1l2b Citations

Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM.

Nat Struct Biol 9 544-52 (2002)
Related entries: 1l1t, 1l1z, 1l2c, 1l2d

Cited: 101 times
EuropePMC logo PMID: 12055620

Abstract

MutM is a bacterial 8-oxoguanine glycosylase responsible for initiating base-excision repair of oxidized guanine residues in DNA. Here we report five different crystal structures of MutM-DNA complexes that represent different steps of the repair reaction cascade catalyzed by the protein and also differ in the identity of the base opposite the lesion (the 'estranged' base). These structures reveal that the MutM active site performs the multiple steps of base-excision and 3' and 5' nicking with minimal rearrangement of the DNA backbone.

Reviews - 1l2b mentioned but not cited (2)

  1. Recent advances in the structural mechanisms of DNA glycosylases. Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Biochim Biophys Acta 1834 247-271 (2013)
  2. The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. Prakash A, Doublié S, Wallace SS. Prog Mol Biol Transl Sci 110 71-91 (2012)

Articles - 1l2b mentioned but not cited (1)

  1. Structural classification of zinc fingers: survey and summary. Krishna SS, Majumdar I, Grishin NV. Nucleic Acids Res 31 532-550 (2003)


Reviews citing this publication (19)

  1. DNA base damage recognition and removal: new twists and grooves. Huffman JL, Sundheim O, Tainer JA. Mutat Res 577 55-76 (2005)
  2. DNA glycosylase recognition and catalysis. Fromme JC, Banerjee A, Banerjee A, Verdine GL. Curr Opin Struct Biol 14 43-49 (2004)
  3. Structural characterization of the Fpg family of DNA glycosylases. Zharkov DO, Shoham G, Grollman AP. DNA Repair (Amst) 2 839-862 (2003)
  4. DNA base repair--recognition and initiation of catalysis. Dalhus B, Laerdahl JK, Backe PH, Bjørås M. FEMS Microbiol Rev 33 1044-1078 (2009)
  5. Covalent trapping of protein-DNA complexes. Verdine GL, Norman DP. Annu Rev Biochem 72 337-366 (2003)
  6. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Boiteux S, Coste F, Castaing B. Free Radic Biol Med 107 179-201 (2017)
  7. Base excision repair and its role in maintaining genome stability. Baute J, Depicker A. Crit Rev Biochem Mol Biol 43 239-276 (2008)
  8. Biological properties of single chemical-DNA adducts: a twenty year perspective. Delaney JC, Essigmann JM. Chem Res Toxicol 21 232-252 (2008)
  9. DNA glycosylases search for and remove oxidized DNA bases. Wallace SS. Environ Mol Mutagen 54 691-704 (2013)
  10. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Zharkov DO, Grollman AP. Mutat Res 577 24-54 (2005)
  11. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Free Radic Biol Med 107 202-215 (2017)
  12. The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Greenberg MM. Acc Chem Res 45 588-597 (2012)
  13. Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Liu M, Doublié S, Wallace SS. Mutat Res 743-744 4-11 (2013)
  14. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. Dizdaroglu M, Coskun E, Jaruga P. Mutat Res Rev Mutat Res 771 99-127 (2017)
  15. Regulation of DNA glycosylases and their role in limiting disease. Sampath H, McCullough AK, Lloyd RS. Free Radic Res 46 460-478 (2012)
  16. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. Gruber CC, Walker GC. DNA Repair (Amst) 71 108-117 (2018)
  17. Bacterial DNA excision repair pathways. Wozniak KJ, Simmons LA. Nat Rev Microbiol 20 465-477 (2022)
  18. DNA repair: how MutM finds the needle in a haystack. Jiricny J. Curr Biol 20 R145-7 (2010)
  19. Main factors providing specificity of repair enzymes. Nevinsky GA. Biochemistry (Mosc) 76 94-117 (2011)

Articles citing this publication (79)

  1. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Blainey PC, van Oijen AM, Banerjee A, Banerjee A, Verdine GL, Xie XS. Proc Natl Acad Sci U S A 103 5752-5757 (2006)
  2. Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Ling H, Boudsocq F, Woodgate R, Yang W. Mol Cell 13 751-762 (2004)
  3. Structure of a trapped endonuclease III-DNA covalent intermediate. Fromme JC, Verdine GL. EMBO J 22 3461-3471 (2003)
  4. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Doublié S, Bandaru V, Bond JP, Wallace SS. Proc Natl Acad Sci U S A 101 10284-10289 (2004)
  5. Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. Corbett KD, Berger JM. EMBO J 22 151-163 (2003)
  6. Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Nelson SR, Dunn AR, Kathe SD, Warshaw DM, Wallace SS. Proc Natl Acad Sci U S A 111 E2091-9 (2014)
  7. 8-Oxoguanine rearranges the active site of human topoisomerase I. Lesher DT, Pommier Y, Stewart L, Redinbo MR. Proc Natl Acad Sci U S A 99 12102-12107 (2002)
  8. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Dalhus B, Forsbring M, Helle IH, Vik ES, Forstrøm RJ, Backe PH, Alseth I, Bjørås M. Structure 19 117-127 (2011)
  9. Kinetic conformational analysis of human 8-oxoguanine-DNA glycosylase. Kuznetsov NA, Koval VV, Nevinsky GA, Douglas KT, Zharkov DO, Fedorova OS. J Biol Chem 282 1029-1038 (2007)
  10. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases. Krishnamurthy N, Haraguchi K, Greenberg MM, David SS. Biochemistry 47 1043-1050 (2008)
  11. Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Liu M, Imamura K, Averill AM, Wallace SS, Doublié S. Structure 21 247-256 (2013)
  12. Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM. Qi Y, Spong MC, Nam K, Karplus M, Verdine GL. J Biol Chem 285 1468-1478 (2010)
  13. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Koval VV, Kuznetsov NA, Zharkov DO, Ishchenko AA, Douglas KT, Nevinsky GA, Fedorova OS. Nucleic Acids Res 32 926-935 (2004)
  14. Structural characterization of viral ortholog of human DNA glycosylase NEIL1 bound to thymine glycol or 5-hydroxyuracil-containing DNA. Imamura K, Averill A, Wallace SS, Doublié S. J Biol Chem 287 4288-4298 (2012)
  15. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD. Rubinson EH, Metz AH, O'Quin J, Eichman BF. J Mol Biol 381 13-23 (2008)
  16. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Zhu C, Lu L, Zhang J, Yue Z, Song J, Zong S, Liu M, Stovicek O, Gao YQ, Yi C. Proc Natl Acad Sci U S A 113 7792-7797 (2016)
  17. A novel nucleoid-associated protein specific to the actinobacteria. Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. Nucleic Acids Res 41 4171-4184 (2013)
  18. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition. Kuznetsov NA, Bergonzo C, Campbell AJ, Li H, Mechetin GV, de los Santos C, Grollman AP, Fedorova OS, Zharkov DO, Simmerling C. Nucleic Acids Res 43 272-281 (2015)
  19. An Improved Reaction Coordinate for Nucleic Acid Base Flipping Studies. Song K, Campbell AJ, Bergonzo C, de Los Santos C, Grollman AP, Simmerling C. J Chem Theory Comput 5 3105-3113 (2009)
  20. Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. Duclos S, Aller P, Jaruga P, Dizdaroglu M, Wallace SS, Doublié S. DNA Repair (Amst) 11 714-725 (2012)
  21. Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA. Imamura K, Wallace SS, Doublié S. J Biol Chem 284 26174-26183 (2009)
  22. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. Jain R, Kumar P, Varshney U. DNA Repair (Amst) 6 1774-1785 (2007)
  23. The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. Guo Y, Bandaru V, Jaruga P, Zhao X, Burrows CJ, Iwai S, Dizdaroglu M, Bond JP, Wallace SS. DNA Repair (Amst) 9 177-190 (2010)
  24. Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger. Kropachev KY, Zharkov DO, Grollman AP. Biochemistry 45 12039-12049 (2006)
  25. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Bowman BR, Lee S, Wang S, Verdine GL. Structure 16 1166-1174 (2008)
  26. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Pereira de Jésus K, Serre L, Zelwer C, Castaing B. Nucleic Acids Res 33 5936-5944 (2005)
  27. Kinetic basis of nucleotide selection employed by a protein template-dependent DNA polymerase. Brown JA, Fowler JD, Suo Z. Biochemistry 49 5504-5510 (2010)
  28. Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. Kathe SD, Barrantes-Reynolds R, Jaruga P, Newton MR, Burrows CJ, Bandaru V, Dizdaroglu M, Bond JP, Wallace SS. DNA Repair (Amst) 8 643-653 (2009)
  29. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Krishnamurthy N, Muller JG, Burrows CJ, David SS. Biochemistry 46 9355-9365 (2007)
  30. Strandwise translocation of a DNA glycosylase on undamaged DNA. Qi Y, Nam K, Spong MC, Banerjee A, Banerjee A, Sung RJ, Zhang M, Karplus M, Verdine GL. Proc Natl Acad Sci U S A 109 1086-1091 (2012)
  31. Structure of the uncomplexed DNA repair enzyme endonuclease VIII indicates significant interdomain flexibility. Golan G, Zharkov DO, Feinberg H, Fernandes AS, Zaika EI, Kycia JH, Grollman AP, Shoham G. Nucleic Acids Res 33 5006-5016 (2005)
  32. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Buechner CN, Maiti A, Drohat AC, Tessmer I. Nucleic Acids Res 43 2716-2729 (2015)
  33. Novel role of tyrosine in catalysis by human AP endonuclease 1. Mundle ST, Fattal MH, Melo LF, Coriolan JD, O'Regan NE, Strauss PR. DNA Repair (Amst) 3 1447-1455 (2004)
  34. DNA mismatch-specific base flipping by a bisacridine macrocycle. David A, Bleimling N, Beuck C, Lehn JM, Weinhold E, Teulade-Fichou MP. Chembiochem 4 1326-1331 (2003)
  35. Structures of end products resulting from lesion processing by a DNA glycosylase/lyase. Chung SJ, Verdine GL. Chem Biol 11 1643-1649 (2004)
  36. Pre-organized structure of viral DNA at the binding-processing site of HIV-1 integrase. Renisio JG, Cosquer S, Cherrak I, El Antri S, Mauffret O, Fermandjian S. Nucleic Acids Res 33 1970-1981 (2005)
  37. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. Buchko GW, McAteer K, Wallace SS, Kennedy MA. DNA Repair (Amst) 4 327-339 (2005)
  38. A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi. Miyazono K, Furuta Y, Watanabe-Matsui M, Miyakawa T, Ito T, Kobayashi I, Tanokura M. Nat Commun 5 3178 (2014)
  39. Analysis of CASP8 targets, predictions and assessment methods. Shi S, Pei J, Sadreyev RI, Kinch LN, Majumdar I, Tong J, Cheng H, Kim BH, Grishin NV. Database (Oxford) 2009 bap003 (2009)
  40. Photoaffinity labeling of transcription factors by DNA-templated crosslinking. Liu Y, Zheng W, Zhang W, Chen N, Liu Y, Chen L, Zhou X, Chen X, Zheng H, Li X. Chem Sci 6 745-751 (2015)
  41. Computational analysis of the mode of binding of 8-oxoguanine to formamidopyrimidine-DNA glycosylase. Song K, Hornak V, de Los Santos C, Grollman AP, Simmerling C. Biochemistry 45 10886-10894 (2006)
  42. Validation and correction of Zn-CysxHisy complexes. Touw WG, van Beusekom B, Evers JM, Vriend G, Joosten RP. Acta Crystallogr D Struct Biol 72 1110-1118 (2016)
  43. Insights into the DNA repair process by the formamidopyrimidine-DNA glycosylase investigated by molecular dynamics. Amara P, Serre L, Castaing B, Thomas A. Protein Sci 13 2009-2021 (2004)
  44. Requirements for 5'dRP/AP lyase activity in Ku. Strande NT, Carvajal-Garcia J, Hallett RA, Waters CA, Roberts SA, Strom C, Kuhlman B, Ramsden DA. Nucleic Acids Res 42 11136-11143 (2014)
  45. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. Sung RJ, Zhang M, Qi Y, Verdine GL. J Biol Chem 288 10012-10023 (2013)
  46. 5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases. Le Bihan YV, Angeles Izquierdo M, Coste F, Aller P, Culard F, Gehrke TH, Essalhi K, Carell T, Castaing B. Nucleic Acids Res 39 6277-6290 (2011)
  47. Ribose-protonated DNA base excision repair: a combined theoretical and experimental study. Sadeghian K, Flaig D, Blank ID, Schneider S, Strasser R, Stathis D, Winnacker M, Carell T, Ochsenfeld C. Angew Chem Int Ed Engl 53 10044-10048 (2014)
  48. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans. Gonzalez K, Faustoferri RC, Quivey RG. Mol Microbiol 85 361-377 (2012)
  49. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. Sung RJ, Zhang M, Qi Y, Verdine GL. J Biol Chem 287 18044-18054 (2012)
  50. Unique Structural Features of Mammalian NEIL2 DNA Glycosylase Prime Its Activity for Diverse DNA Substrates and Environments. Eckenroth BE, Cao VB, Averill AM, Dragon JA, Doublié S. Structure 29 29-42.e4 (2021)
  51. Molecular simulations reveal a common binding mode for glycosylase binding of oxidatively damaged DNA lesions. Song K, Kelso C, de los Santos C, Grollman AP, Simmerling C. J Am Chem Soc 129 14536-14537 (2007)
  52. PELDOR analysis of enzyme-induced structural changes in damaged DNA duplexes. Kuznetsov NA, Milov AD, Isaev NP, Vorobjev YN, Koval VV, Dzuba SA, Fedorova OS, Tsvetkov YD. Mol Biosyst 7 2670-2680 (2011)
  53. A dynamic checkpoint in oxidative lesion discrimination by formamidopyrimidine-DNA glycosylase. Li H, Endutkin AV, Bergonzo C, Campbell AJ, de los Santos C, Grollman A, Zharkov DO, Simmerling C. Nucleic Acids Res 44 683-694 (2016)
  54. Characterization of the meningococcal DNA glycosylase Fpg involved in base excision repair. Tibballs KL, Ambur OH, Alfsnes K, Homberset H, Frye SA, Davidsen T, Tønjum T. BMC Microbiol 9 7 (2009)
  55. Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase. Amara P, Serre L. DNA Repair (Amst) 5 947-958 (2006)
  56. Sculpting of DNA at abasic sites by DNA glycosylase homolog mag2. Dalhus B, Nilsen L, Korvald H, Huffman J, Forstrøm RJ, McMurray CT, Alseth I, Tainer JA, Bjørås M. Structure 21 154-166 (2013)
  57. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase. Walker RK, McCullough AK, Lloyd RS. Biochemistry 45 14192-14200 (2006)
  58. Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Lingaraju GM, Prota AE, Winkler FK. DNA Repair (Amst) 8 857-864 (2009)
  59. Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching. McCauley MJ, Furman L, Dietrich CA, Rouzina I, Núñez ME, Williams MC. Nucleic Acids Res 46 4033-4043 (2018)
  60. A base-independent repair mechanism for DNA glycosylase--no discrimination within the active site. Blank ID, Sadeghian K, Ochsenfeld C. Sci Rep 5 10369 (2015)
  61. Ionic strength and magnesium affect the specificity of Escherichia coli and human 8-oxoguanine-DNA glycosylases. Sidorenko VS, Mechetin GV, Nevinsky GA, Zharkov DO. FEBS J 275 3747-3760 (2008)
  62. Recognition of a tandem lesion by DNA bacterial formamidopyrimidine glycosylases explored combining molecular dynamics and machine learning. Bignon E, Gillet N, Chan CH, Jiang T, Monari A, Dumont E. Comput Struct Biotechnol J 19 2861-2869 (2021)
  63. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. Rogacheva M, Ishchenko A, Saparbaev M, Kuznetsova S, Ogryzko V. J Biol Chem 281 32353-32365 (2006)
  64. Structure of the mammalian adenine DNA glycosylase MUTYH: insights into the base excision repair pathway and cancer. Nakamura T, Okabe K, Hirayama S, Chirifu M, Ikemizu S, Morioka H, Nakabeppu Y, Yamagata Y. Nucleic Acids Res 49 7154-7163 (2021)
  65. Expression and characterization of thymine-DNA glycosylase from Aeropyrum pernix. Liu XP, Li CP, Hou JL, Liu YF, Liang RB, Liu JH. Protein Expr Purif 70 1-6 (2010)
  66. Two sequential phosphates 3' adjacent to the 8-oxoguanosine are crucial for lesion excision by E. coli Fpg protein and human 8-oxoguanine-DNA glycosylase. Rogacheva MV, Saparbaev MK, Afanasov IM, Kuznetsova SA. Biochimie 87 1079-1088 (2005)
  67. Biochemical characterization and novel inhibitor identification of Mycobacterium tuberculosis Endonuclease VIII 2 (Rv3297). Lata K, Afsar M, Ramachandran R. Biochem Biophys Rep 12 20-28 (2017)
  68. Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI. Miyazono KI, Wang D, Ito T, Tanokura M. Nucleic Acids Res 48 5106-5118 (2020)
  69. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG. Sowlati-Hashjin S, Wetmore SD. Phys Chem Chem Phys 17 24696-24706 (2015)
  70. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY. Majumdar C, McKibbin PL, Krajewski AE, Manlove AH, Lee JK, David SS. J Am Chem Soc 142 20340-20350 (2020)
  71. Photochemical cross-linking of Escherichia coli Fpg protein to DNA duplexes containing phenyl(trifluoromethyl)diazirine groups. Taranenko M, Rykhlevskaya A, Mtchedlidze M, Laval J, Kuznetsova S. Eur J Biochem 270 2945-2949 (2003)
  72. Synthesis of a stabilized version of the imidazolone DNA lesion. Mueller H, Hopfinger M, Carell T. Chembiochem 9 1617-1622 (2008)
  73. Transcriptional coupling and repair of 8-OxoG activate a RecA-dependent checkpoint that controls the onset of sporulation in Bacillus subtilis. Suárez VP, Martínez LE, Leyva-Sánchez HC, Valenzuela-García LI, Lara-Martínez R, Jiménez-García LF, Ramírez-Ramírez N, Obregon-Herrera A, Cuéllar-Cruz M, Robleto EA, Pedraza-Reyes M. Sci Rep 11 2513 (2021)
  74. Alleviation of C⋅C Mismatches in DNA by the Escherichia coli Fpg Protein. Tesfahun AN, Alexeeva M, Tomkuvienė M, Arshad A, Guragain P, Klungland A, Klimašauskas S, Ruoff P, Bjelland S. Front Microbiol 12 608839 (2021)
  75. Cloning and expression of the MutM gene from obligate anaerobic bacterium Desulfovibrio vulgaris (Miyazaki F). Sanada H, Nakanishi T, Inoue H, Kitamura M. J Biochem 145 525-532 (2009)
  76. Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases. Diatlova EA, Mechetin GV, Zharkov DO. Cells 11 3192 (2022)
  77. Modulation of the turnover of formamidopyrimidine DNA glycosylase. Harbut MB, Meador M, Dodson ML, Lloyd RS. Biochemistry 45 7341-7346 (2006)
  78. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. Popov AV, Endutkin AV, Vorobjev YN, Zharkov DO. BMC Struct Biol 17 5 (2017)
  79. Structural snapshots of base excision by the cancer-associated variant MutY N146S reveal a retaining mechanism. Demir M, Russelburg LP, Lin WJ, Trasviña-Arenas CH, Huang B, Yuen PK, Horvath MP, David SS. Nucleic Acids Res 51 1034-1049 (2023)