1kqg Citations

Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.

Science 295 1863-8 (2002)
Cited: 215 times
EuropePMC logo PMID: 11884747

Abstract

The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends almost 90 angstroms through the enzyme. The menaquinone reduction site associated with a possible proton pathway was also characterized. This structure provides critical insights into the proton motive force generation by redox loop, a common mechanism among a wide range of respiratory enzymes.

Reviews - 1kqg mentioned but not cited (3)

Articles - 1kqg mentioned but not cited (5)

  1. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem Rev 119 5607-5774 (2019)
  2. Cardiolipin Interactions with Proteins. Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J. Biophys J 109 1282-1294 (2015)
  3. Scavenging of superoxide by a membrane-bound superoxide oxidase. Lundgren CAK, Sjöstrand D, Biner O, Bennett M, Rudling A, Johansson AL, Brzezinski P, Carlsson J, von Ballmoos C, Högbom M. Nat Chem Biol 14 788-793 (2018)
  4. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices. Lai JS, Cheng CW, Lo A, Sung TY, Hsu WL. BMC Bioinformatics 14 304 (2013)
  5. A simple method for predicting transmembrane proteins based on wavelet transform. Yu B, Zhang Y. Int J Biol Sci 9 22-33 (2013)


Reviews citing this publication (55)

  1. The twin-arginine translocation (Tat) protein export pathway. Palmer T, Berks BC. Nat Rev Microbiol 10 483-496 (2012)
  2. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Chem Rev 114 4366-4469 (2014)
  3. Functional role of cardiolipin in mitochondrial bioenergetics. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Biochim Biophys Acta 1837 408-417 (2014)
  4. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. Schlame M. J Lipid Res 49 1607-1620 (2008)
  5. The mononuclear molybdenum enzymes. Hille R, Hall J, Basu P. Chem Rev 114 3963-4038 (2014)
  6. Cardiolipin membrane domains in prokaryotes and eukaryotes. Mileykovskaya E, Dowhan W. Biochim Biophys Acta 1788 2084-2091 (2009)
  7. Enzymology and bioenergetics of respiratory nitrite ammonification. Simon J. FEMS Microbiol Rev 26 285-309 (2002)
  8. How to make a living from anaerobic ammonium oxidation. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT. FEMS Microbiol Rev 37 428-461 (2013)
  9. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Berks BC, Palmer T, Sargent F. Curr Opin Microbiol 8 174-181 (2005)
  10. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Bogdanov M, Mileykovskaya E, Dowhan W. Subcell Biochem 49 197-239 (2008)
  11. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Iobbi-Nivol C, Leimkühler S. Biochim Biophys Acta 1827 1086-1101 (2013)
  12. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q Rev Biophys 43 65-158 (2010)
  13. The enzymes of oxalate metabolism: unexpected structures and mechanisms. Svedruzić D, Jónsson S, Toyota CG, Reinhardt LA, Ricagno S, Lindqvist Y, Richards NG. Arch Biochem Biophys 433 176-192 (2005)
  14. Non-covalent binding of membrane lipids to membrane proteins. Yeagle PL. Biochim Biophys Acta 1838 1548-1559 (2014)
  15. Formate dehydrogenase--a versatile enzyme in changing environments. Jormakka M, Byrne B, Iwata S. Curr Opin Struct Biol 13 418-423 (2003)
  16. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. Moura JJ, Brondino CD, Trincão J, Romão MJ. J Biol Inorg Chem 9 791-799 (2004)
  17. The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A. Biochim Biophys Acta 1827 1048-1085 (2013)
  18. Architecture of bacterial respiratory chains. Kaila VRI, Wikström M. Nat Rev Microbiol 19 319-330 (2021)
  19. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Romão MJ. Dalton Trans 4053-4068 (2009)
  20. Molybdenum and tungsten-dependent formate dehydrogenases. Maia LB, Moura JJ, Moura I. J Biol Inorg Chem 20 287-309 (2015)
  21. Review: studies of ferric heme proteins with highly anisotropic/highly axial low spin (S = 1/2) electron paramagnetic resonance signals with bis-histidine and histidine-methionine axial iron coordination. Zoppellaro G, Bren KL, Ensign AA, Harbitz E, Kaur R, Hersleth HP, Ryde U, Hederstedt L, Andersson KK. Biopolymers 91 1064-1082 (2009)
  22. The molybdenum oxotransferases and related enzymes. Hille R. Dalton Trans 42 3029-3042 (2013)
  23. Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Raunser S, Walz T. Annu Rev Biophys 38 89-105 (2009)
  24. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY. Biochim Biophys Acta 1827 1407-1427 (2013)
  25. Organization and function of anionic phospholipids in bacteria. Lin TY, Weibel DB. Appl Microbiol Biotechnol 100 4255-4267 (2016)
  26. Protonmotive force generation by a redox loop mechanism. Jormakka M, Byrne B, Iwata S. FEBS Lett 545 25-30 (2003)
  27. Metabolically engineered bacteria for producing hydrogen via fermentation. Vardar-Schara G, Maeda T, Wood TK. Microb Biotechnol 1 107-125 (2008)
  28. Structural basis of denitrification. Einsle O, Kroneck PM. Biol Chem 385 875-883 (2004)
  29. Designing redox metalloproteins from bottom-up and top-down perspectives. Barker PD. Curr Opin Struct Biol 13 490-499 (2003)
  30. Biogenesis of membrane bound respiratory complexes in Escherichia coli. Price CE, Driessen AJ. Biochim Biophys Acta 1803 748-766 (2010)
  31. Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold. Workun GJ, Moquin K, Rothery RA, Weiner JH. Microbiol Mol Biol Rev 72 228-48, table of contents (2008)
  32. Microbial nanowires and electroactive biofilms. Reguera G. FEMS Microbiol Ecol 94 (2018)
  33. The potassium channel KcsA: a model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Raja M. Arch Biochem Biophys 510 1-10 (2011)
  34. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Nowicka B, Kruk J. Microbiol Res 186-187 99-118 (2016)
  35. The di-heme family of respiratory complex II enzymes. Lancaster CR. Biochim Biophys Acta 1827 679-687 (2013)
  36. A little help from my friends: quality control of presecretory proteins in bacteria. Fisher AC, DeLisa MP. J Bacteriol 186 7467-7473 (2004)
  37. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Chem Rev 120 5252-5307 (2020)
  38. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Chem Rev 122 11900-11973 (2022)
  39. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. Rothery RA, Weiner JH. J Biol Inorg Chem 20 349-372 (2015)
  40. Membrane protein complexes. Byrne B, Iwata S. Curr Opin Struct Biol 12 239-243 (2002)
  41. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase. Lancaster CR. FEBS Lett 555 21-28 (2003)
  42. Proteins, chlorophylls and lipids: X-ray analysis of a three-way relationship. Fyfe PK, Hughes AV, Heathcote P, Jones MR. Trends Plant Sci 10 275-282 (2005)
  43. Regulation of Respiratory Pathways in Campylobacterota: A Review. van der Stel AX, Wösten MMSM. Front Microbiol 10 1719 (2019)
  44. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  45. Protein-lipid interactions in the purple bacterial reaction centre. Jones MR, Fyfe PK, Roszak AW, Isaacs NW, Cogdell RJ. Biochim Biophys Acta 1565 206-214 (2002)
  46. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Marsh D, Páli T. Chem Phys Lipids 141 48-65 (2006)
  47. A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. Degli Esposti M, Martinez Romero E. FEMS Microbiol Ecol 92 fiw084 (2016)
  48. Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Renard K, Byrne B. Int J Mol Sci 22 9026 (2021)
  49. Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers. Kirk ML, Hille R. Molecules 27 4802 (2022)
  50. Direct Biocatalytic Processes for CO2 Capture as a Green Tool to Produce Value-Added Chemicals. Villa R, Nieto S, Donaire A, Lozano P. Molecules 28 5520 (2023)
  51. Structural biology: a high-tech tool for biomedical research. Machius M. Curr Opin Nephrol Hypertens 12 431-438 (2003)
  52. Structure and function relationship of formate dehydrogenases: an overview of recent progress. Kobayashi A, Taketa M, Sowa K, Kano K, Higuchi Y, Ogata H. IUCrJ 10 544-554 (2023)
  53. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Magalon A. Molecules 28 7195 (2023)
  54. Interaction of Terminal Oxidases with Amphipathic Molecules. Azarkina NV, Borisov VB, Oleynikov IP, Sudakov RV, Vygodina TV. Int J Mol Sci 24 6428 (2023)
  55. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Maia LB, Maiti BK, Moura I, Moura JJG. Molecules 29 120 (2023)

Articles citing this publication (152)

  1. SCOP database in 2004: refinements integrate structure and sequence family data. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG. Nucleic Acids Res 32 D226-9 (2004)
  2. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC. Nat Struct Biol 10 681-687 (2003)
  3. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Joh NH, Min A, Faham S, Whitelegge JP, Yang D, Woods VL, Bowie JU. Nature 453 1266-1270 (2008)
  4. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Reda T, Plugge CM, Abram NJ, Hirst J. Proc Natl Acad Sci U S A 105 10654-10658 (2008)
  5. Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin G, Brandolin G, Pebay-Peyroula E. FEBS Lett 579 6031-6036 (2005)
  6. Rationalizing alpha-helical membrane protein crystallization. Newstead S, Ferrandon S, Iwata S. Protein Sci 17 466-472 (2008)
  7. A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Hatzixanthis K, Palmer T, Sargent F. Mol Microbiol 49 1377-1390 (2003)
  8. The action of cardiolipin on the bacterial translocon. Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I. Proc Natl Acad Sci U S A 107 10044-10049 (2010)
  9. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Müller N, Worm P, Schink B, Stams AJ, Plugge CM. Environ Microbiol Rep 2 489-499 (2010)
  10. Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Jormakka M, Richardson D, Byrne B, Iwata S. Structure 12 95-104 (2004)
  11. Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Kloer DP, Hagel C, Heider J, Schulz GE. Structure 14 1377-1388 (2006)
  12. Molecular mechanism of energy conservation in polysulfide respiration. Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S. Nat Struct Mol Biol 15 730-737 (2008)
  13. The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus R, McInerney MJ. Environ Microbiol 12 2289-2301 (2010)
  14. The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni MT, Nitschke W. Philos Trans R Soc Lond B Biol Sci 358 267-274 (2003)
  15. X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. Rodrigues ML, Oliveira TF, Pereira IA, Archer M. EMBO J 25 5951-5960 (2006)
  16. Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ. Structure 10 1261-1272 (2002)
  17. Formate-reduced E. coli formate dehydrogenase H: The reinterpretation of the crystal structure suggests a new reaction mechanism. Raaijmakers HC, Romão MJ. J Biol Inorg Chem 11 849-854 (2006)
  18. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. Venceslau SS, Lino RR, Pereira IA. J Biol Chem 285 22774-22783 (2010)
  19. The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Crouch ML, Becker LA, Bang IS, Tanabe H, Ouellette AJ, Fang FC. Mol Microbiol 56 789-799 (2005)
  20. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T, Leimkühler S. FEBS J 280 6083-6096 (2013)
  21. Rows of ATP synthase dimers in native mitochondrial inner membranes. Buzhynskyy N, Sens P, Prima V, Sturgis JN, Scheuring S. Biophys J 93 2870-2876 (2007)
  22. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Wagner T, Ermler U, Shima S. Science 354 114-117 (2016)
  23. Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC. Structure 21 184-190 (2013)
  24. A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli. Thomé R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, Walburger A. J Biol Chem 287 4671-4678 (2012)
  25. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Ridley H, Watts CA, Richardson DJ, Butler CS. Appl Environ Microbiol 72 5173-5180 (2006)
  26. Selenocysteine-containing proteins in anaerobic benzoate metabolism of Desulfococcus multivorans. Peters F, Rother M, Boll M. J Bacteriol 186 2156-2163 (2004)
  27. Thermally activated charge transport in microbial protein nanowires. Lampa-Pastirk S, Veazey JP, Walsh KA, Feliciano GT, Steidl RJ, Tessmer SH, Reguera G. Sci Rep 6 23517 (2016)
  28. Remote origins of tail-anchored proteins. Borgese N, Righi M, Righi M. Traffic 11 877-885 (2010)
  29. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. Soboh B, Pinske C, Kuhns M, Waclawek M, Ihling C, Trchounian K, Trchounian A, Sinz A, Sawers G. BMC Microbiol 11 173 (2011)
  30. Cardiolipin-based respiratory complex activation in bacteria. Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A. Proc Natl Acad Sci U S A 108 7781-7786 (2011)
  31. Thiosulfate reduction in Salmonella enterica is driven by the proton motive force. Stoffels L, Krehenbrink M, Berks BC, Unden G. J Bacteriol 194 475-485 (2012)
  32. A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. Li X, Luo Q, Wofford NQ, Keller KL, McInerney MJ, Wall JD, Krumholz LR. J Bacteriol 191 2675-2682 (2009)
  33. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Simon J, Sänger M, Schuster SC, Gross R. Mol Microbiol 49 69-79 (2003)
  34. Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown under aerobic and anaerobic conditions. Ruebush SS, Brantley SL, Tien M. Appl Environ Microbiol 72 2925-2935 (2006)
  35. Why are polar residues within the membrane core evolutionary conserved? Illergård K, Kauko A, Elofsson A. Proteins 79 79-91 (2011)
  36. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. Hao L, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH, Albertsen M, Nielsen PH, Dueholm MS. ISME J 14 906-918 (2020)
  37. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Groysman S, Holm RH. Biochemistry 48 2310-2320 (2009)
  38. Kinetic and mechanistic characterization of the formyl-CoA transferase from Oxalobacter formigenes. Jonsson S, Ricagno S, Lindqvist Y, Richards NG. J Biol Chem 279 36003-36012 (2004)
  39. The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol:electron acceptor oxidoreductases. Pereira MM, Refojo PN, Hreggvidsson GO, Hjorleifsdottir S, Teixeira M. FEBS Lett 581 4831-4835 (2007)
  40. Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. da Silva SM, Pimentel C, Valente FM, Rodrigues-Pousada C, Pereira IA. J Bacteriol 193 2909-2916 (2011)
  41. The mechanism of formate oxidation by metal-dependent formate dehydrogenases. Mota CS, Rivas MG, Brondino CD, Moura I, Moura JJ, González PJ, Cerqueira NM. J Biol Inorg Chem 16 1255-1268 (2011)
  42. The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. Matos CF, Robinson C, Di Cola A. EMBO J 27 2055-2063 (2008)
  43. Genomic features of a bumble bee symbiont reflect its host environment. Martinson VG, Magoc T, Koch H, Salzberg SL, Moran NA. Appl Environ Microbiol 80 3793-3803 (2014)
  44. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. Biel S, Simon J, Gross R, Ruiz T, Ruitenberg M, Kröger A. Eur J Biochem 269 1974-1983 (2002)
  45. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Hirose A, Kasai T, Aoki M, Umemura T, Watanabe K, Kouzuma A. Nat Commun 9 1083 (2018)
  46. Evidence for transmembrane proton transfer in a dihaem-containing membrane protein complex. Madej MG, Nasiri HR, Hilgendorff NS, Schwalbe H, Lancaster CR. EMBO J 25 4963-4970 (2006)
  47. The isolation and characterization of cytochrome c nitrite reductase subunits (NrfA and NrfH) from Desulfovibrio desulfuricans ATCC 27774. Re-evaluation of the spectroscopic data and redox properties. Almeida MG, Macieira S, Gonçalves LL, Gonçalves LL, Huber R, Cunha CA, Romão MJ, Costa C, Lampreia J, Moura JJ, Moura I. Eur J Biochem 270 3904-3915 (2003)
  48. Formate-dependent autotrophic growth in Sinorhizobium meliloti. Pickering BS, Oresnik IJ. J Bacteriol 190 6409-6418 (2008)
  49. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. da Silva SM, Voordouw J, Leitão C, Martins M, Voordouw G, Pereira IAC. Microbiology (Reading) 159 1760-1769 (2013)
  50. A-type carrier protein ErpA is essential for formation of an active formate-nitrate respiratory pathway in Escherichia coli K-12. Pinske C, Sawers RG. J Bacteriol 194 346-353 (2012)
  51. Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. Messerschmidt A, Niessen H, Abt D, Einsle O, Schink B, Kroneck PM. Proc Natl Acad Sci U S A 101 11571-11576 (2004)
  52. Growth substrate dependent localization of tetrachloroethene reductive dehalogenase in Sulfurospirillum multivorans. John M, Schmitz RP, Westermann M, Richter W, Diekert G. Arch Microbiol 186 99-106 (2006)
  53. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Brigé A, Motte B, Borloo J, Buysschaert G, Devreese B, Van Beeumen JJ. Microb Biotechnol 1 40-52 (2008)
  54. Identification and assessment of cardiolipin interactions with E. coli inner membrane proteins. Corey RA, Song W, Duncan AL, Ansell TB, Sansom MSP, Stansfeld PJ. Sci Adv 7 eabh2217 (2021)
  55. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. Edwardson CF, Edwardson CF, Hollibaugh JT. ISME J 11 2195-2208 (2017)
  56. Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase. Lancaster CR, Sauer US, Gross R, Haas AH, Graf J, Schwalbe H, Mäntele W, Simon J, Madej MG. Proc Natl Acad Sci U S A 102 18860-18865 (2005)
  57. How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase. Bowman L, Flanagan L, Fyfe PK, Parkin A, Hunter WN, Sargent F. Biochem J 458 449-458 (2014)
  58. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Tran KT, Maeda T, Wood TK. Appl Microbiol Biotechnol 98 4757-4770 (2014)
  59. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP. Juillan-Binard C, Picciocchi A, Andrieu JP, Dupuy J, Petit-Hartlein I, Caux-Thang C, Vivès C, Nivière V, Fieschi F. J Biol Chem 292 2485-2494 (2017)
  60. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor. Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA. J Bacteriol 198 1337-1346 (2016)
  61. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. Robinson WE, Bassegoda A, Reisner E, Hirst J. J Am Chem Soc 139 9927-9936 (2017)
  62. Quinol oxidation by c-type cytochromes: structural characterization of the menaquinol binding site of NrfHA. Rodrigues ML, Scott KA, Sansom MS, Pereira IA, Archer M. J Mol Biol 381 341-350 (2008)
  63. The role of formate in combatting oxidative stress. Thomas SC, Alhasawi A, Auger C, Omri A, Appanna VD. Antonie Van Leeuwenhoek 109 263-271 (2016)
  64. Biosynthesis of the respiratory formate dehydrogenases from Escherichia coli: characterization of the FdhE protein. Lüke I, Butland G, Moore K, Buchanan G, Lyall V, Fairhurst SA, Greenblatt JF, Emili A, Palmer T, Sargent F. Arch Microbiol 190 685-696 (2008)
  65. The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping. Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. Biochem J 475 1353-1370 (2018)
  66. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Radon C, Mittelstädt G, Duffus BR, Bürger J, Hartmann T, Mielke T, Teutloff C, Leimkühler S, Wendler P. Nat Commun 11 1912 (2020)
  67. Protein crystallography reveals a role for the FS0 cluster of Escherichia coli nitrate reductase A (NarGHI) in enzyme maturation. Rothery RA, Bertero MG, Spreter T, Bouromand N, Strynadka NC, Weiner JH. J Biol Chem 285 8801-8807 (2010)
  68. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Glasser NR, Oyala PH, Osborne TH, Santini JM, Newman DK. Proc Natl Acad Sci U S A 115 E8614-E8623 (2018)
  69. EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction. Rivas MG, González PJ, Brondino CD, Moura JJ, Moura I. J Inorg Biochem 101 1617-1622 (2007)
  70. Efficient phage display of intracellularly folded proteins mediated by the TAT pathway. Speck J, Arndt KM, Müller KM. Protein Eng Des Sel 24 473-484 (2011)
  71. Identification of a Formate-Dependent Uric Acid Degradation Pathway in Escherichia coli. Iwadate Y, Kato JI. J Bacteriol 201 e00573-18 (2019)
  72. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. Omajali JB, Mikheenko IP, Merroun ML, Wood J, Macaskie LE. J Nanopart Res 17 264 (2015)
  73. Defining the Q-site of Escherichia coli fumarate reductase by site-directed mutagenesis, fluorescence quench titrations and EPR spectroscopy. Rothery RA, Seime AM, Spiers AM, Maklashina E, Schröder I, Gunsalus RP, Cecchini G, Weiner JH. FEBS J 272 313-326 (2005)
  74. On the relationship between the protein structure and protein dynamics. Lu CH, Huang SW, Lai YL, Lin CP, Shih CH, Huang CC, Hsu WL, Hwang JK. Proteins 72 625-634 (2008)
  75. PDB-scale analysis of known and putative ligand-binding sites with structural sketches. Ito J, Tabei Y, Shimizu K, Tomii K, Tsuda K. Proteins 80 747-763 (2012)
  76. Signal peptide etiquette during assembly of a complex respiratory enzyme. James MJ, Coulthurst SJ, Palmer T, Sargent F. Mol Microbiol 90 400-414 (2013)
  77. Exploring the pH-dependent substrate transport mechanism of FocA using molecular dynamics simulation. Lv X, Liu H, Ke M, Gong H. Biophys J 105 2714-2723 (2013)
  78. Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism. Hidalgo-Ahumada CAP, Nobu MK, Narihiro T, Tamaki H, Liu WT, Kamagata Y, Stams AJM, Imachi H, Sousa DZ. Environ Microbiol 20 4503-4511 (2018)
  79. Reaction mechanism of formate dehydrogenase studied by computational methods. Dong G, Ryde U. J Biol Inorg Chem 23 1243-1254 (2018)
  80. Structural insight into a molecular switch in tandem winged-helix motifs from elongation factor SelB. Soler N, Fourmy D, Yoshizawa S. J Mol Biol 370 728-741 (2007)
  81. The trigonal prism in coordination chemistry. Cremades E, Echeverría J, Alvarez S. Chemistry 16 10380-10396 (2010)
  82. Mutagenesis study on the role of a lysine residue highly conserved in formate dehydrogenases and periplasmic nitrate reductases. Hettmann T, Siddiqui RA, von Langen J, Frey C, Romão MJ, Diekmann S. Biochem Biophys Res Commun 310 40-47 (2003)
  83. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction. Fogeron T, Retailleau P, Chamoreau LM, Li Y, Fontecave M. Angew Chem Int Ed Engl 57 17033-17037 (2018)
  84. The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor. Böhmer N, Hartmann T, Leimkühler S. FEBS Lett 588 531-537 (2014)
  85. The role of phosphatidic acid and cardiolipin in stability of the tetrameric assembly of potassium channel KcsA. Raja M. J Membr Biol 234 235-240 (2010)
  86. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. Liu G, Beaton SE, Grieve AG, Evans R, Rogers M, Strisovsky K, Armstrong FA, Freeman M, Exley RM, Tang CM. EMBO J 39 e102922 (2020)
  87. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni. van der Stel AX, Boogerd FC, Huynh S, Parker CT, van Dijk L, van Putten JPM, Wösten MMSM. Mol Microbiol 105 637-651 (2017)
  88. mRNA secondary structure modulates translation of Tat-dependent formate dehydrogenase N. Punginelli C, Ize B, Stanley NR, Stewart V, Sawers G, Berks BC, Palmer T. J Bacteriol 186 6311-6315 (2004)
  89. Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. Wells M, McGarry J, Gaye MM, Basu P, Oremland RS, Stolz JF. J Bacteriol 201 e00614-18 (2019)
  90. Metabolic potential and in situ transcriptomic profiles of previously uncharacterized key microbial groups involved in coupled carbon, nitrogen and sulfur cycling in anoxic marine zones. Plominsky AM, Trefault N, Podell S, Blanton JM, De la Iglesia R, Allen EE, von Dassow P, Ulloa O. Environ Microbiol 20 2727-2742 (2018)
  91. Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha. Hettmann T, Siddiqui RA, Frey C, Santos-Silva T, Romão MJ, Diekmann S. Biochem Biophys Res Commun 320 1211-1219 (2004)
  92. Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration. Tomiki T, Saitou N. J Mol Evol 59 158-176 (2004)
  93. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase. Wu SY, Rothery RA, Weiner JH. J Biol Chem 290 25164-25173 (2015)
  94. Comparative Genome-Centric Analysis of Freshwater and Marine ANAMMOX Cultures Suggests Functional Redundancy in Nitrogen Removal Processes. Ali M, Shaw DR, Albertsen M, Saikaly PE. Front Microbiol 11 1637 (2020)
  95. Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach. Zhang X, Matson EG, Leadbetter JR. Environ Microbiol 13 307-323 (2011)
  96. His92 and His110 selectively affect different heme centers of adrenal cytochrome b(561). Liu W, Rogge CE, da Silva GF, Shinkarev VP, Tsai AL, Kamensky Y, Palmer G, Kulmacz RJ. Biochim Biophys Acta 1777 1218-1228 (2008)
  97. Correct assembly of iron-sulfur cluster FS0 into Escherichia coli dimethyl sulfoxide reductase (DmsABC) is a prerequisite for molybdenum cofactor insertion. Tang H, Rothery RA, Voss JE, Weiner JH. J Biol Chem 286 15147-15154 (2011)
  98. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Sci Rep 9 14425 (2019)
  99. Methane, arsenic, selenium and the origins of the DMSO reductase family. Wells M, Kanmanii NJ, Al Zadjali AM, Janecka JE, Basu P, Oremland RS, Stolz JF. Sci Rep 10 10946 (2020)
  100. Models of the membrane-bound cytochromes: mössbauer spectra of crystalline low-spin ferriheme complexes having axial ligand plane dihedral angles ranging from 0 degree to 90 degrees. Teschner T, Yatsunyk L, Schünemann V, Paulsen H, Winkler H, Hu C, Scheidt WR, Walker FA, Trautwein AX. J Am Chem Soc 128 1379-1389 (2006)
  101. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze. Kirk ML, Kc K. Met Ions Life Sci 20 /books/9783110589757/9783110589757-015/97831105897 (2020)
  102. On the role of basic residues in adapting the reaction centre-LH1 complex for growth at elevated temperatures in purple bacteria. Watson AJ, Hughes AV, Fyfe PK, Wakeham MC, Holden-Dye K, Heathcote P, Jones MR. Photosynth Res 86 81-100 (2005)
  103. A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. Tooke FJ, Babot M, Chandra G, Buchanan G, Palmer T. Elife 6 e26577 (2017)
  104. Cardiolipin enhances the enzymatic activity of cytochrome bd and cytochrome bo3 solubilized in dodecyl-maltoside. Asseri AH, Godoy-Hernandez A, Goojani HG, Lill H, Sakamoto J, McMillan DGG, Bald D. Sci Rep 11 8006 (2021)
  105. Clustering as a Means To Control Nitrate Respiration Efficiency and Toxicity in Escherichia coli. Bulot S, Audebert S, Pieulle L, Seduk F, Baudelet E, Espinosa L, Pizay MC, Camoin L, Magalon A. mBio 10 e01832-19 (2019)
  106. Exploring the Molecular Machinery of Denitrification in Haloferax mediterranei Through Proteomics. Torregrosa-Crespo J, Pire C, Richardson DJ, Martínez-Espinosa RM. Front Microbiol 11 605859 (2020)
  107. Genomic and Proteomic Analyses of Salmonella enterica Serovar Enteritidis Identifying Mechanisms of Induced de novo Tolerance to Ceftiofur. Radford D, Strange P, Lepp D, Hernandez M, Rehman MA, Diarra MS, Balamurugan S. Front Microbiol 9 2123 (2018)
  108. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Tsai CL, Tainer JA. Methods Enzymol 599 157-196 (2018)
  109. The critical role of tryptophan-116 in the catalytic cycle of dimethylsulfoxide reductase from Rhodobacter capsulatus. Ridge JP, Aguey-Zinsou KF, Bernhardt PV, Hanson GR, McEwan AG. FEBS Lett 563 197-202 (2004)
  110. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism. Lee HC, Portnoff AD, Rocco MA, DeLisa MP. Sci Rep 4 7570 (2014)
  111. Electrostatic models of electron-driven proton transfer across a lipid membrane. Smirnov AY, Mourokh LG, Nori F. J Phys Condens Matter 23 234101 (2011)
  112. Identification and characterization of a noncanonical menaquinone-linked formate dehydrogenase. Arias-Cartín R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. J Biol Chem 298 101384 (2022)
  113. Selective selC-independent selenocysteine incorporation into formate dehydrogenases. Zorn M, Ihling CH, Golbik R, Sawers RG, Sinz A. PLoS One 8 e61913 (2013)
  114. Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Steinhilper R, Höff G, Heider J, Murphy BJ. Nat Commun 13 5395 (2022)
  115. The formate:oxygen oxidoreductase supercomplex of Escherichia coli aerobic respiratory chain. Sousa PM, Videira MA, Melo AM. FEBS Lett 587 2559-2564 (2013)
  116. Distinct protein interfaces in transmembrane domains suggest an in vivo folding model. Stevens TJ, Mizuguchi K, Arkin IT. Protein Sci 13 3028-3037 (2004)
  117. Infrared Spectroscopy Elucidates the Inhibitor Binding Sites in a Metal-Dependent Formate Dehydrogenase. Laun K, Duffus BR, Wahlefeld S, Katz S, Belger D, Hildebrandt P, Mroginski MA, Leimkühler S, Zebger I. Chemistry 28 e202201091 (2022)
  118. Large-scale gene expression profiling reveals physiological response to deletion of chaperone dnaKJ in Escherichia coli. Fan D, Liu C, Liu L, Zhu L, Peng F, Zhou Q. Microbiol Res 186-187 27-36 (2016)
  119. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Bock LJ, Ferguson PM, Clarke M, Pumpitakkul V, Wand ME, Fady PE, Allison L, Fleck RA, Shepherd MJ, Mason AJ, Sutton JM. Commun Biol 4 1058 (2021)
  120. Structure of the Michaelis complex and function of the catalytic center in the reductive half-reaction of computational and synthetic models of sulfite oxidase. Pal K, Chaudhury PK, Sarkar S. Chem Asian J 2 956-964 (2007)
  121. Diffusion-controlled generation of a proton-motive force across a biomembrane. Smirnov AY, Savel'ev SE, Nori F. Phys Rev E Stat Nonlin Soft Matter Phys 80 011916 (2009)
  122. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Jung HM, Kim YH, Oh MK. Biotechnol J 12 (2017)
  123. Nitrate Utilization Promotes Systemic Infection of Salmonella Typhimurium in Mice. Li W, Li L, Yan X, Wu P, Zhang T, Fan Y, Ma S, Wang X, Jiang L. Int J Mol Sci 23 7220 (2022)
  124. Orientation and conformation of lipids in crystals of transmembrane proteins. Marsh D, Páli T. Eur Biophys J 42 119-146 (2013)
  125. Oxo-carboxylato-molybdenum(VI) complexes possessing dithiolene ligands related to the active site of type II DMSOR family molybdoenzymes. Sugimoto H, Sato M, Giles LJ, Asano K, Suzuki T, Kirk ML, Itoh S. Dalton Trans 42 15927-15930 (2013)
  126. Same but different: Comparison of two system-specific molecular chaperones for the maturation of formate dehydrogenases. Schwanhold N, Iobbi-Nivol C, Lehmann A, Leimkühler S. PLoS One 13 e0201935 (2018)
  127. The impact of species, respiration type, growth phase and genetic inventory on absolute metal content of intact bacterial cells. Budhraja R, Ding C, Walter P, Wagner S, Reemtsma T, Gary Sawers R, Adrian L. Metallomics 11 925-935 (2019)
  128. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer. Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A. J Biol Chem 291 6872-6881 (2016)
  129. A variant conferring cofactor-dependent assembly of Escherichia coli dimethylsulfoxide reductase. Tang H, Rothery RA, Weiner JH. Biochim Biophys Acta 1827 730-737 (2013)
  130. Activity of Spore-Specific Respiratory Nitrate Reductase 1 of Streptomyces coelicolor A3(2) Requires a Functional Cytochrome bcc-aa3 Oxidase Supercomplex. Falke D, Biefel B, Haase A, Franke S, Fischer M, Sawers RG. J Bacteriol 201 e00104-19 (2019)
  131. Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli. Hartwig S, Pinske C, Sawers RG. Biochem Biophys Rep 1 62-67 (2015)
  132. Deep (Meta)genomics and (Meta)transcriptome Analyses of Fungal and Bacteria Consortia From Aircraft Tanks and Kerosene Identify Key Genes in Fuel and Tank Corrosion. Krohn I, Bergmann L, Qi M, Indenbirken D, Han Y, Perez-Garcia P, Katzowitsch E, Hägele B, Lübcke T, Siry C, Riemann R, Alawi M, Streit WR. Front Microbiol 12 722259 (2021)
  133. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. mSystems 8 e0090422 (2023)
  134. High resolution clear native electrophoresis is a good alternative to blue native electrophoresis for the characterization of the Escherichia coli membrane complexes. Diéguez-Casal E, Freixeiro P, Costoya L, Criado MT, Ferreirós C, Sánchez S. J Microbiol Methods 102 45-54 (2014)
  135. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature. Nguyen NT, Yatabe T, Yoon KS, Ogo S. J Biosci Bioeng 118 386-391 (2014)
  136. The Role of Egg Yolk in Modulating the Virulence of Salmonella Enterica Serovar Enteritidis. Xu Y, Abdelhamid AG, Sabag-Daigle A, Sovic MG, Ahmer BMM, Yousef AE. Front Cell Infect Microbiol 12 903979 (2022)
  137. Discovery of a new metal and NAD+-dependent formate dehydrogenase from Clostridium ljungdahlii. Çakar MM, Mangas-Sanchez J, Birmingham WR, Turner NJ, Binay B. Prep Biochem Biotechnol 48 327-334 (2018)
  138. Occurrence and sequence of Sphaeroides Heme Protein and diheme cytochrome C in purple photosynthetic bacteria in the family Rhodobacteraceae. Meyer TE, Kyndt JA, Cusanovich MA. BMC Biochem 11 24 (2010)
  139. Possible Involvement of a Tetrathionate Reductase Homolog in Dissimilatory Arsenate Reduction by Anaeromyxobacter sp. Strain PSR-1. Muramatsu F, Tonomura M, Yamada M, Kasahara Y, Yamamura S, Iino T, Amachi S. Appl Environ Microbiol 86 e00829-20 (2020)
  140. Renovating a double fence with or without notifying the next door and across the street neighbors: why the biogenic cytoplasmic membrane of Gram-negative bacteria display asymmetry? Bogdanov M. Emerg Top Life Sci 7 137-150 (2023)
  141. Bioconversion of CO to formate by artificially designed carbon monoxide:formate oxidoreductase in hyperthermophilic archaea. Lim JK, Yang JI, Kim YJ, Park YJ, Kim YH. Commun Biol 5 539 (2022)
  142. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Wells M, Kim M, Akob DM, Basu P, Stolz JF. Microbiol Spectr e0414522 (2023)
  143. MENSAdb: a thorough structural analysis of membrane protein dimers. Matos-Filipe P, Preto AJ, Koukos PI, Mourão J, Bonvin AMJJ, Moreira IS. Database (Oxford) 2021 baab013 (2021)
  144. The fdh operon of Sulfurospirillum multivorans. Schmitz RP, Diekert G. FEMS Microbiol Lett 237 235-242 (2004)
  145. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase. Robinson WE, Bassegoda A, Blaza JN, Reisner E, Hirst J. J Am Chem Soc 142 12226-12236 (2020)
  146. Dehalococcoides mccartyi strain CBDB1 takes up protons from the cytoplasm to reductively dehalogenate organohalides indicating a new modus of proton motive force generation. Hellmold N, Eberwein M, Phan MHT, Kümmel S, Einsle O, Deobald D, Adrian L. Front Microbiol 14 1305108 (2023)
  147. A Novel Phage Infecting the Marine Photoheterotrophic Bacterium Citromicrobium bathyomarinum. Ma R, Shao S, Wei S, Ye J, Yang Y, Jiao N, Zhang R. Viruses 14 512 (2022)
  148. Cellular production of a de novo membrane cytochrome. Hardy BJ, Martin Hermosilla A, Chinthapalli DK, Robinson CV, Anderson JLR, Curnow P. Proc Natl Acad Sci U S A 120 e2300137120 (2023)
  149. Formate oxidation in the intestinal mucus layer enhances fitness of Salmonella enterica serovar Typhimurium. Winter MG, Hughes ER, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Gillis CC, McClelland M, Andrews-Polymenis H, Winter SE. mBio 14 e0092123 (2023)
  150. Resorcinol Hydroxylase of Azoarcus anaerobius: Molybdenum Dependence, Activity, and Heterologous Expression. Darley PI, Hellstern J, Schink B, Philipp B. Curr Microbiol 77 3385-3396 (2020)
  151. Theoretical hypothesis in a direct electron transfer between non-interacting Fe-S proteins within an artificial fusion. Lim JK. FEMS Microbiol Lett 371 fnad137 (2024)
  152. Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen Shewanella marisflavi BBL25. Kim SH, Kim HJ, Kim SH, Jung HJ, Kim B, Cho DH, Jeon JM, Yoon JJ, Kim SH, Park JH, Bhatia SK, Yang YH. J Microbiol Biotechnol 33 687-697 (2023)