1ku8 Citations

Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose.

Abstract

Evidence is presented that the specificity of jacalin, the seed lectin from jack fruit (Artocarpus integrifolia), is not directed exclusively against the T-antigen disaccharide Galbeta1,3GalNAc, lactose and galactose, but also against mannose and oligomannosides. Biochemical analyses based on surface-plasmon-resonance measurements, combined with the X-ray-crystallographic determination of the structure of a jacalin-alpha-methyl-mannose complex at 2 A resolution, demonstrated clearly that jacalin is fully capable of binding mannose. Besides mannose, jacalin also interacts readily with glucose, N-acetylneuraminic acid and N-acetylmuramic acid. Structural analyses demonstrated that the relatively large size of the carbohydrate-binding site enables jacalin to accommodate monosaccharides with different hydroxyl conformations and provided unambiguous evidence that the beta-prism structure of jacalin is a sufficiently flexible structural scaffold to confer different carbohydrate-binding specificities to a single lectin.

Articles - 1ku8 mentioned but not cited (3)

  1. Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins. Gabrielsen M, Abdul-Rahman PS, Othman S, Hashim OH, Cogdell RJ. Acta Crystallogr F Struct Biol Commun 70 709-716 (2014)
  2. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations. Lees JG, Janes RW. BMC Bioinformatics 9 24 (2008)
  3. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory. Uporov IV, Forlemu NY, Nori R, Aleksandrov T, Sango BA, Mbote YE, Pothuganti S, Thomasson KA. Int J Mol Sci 16 21237-21276 (2015)


Reviews citing this publication (14)

  1. Plant lectins: occurrence, biochemistry, functions and applications. Rüdiger H, Gabius HJ. Glycoconj J 18 589-613 (2001)
  2. Lectins as bioactive plant proteins: a potential in cancer treatment. De Mejía EG, Prisecaru VI. Crit Rev Food Sci Nutr 45 425-445 (2005)
  3. Mucin-type O-glycosylation--putting the pieces together. Jensen PH, Kolarich D, Packer NH. FEBS J 277 81-94 (2010)
  4. Inhibition of HIV entry by carbohydrate-binding proteins. Balzarini J. Antiviral Res 71 237-247 (2006)
  5. Antiviral lectins: Selective inhibitors of viral entry. Mitchell CA, Ramessar K, O'Keefe BR. Antiviral Res 142 37-54 (2017)
  6. Beyond carbohydrate binding: new directions in plant lectin research. Komath SS, Kavitha M, Swamy MJ. Org Biomol Chem 4 973-988 (2006)
  7. Proteins that bind high-mannose sugars of the HIV envelope. Botos I, Wlodawer A. Prog Biophys Mol Biol 88 233-282 (2005)
  8. Development and Applications of Lectins as Biological Tools in Biomedical Research. Dan X, Liu W, Ng TB. Med Res Rev 36 221-247 (2016)
  9. Protein-carbohydrate interactions as part of plant defense and animal immunity. De Schutter K, Van Damme EJ. Molecules 20 9029-9053 (2015)
  10. The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. Van Damme EJ, Lannoo N, Fouquaert E, Peumans WJ. Glycoconj J 20 449-460 (2004)
  11. 130 years of Plant Lectin Research. Tsaneva M, Van Damme EJM. Glycoconj J 37 533-551 (2020)
  12. A survey of the year 2002 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 16 351-382 (2003)
  13. Affinity-based proteomic profiling: problems and achievements. Medvedev A, Kopylov A, Buneeva O, Zgoda V, Archakov A. Proteomics 12 621-637 (2012)
  14. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Barre A, Bourne Y, Van Damme EJM, Rougé P. Int J Mol Sci 20 E254 (2019)

Articles citing this publication (52)

  1. A small molecule that inhibits OGT activity in cells. Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ, Walker S. ACS Chem Biol 10 1392-1397 (2015)
  2. Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. Olson R, Gouaux E. J Mol Biol 350 997-1016 (2005)
  3. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J. Mol Immunol 44 2598-2604 (2007)
  4. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity. Moulaei T, Shenoy SR, Giomarelli B, Thomas C, McMahon JB, Dauter Z, O'Keefe BR, Wlodawer A. Structure 18 1104-1115 (2010)
  5. Lectin microarray profiling of metastatic breast cancers. Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJ. Glycobiology 21 1060-1070 (2011)
  6. Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity. Arockia Jeyaprakash A, Jayashree G, Mahanta SK, Swaminathan CP, Sekar K, Surolia A, Vijayan M. J Mol Biol 347 181-188 (2005)
  7. Structural basis of the carbohydrate specificities of jacalin: an X-ray and modeling study. Jeyaprakash AA, Katiyar S, Swaminathan CP, Sekar K, Surolia A, Vijayan M. J Mol Biol 332 217-228 (2003)
  8. Targeted serum glycoproteomics for the discovery of lung cancer-associated glycosylation disorders using lectin-coupled ProteinChip arrays. Ueda K, Fukase Y, Katagiri T, Ishikawa N, Irie S, Sato TA, Ito H, Nakayama H, Miyagi Y, Tsuchiya E, Kohno N, Shiwa M, Nakamura Y, Daigo Y. Proteomics 9 2182-2192 (2009)
  9. Binding profile of Artocarpus integrifolia agglutinin (Jacalin). Wu AM, Wu JH, Lin LH, Lin SH, Liu JH. Life Sci 72 2285-2302 (2003)
  10. Energetics of galactose- and glucose-aromatic amino acid interactions: implications for binding in galactose-specific proteins. Sujatha MS, Sasidhar YU, Balaji PV. Protein Sci 13 2502-2514 (2004)
  11. How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Darula Z, Sherman J, Medzihradszky KF. Mol Cell Proteomics 11 O111.016774 (2012)
  12. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, Kawamoto S. J Bacteriol 189 4815-4826 (2007)
  13. Paracoccin, a GlcNAc-binding lectin from Paracoccidioides brasiliensis, binds to laminin and induces TNF-alpha production by macrophages. Coltri KC, Casabona-Fortunato AS, Gennari-Cardoso ML, Pinzan CF, Ruas LP, Mariano VS, Martinez R, Rosa JC, Panunto-Castelo A, Roque-Barreira MC. Microbes Infect 8 704-713 (2006)
  14. Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. Rabijns A, Barre A, Van Damme EJ, Peumans WJ, De Ranter CJ, Rougé P. FEBS J 272 3725-3732 (2005)
  15. A beta-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity. Wang JH, Kong J, Li W, Molchanova V, Chikalovets I, Belogortseva N, Luk'yanov P, Zheng YT. Comp Biochem Physiol C Toxicol Pharmacol 142 111-117 (2006)
  16. Griffithsin tandemers: flexible and potent lectin inhibitors of the human immunodeficiency virus. Moulaei T, Alexandre KB, Shenoy SR, Meyerson JR, Krumpe LR, Constantine B, Wilson J, Buckheit RW, McMahon JB, Subramaniam S, Wlodawer A, O'Keefe BR. Retrovirology 12 6 (2015)
  17. A structural basis for the difference in specificity between the two jacalin-related lectins from mulberry (Morus nigra) bark. Rougé P, Peumans WJ, Barre A, Van Damme EJ. Biochem Biophys Res Commun 304 91-97 (2003)
  18. Expression of frutalin, an alpha-D-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris. Oliveira C, Felix W, Moreira RA, Teixeira JA, Domingues L. Protein Expr Purif 60 188-193 (2008)
  19. The size, shape and specificity of the sugar-binding site of the jacalin-related lectins is profoundly affected by the proteolytic cleavage of the subunits. Houlès Astoul C, Peumans WJ, van Damme EJ, Barre A, Bourne Y, Rougé P. Biochem J 367 817-824 (2002)
  20. Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies. Sharma A, Sekar K, Vijayan M. Proteins 77 760-777 (2009)
  21. Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin. Sahasrabuddhe AA, Gaikwad SM, Krishnasastry MV, Khan MI. Protein Sci 13 3264-3273 (2004)
  22. An improved lectin-based method for the detection of mucin-type O-glycans in biological samples. Lee CS, Muthusamy A, Abdul-Rahman PS, Bhavanandan VP, Hashim OH. Analyst 138 3522-3529 (2013)
  23. Artocarpin is a polyspecific jacalin-related lectin with a monosaccharide preference for mannose. Barre A, Peumans WJ, Rossignol M, Borderies G, Culerrier R, Van Damme EJ, Rougé P. Biochimie 86 685-691 (2004)
  24. From individual proteins to proteomic samples: characterization of O-glycosylation sites in human chorionic gonadotropin and human-plasma proteins. Bai X, Li D, Zhu J, Guan Y, Zhang Q, Chi L. Anal Bioanal Chem 407 1857-1869 (2015)
  25. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Van Damme EJM. Glycoconj J 39 83-97 (2022)
  26. Characterization of the secondary binding sites of Maclura pomifera agglutinin by glycan array and crystallographic analyses. Huang J, Xu Z, Wang D, Ogata CM, Palczewski K, Lee X, Young NM. Glycobiology 20 1643-1653 (2010)
  27. Effects of glycoprotein isolated from Rhus verniciflua stokes on TPA-induced apoptosis and production of cytokines in cultured mouse primary splenocytes. Lim KT, Lee SJ, Heo KS, Lim K. Toxicol Lett 145 261-271 (2003)
  28. Evidence for glycosylation on a DNA-binding protein of Salmonella enterica. Hanna ES, Roque-Barreira MC, Bernardes ES, Panunto-Castelo A, Sousa MV, Almeida IC, Brocchi M. Microb Cell Fact 6 11 (2007)
  29. Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Tang JSJ, Rosencrantz S, Tepper L, Chea S, Klöpzig S, Krüger-Genge A, Storsberg J, Rosencrantz RR. Molecules 24 E1865 (2019)
  30. Energetics of 5-bromo-4-chloro-3-indolyl-alpha-D-mannose binding to the Parkia platycephala seed lectin and its use for MAD phasing. Gallego del Sol F, Gómez J, Hoos S, Nagano CS, Cavada BS, England P, Calvete JJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 326-331 (2005)
  31. LectinOracle: A Generalizable Deep Learning Model for Lectin-Glycan Binding Prediction. Lundstrøm J, Korhonen E, Lisacek F, Bojar D. Adv Sci (Weinh) 9 e2103807 (2022)
  32. Jacalin capped platinum nanoparticles confer persistent immunity against multiple Aeromonas infection in zebrafish. Ayaz Ahmed KB, Raman T, Veerappan A. Sci Rep 8 2200 (2018)
  33. Surface analysis of pure and complex mucin coatings on a real-type substrate using individual and combined mBCA, ELLA, and ELISA. Sandberg T, Mellin L, Gelius U, Caldwell KD. J Colloid Interface Sci 333 180-187 (2009)
  34. Jacalin interaction with human immunoglobulin A1 and bovine immunoglobulin G1: affinity constant determined by piezoelectric biosensoring. Pedroso MM, Pesquero NC, Thomaz SM, Roque-Barreira MC, Faria RC, Bueno PR. Glycobiology 22 326-331 (2012)
  35. Specific interaction of jacalin with phycocyanin, a fluorescent phycobiliprotein. Pandey G, Fatma T, Cowsik SM, Komath SS. J Photochem Photobiol B 97 87-93 (2009)
  36. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism. Ganguly S, Mukherjee A, Mazumdar B, Ghosh AN, Banerjee KK. J Biol Chem 289 4001-4008 (2014)
  37. Interaction of aromatic imino glycoconjugates with jacalin: experimental and computational docking studies. Kumar A, Ramanujam B, Singhal NK, Mitra A, Rao CP. Carbohydr Res 345 2491-2498 (2010)
  38. Jacalin-carbohydrate interactions: distortion of the ligand molecule as a determinant of affinity. Abhinav KV, Sharma K, Swaminathan CP, Surolia A, Vijayan M. Acta Crystallogr D Biol Crystallogr 71 324-331 (2015)
  39. The Thomsen-Friedenreich antigen-binding lectin jacalin interacts with desmoglein-1 and abrogates the pathogenicity of pemphigus foliaceus autoantibodies in vivo. Li N, Park M, Zhao M, Hilario-Vargas J, McInnes DM, Prisayanh PS, Liu Z, Diaz LA. J Invest Dermatol 130 2773-2780 (2010)
  40. Cloning, expression and purification of a glycosylated form of the DNA-binding protein Dps from Salmonella enterica Typhimurium. Hanna ES, Roque-Barreira MC, Mendes GM, Soares SG, Brocchi M. Protein Expr Purif 59 197-202 (2008)
  41. Effect of linkage on the location of reducing and nonreducing sugars bound to jacalin. Abhinav KV, Sharma K, Surolia A, Vijayan M. IUBMB Life 68 971-979 (2016)
  42. Isolation and characterization of glycosylated neuropeptides. Liu Y, Cao Q, Li L. Methods Enzymol 626 147-202 (2019)
  43. Partial characterization of the lectin of runner beans (Phaseolus coccieneus) var. Alubia. Armienta-Aldana E, Moreno-Legorreta M, Armienta-Aldana E, Laguna-Granados SV. Pak J Biol Sci 12 459-462 (2009)
  44. Two jacalin-related lectins from seeds of the African breadfruit (Treculia africana L.). Shimokawa M, Nsimba-Lubaki SM, Hayashi N, Minami Y, Yagi F, Hiemori K, Tateno H, Hirabayashi J. Biosci Biotechnol Biochem 78 2036-2044 (2014)
  45. Changes in Gastric Mucosal Glycosylation Before and After Helicobacter pylori Eradication Using Lectin Microarray Analysis. Ogawa R, Okimoto T, Kodama M, Togo K, Fukuda K, Okamoto K, Mizukami K, Murakami K. Turk J Gastroenterol 33 88-94 (2022)
  46. Lectin-Fortified Cationic Copper Sulfide Nanoparticles Gain Dual Targeting Capabilities to Treat Carbapenem-Resistant Acinetobacter baumannii Infection. Singaravelu DK, Binjawhar DN, Ameen F, Veerappan A. ACS Omega 7 43934-43944 (2022)
  47. Phoenix dactylifera (date palm; Arecaceae) putative lectin homologs: Genome-wide search, architecture analysis, and evolutionary relationship. Osman MEM, Osman RSH, Elmubarak SAA, Dirar AI, Konozy EHE. Saudi J Biol Sci 30 103676 (2023)
  48. Distortion of the ligand molecule as a strategy for modulating binding affinity: Further studies involving complexes of jacalin with β-substituted disaccharides. Abhinav KV, Sharma K, Surolia A, Vijayan M. IUBMB Life 69 72-78 (2017)
  49. Ig Glycosylation in Ulcerative Colitis: It's Time for New Biomarkers. Capecchi R, Migliorini P, Zanzi F, Maltinti S, Puxeddu I, de Bortoli N, Bellini M, Costa F, Marchi S, Bertani L. Front Pharmacol 12 654319 (2021)
  50. Jacalin-Curcumin Complex Sensitizes the Breast Cancer MDA-MB-231 Cell Line. Petrova L, Gergov N, Stoup M, Zapryanova S, Van Damme EJM, Lebègue N, Liberelle M, Zasheva D, Bogoeva V. Int J Mol Sci 24 17399 (2023)
  51. Lectin and Liquid Chromatography-Based Methods for Immunoglobulin (G) Glycosylation Analysis. Petrović T, Trbojević-Akmačić I. Exp Suppl 112 29-72 (2021)
  52. Selective targeting of lectins and their macropinocytosis in urothelial tumours: translation from in vitro to ex vivo. Resnik N, Višnjar T, Smrkolj T, Kreft ME, Romih R, Zupančič D. Histochem Cell Biol (2023)