8 A Resolution. Braig K, Adams PD, Brunger AT Nat. Struct. Biol. 2 1083-1094 (1995)
  4. The Crystal Structure of the Asymmetric GroEL-GroES-(ADP)7 Chaperonin Complex. Xu Z, Horwich AL, Sigler PB Nature 388 741-750 (1997)