1l8b Citations

Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins.

Abstract

mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.

Reviews - 1l8b mentioned but not cited (2)

  1. Regulation of mRNA translation by signaling pathways. Roux PP, Topisirovic I. Cold Spring Harb Perspect Biol 4 a012252 (2012)
  2. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Top Curr Chem (Cham) 375 16 (2017)

Articles - 1l8b mentioned but not cited (17)

  1. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. Kowalska J, Lewdorowicz M, Zuberek J, Grudzien-Nogalska E, Bojarska E, Stepinski J, Rhoads RE, Darzynkiewicz E, Davis RE, Jemielity J. RNA 14 1119-1131 (2008)
  2. The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5' cap modulates protein expression in living cells. Sikorski PJ, Warminski M, Kubacka D, Ratajczak T, Nowis D, Kowalska J, Jemielity J. Nucleic Acids Res 48 1607-1626 (2020)
  3. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Monecke T, Dickmanns A, Ficner R. Nucleic Acids Res 37 3865-3877 (2009)
  4. The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M, Cosson B. Nucleic Acids Res 39 3496-3503 (2011)
  5. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation. Mochizuki K, Oguro A, Ohtsu T, Sonenberg N, Nakamura Y. RNA 11 77-89 (2005)
  6. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Kinch LN, Grishin NV. Biol Direct 4 2 (2009)
  7. mRNA cap analogues substituted in the tetraphosphate chain with CX2: identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, W Claridge TD, Darzynkiewicz E, Nowotny M, Jemielity J. Nucleic Acids Res 45 8661-8675 (2017)
  8. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. Jones GD, Williams EP, Place AR, Jagus R, Bachvaroff TR. BMC Evol Biol 15 14 (2015)
  9. Distinct features of cap binding by eIF4E1b proteins. Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J. J Mol Biol 427 387-405 (2015)
  10. Identification and Characterization of the Interaction Between the Methyl-7-Guanosine Cap Maturation Enzyme RNMT and the Cap-Binding Protein eIF4E. Osborne MJ, Volpon L, Memarpoor-Yazdi M, Pillay S, Thambipillai A, Czarnota S, Culjkovic-Kraljacic B, Trahan C, Oeffinger M, Cowling VH, Borden KLB. J Mol Biol 434 167451 (2022)
  11. Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. Warminski M, Kowalska J, Nowak E, Kubacka D, Tibble R, Kasprzyk R, Sikorski PJ, Gross JD, Nowotny M, Jemielity J. ACS Chem Biol 16 334-343 (2021)
  12. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. PLoS Genet 12 e1006214 (2016)
  13. Novel N7-Arylmethyl Substituted Dinucleotide mRNA 5' cap Analogs: Synthesis and Evaluation as Modulators of Translation. Wojcik R, Baranowski MR, Markiewicz L, Kubacka D, Bednarczyk M, Baran N, Wojtczak A, Sikorski PJ, Zuberek J, Kowalska J, Jemielity J. Pharmaceutics 13 1941 (2021)
  14. Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction. Tan CW, Jones DT. BMC Bioinformatics 9 94 (2008)
  15. Computational study on the allosteric mechanism of Leishmania major IF4E-1 by 4E-interacting protein-1: Unravelling the determinants of m7GTP cap recognition. Hernández-Alvarez L, Oliveira AB, Hernández-González JE, Chahine J, Pascutti PG, de Araujo AS, de Souza FP. Comput Struct Biotechnol J 19 2027-2044 (2021)
  16. The structure at 2.5 A resolution of human basophilic leukemia-expressed protein BLES03. Bitto E, Bingman CA, Robinson H, Allard ST, Wesenberg GE, Phillips GN. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 812-817 (2005)
  17. Limited high-throughput screening compatibility of the phenuivirus cap-binding domain. Scherf J, Vogel D, Gul S, Reinshagen J, Gribbon P, Rosenthal M. Sci Rep 13 22820 (2023)


Reviews citing this publication (41)

  1. The molecular mechanics of eukaryotic translation. Kapp LD, Lorsch JR. Annu Rev Biochem 73 657-704 (2004)
  2. Cap and cap-binding proteins in the control of gene expression. Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Wiley Interdiscip Rev RNA 2 277-298 (2011)
  3. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Corley M, Burns MC, Yeo GW. Mol Cell 78 9-29 (2020)
  4. Eukaryotic translation initiation factors and regulators. Sonenberg N, Dever TE. Curr Opin Struct Biol 13 56-63 (2003)
  5. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Scheper GC, Proud CG. Eur J Biochem 269 5350-5359 (2002)
  6. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. von der Haar T, Gross JD, Wagner G, McCarthy JE. Nat Struct Mol Biol 11 503-511 (2004)
  7. 3' cap-independent translation enhancers of plant viruses. Simon AE, Miller WA. Annu Rev Microbiol 67 21-42 (2013)
  8. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. Biochim Biophys Acta 1850 186-235 (2015)
  9. mRNA cap regulation in mammalian cell function and fate. Galloway A, Cowling VH. Biochim Biophys Acta Gene Regul Mech 1862 270-279 (2019)
  10. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. Signal Transduct Target Ther 7 166 (2022)
  11. RNA-modifying proteins as anticancer drug targets. Boriack-Sjodin PA, Ribich S, Copeland RA. Nat Rev Drug Discov 17 435-453 (2018)
  12. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Jia Y, Polunovsky V, Bitterman PB, Wagner CR. Med Res Rev 32 786-814 (2012)
  13. Further evidence that ribavirin interacts with eIF4E. Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L, Borden KL. RNA 11 1762-1766 (2005)
  14. Re-capping the message. Schoenberg DR, Maquat LE. Trends Biochem Sci 34 435-442 (2009)
  15. Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives. Brown CJ, McNae I, Fischer PM, Walkinshaw MD. J Mol Biol 372 7-15 (2007)
  16. Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Feig AL. Biopolymers 87 293-301 (2007)
  17. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Crit Rev Biochem Mol Biol 48 192-209 (2013)
  18. Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. Piccioni F, Zappavigna V, Verrotti AC. C R Biol 328 863-881 (2005)
  19. Potential therapeutic applications of RNA cap analogs. Ziemniak M, Strenkowska M, Kowalska J, Jemielity J. Future Med Chem 5 1141-1172 (2013)
  20. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Vaklavas C, Blume SW, Grizzle WE. Front Oncol 7 158 (2017)
  21. The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Freire ER, Sturm NR, Campbell DA, de Melo Neto OP. Pathogens 6 E55 (2017)
  22. A recap of RNA recapping. Trotman JB, Schoenberg DR. Wiley Interdiscip Rev RNA 10 e1504 (2019)
  23. Toward a Kinetic Understanding of Eukaryotic Translation. Sokabe M, Fraser CS. Cold Spring Harb Perspect Biol 11 a032706 (2019)
  24. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. Karaki S, Andrieu C, Ziouziou H, Rocchi P. Adv Protein Chem Struct Biol 101 1-26 (2015)
  25. Decapping Scavenger (DcpS) enzyme: advances in its structure, activity and roles in the cap-dependent mRNA metabolism. Milac AL, Bojarska E, Wypijewska del Nogal A. Biochim Biophys Acta 1839 452-462 (2014)
  26. Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Fraser CS. Biochimie 114 58-71 (2015)
  27. Therapeutic Opportunities in Eukaryotic Translation. Chu J, Pelletier J. Cold Spring Harb Perspect Biol 10 a032995 (2018)
  28. Translation Regulation by eIF2α Phosphorylation and mTORC1 Signaling Pathways in Non-Communicable Diseases (NCDs). Rios-Fuller TJ, Mahe M, Walters B, Abbadi D, Pérez-Baos S, Gadi A, Andrews JJ, Katsara O, Vincent CT, Schneider RJ. Int J Mol Sci 21 E5301 (2020)
  29. Messenger RNA vaccines for cancer immunotherapy: progress promotes promise. Huff AL, Jaffee EM, Zaidi N. J Clin Invest 132 e156211 (2022)
  30. Biochemical and Structural Insights into the Eukaryotic Translation Initiation Factor eIF4E. Volpon L, Osborne MJ, Borden KLB. Curr Protein Pept Sci 20 525-535 (2019)
  31. RNA surveillance: molecular approaches in transcript quality control and their implications in clinical diseases. Moraes KC. Mol Med 16 53-68 (2010)
  32. Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines. Shanmugasundaram M, Senthilvelan A, Kore AR. Chem Rec 22 e202200005 (2022)
  33. Unloading RNAs in the cytoplasm: an "importin" task. Dias SM, Cerione RA, Wilson KF. Nucleus 1 139-143 (2010)
  34. Translation initiation in eukaryotes: versatility of the scanning model. Alekhina OM, Vassilenko KS. Biochemistry (Mosc) 77 1465-1477 (2012)
  35. Enzymatic Assays to Explore Viral mRNA Capping Machinery. Kasprzyk R, Jemielity J. Chembiochem 22 3236-3253 (2021)
  36. Regulation of Gene Expression by m6Am RNA Modification. Cesaro B, Tarullo M, Fatica A. Int J Mol Sci 24 2277 (2023)
  37. Urea-aromatic interactions in biology. Raghunathan S, Jaganade T, Priyakumar UD. Biophys Rev 12 65-84 (2020)
  38. Small RNA Plays Important Roles in Virus-Host Interactions. Dai H, Gu W. Viruses 12 E1271 (2020)
  39. Chemical synthesis of dinucleotide cap analogs. Kore AR, Shanmugasundaram M. Curr Protoc Nucleic Acid Chem 55 13.13.1-12 (2014)
  40. Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Das S. Mol Cell Biochem 476 1037-1049 (2021)
  41. RNA modification in cardiovascular disease: implications for therapeutic interventions. Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. Signal Transduct Target Ther 8 412 (2023)

Articles citing this publication (179)

  1. The structural basis for cap binding by influenza virus polymerase subunit PB2. Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S. Nat Struct Mol Biol 15 500-506 (2008)
  2. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G. Cell 115 739-750 (2003)
  3. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL. Proc Natl Acad Sci U S A 101 18105-18110 (2004)
  4. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E. J Neurosci 25 9581-9590 (2005)
  5. Novel "anti-reverse" cap analogs with superior translational properties. Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E, Rhoads RE. RNA 9 1108-1122 (2003)
  6. Cap-independent translation is required for starvation-induced differentiation in yeast. Gilbert WV, Zhou K, Butler TK, Doudna JA. Science 317 1224-1227 (2007)
  7. Large-scale induced fit recognition of an m(7)GpppG cap analogue by the human nuclear cap-binding complex. Mazza C, Segref A, Mattaj IW, Cusack S. EMBO J 21 5548-5557 (2002)
  8. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp- mRNAs. Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CU, Pestova TV. Nucleic Acids Res 42 3228-3245 (2014)
  9. Characterization of mammalian eIF4E-family members. Joshi B, Cameron A, Jagus R. Eur J Biochem 271 2189-2203 (2004)
  10. Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules. Padrón A, Iwasaki S, Ingolia NT. Mol Cell 75 875-887.e5 (2019)
  11. Phosphorylation of eIF4E attenuates its interaction with mRNA 5' cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A, Dadlez M, Stepinski J, Augustyniak W, Gingras AC, Zhang Z, Burley SK, Sonenberg N, Stolarski R, Darzynkiewicz E. RNA 9 52-61 (2003)
  12. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Yanagiya A, Svitkin YV, Shibata S, Mikami S, Imataka H, Sonenberg N. Mol Cell Biol 29 1661-1669 (2009)
  13. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Wang X, Li W, Parra JL, Beugnet A, Proud CG. Mol Cell Biol 23 1546-1557 (2003)
  14. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD. Mol Cell 29 324-336 (2008)
  15. Analysis of flavivirus NS5 methyltransferase cap binding. Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH, Keenan SM, Peersen OB. J Mol Biol 385 1643-1654 (2009)
  16. Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands. Volpon L, Osborne MJ, Topisirovic I, Siddiqui N, Borden KL. EMBO J 25 5138-5149 (2006)
  17. Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F. Wang Z, Treder K, Miller WA. J Biol Chem 284 14189-14202 (2009)
  18. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Kumar P, Hellen CU, Pestova TV. Genes Dev 30 1573-1588 (2016)
  19. Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Dhalia R, Reis CR, Freire ER, Rocha PO, Katz R, Muniz JR, Standart N, de Melo Neto OP. Mol Biochem Parasitol 140 23-41 (2005)
  20. Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Dinkova TD, Keiper BD, Korneeva NL, Aamodt EJ, Rhoads RE. Mol Cell Biol 25 100-113 (2005)
  21. Biosensor-based small molecule fragment screening with biolayer interferometry. Wartchow CA, Podlaski F, Li S, Rowan K, Zhang X, Mark D, Huang KS. J Comput Aided Mol Des 25 669-676 (2011)
  22. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. Tomoo K, Shen X, Okabe K, Nozoe Y, Fukuhara S, Morino S, Sasaki M, Taniguchi T, Miyagawa H, Kitamura K, Miura K, Ishida T. J Mol Biol 328 365-383 (2003)
  23. eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, Borden KL. Proc Natl Acad Sci U S A 110 3877-3882 (2013)
  24. Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5' TOP motifs. Philippe L, van den Elzen AMG, Watson MJ, Thoreen CC. Proc Natl Acad Sci U S A 117 5319-5328 (2020)
  25. Pumilio 2 controls translation by competing with eIF4E for 7-methyl guanosine cap recognition. Cao Q, Padmanabhan K, Richter JD. RNA 16 221-227 (2010)
  26. The structure of eukaryotic translation initiation factor-4E from wheat reveals a novel disulfide bond. Monzingo AF, Dhaliwal S, Dutt-Chaudhuri A, Lyon A, Sadow JH, Hoffman DW, Robertus JD, Browning KS. Plant Physiol 143 1504-1518 (2007)
  27. Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania. Yoffe Y, Zuberek J, Lerer A, Lewdorowicz M, Stepinski J, Altmann M, Darzynkiewicz E, Shapira M. Eukaryot Cell 5 1969-1979 (2006)
  28. Novel cap analogs for in vitro synthesis of mRNAs with high translational efficiency. Grudzien E, Stepinski J, Jankowska-Anyszka M, Stolarski R, Darzynkiewicz E, Rhoads RE. RNA 10 1479-1487 (2004)
  29. The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. Michon T, Estevez Y, Walter J, German-Retana S, Le Gall O. FEBS J 273 1312-1322 (2006)
  30. Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. Ghosh B, Benyumov AO, Ghosh P, Jia Y, Avdulov S, Dahlberg PS, Peterson M, Smith K, Polunovsky VA, Bitterman PB, Wagner CR. ACS Chem Biol 4 367-377 (2009)
  31. The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA. Soto-Rifo R, Rubilar PS, Ohlmann T. Nucleic Acids Res 41 6286-6299 (2013)
  32. Functional analysis of mRNA scavenger decapping enzymes. Liu SW, Jiao X, Liu H, Gu M, Lima CD, Kiledjian M. RNA 10 1412-1422 (2004)
  33. Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. Papadopoulos E, Jenni S, Kabha E, Takrouri KJ, Yi T, Salvi N, Luna RE, Gavathiotis E, Mahalingam P, Arthanari H, Rodriguez-Mias R, Yefidoff-Freedman R, Aktas BH, Chorev M, Halperin JA, Wagner G. Proc Natl Acad Sci U S A 111 E3187-95 (2014)
  34. Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. German-Retana S, Walter J, Doublet B, Roudet-Tavert G, Nicaise V, Lecampion C, Houvenaghel MC, Robaglia C, Michon T, Le Gall O. J Virol 82 7601-7612 (2008)
  35. The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. Wang Z, Parisien M, Scheets K, Miller WA. Structure 19 868-880 (2011)
  36. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Koppstein D, Ashour J, Bartel DP. Nucleic Acids Res 43 5052-5064 (2015)
  37. Structural basis for m3G-cap-mediated nuclear import of spliceosomal UsnRNPs by snurportin1. Strasser A, Dickmanns A, Lührmann R, Ficner R. EMBO J 24 2235-2243 (2005)
  38. Crystal structure of a minimal eIF4E-Cup complex reveals a general mechanism of eIF4E regulation in translational repression. Kinkelin K, Veith K, Grünwald M, Bono F. RNA 18 1624-1634 (2012)
  39. Specificity of recognition of mRNA 5' cap by human nuclear cap-binding complex. Worch R, Niedzwiecka A, Stepinski J, Mazza C, Jankowska-Anyszka M, Darzynkiewicz E, Cusack S, Stolarski R. RNA 11 1355-1363 (2005)
  40. The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J. PLoS Pathog 7 e1002397 (2011)
  41. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. Fuchs AL, Neu A, Sprangers R. RNA 22 1454-1466 (2016)
  42. Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. Tamarkin-Ben-Harush A, Vasseur JJ, Debart F, Ulitsky I, Dikstein R. Elife 6 e21907 (2017)
  43. Structural basis of m(7)GpppG binding to poly(A)-specific ribonuclease. Wu M, Nilsson P, Henriksson N, Niedzwiecka A, Lim MK, Cheng Z, Kokkoris K, Virtanen A, Song H. Structure 17 276-286 (2009)
  44. A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Kruse S, Zhong S, Bodi Z, Button J, Alcocer MJ, Hayes CJ, Fray R. Sci Rep 1 126 (2011)
  45. Emerging therapeutics targeting mRNA translation. Malina A, Mills JR, Pelletier J. Cold Spring Harb Perspect Biol 4 a012377 (2012)
  46. Influenza A virus preferentially snatches noncoding RNA caps. Gu W, Gallagher GR, Dai W, Liu P, Li R, Trombly MI, Gammon DB, Mello CC, Wang JP, Finberg RW. RNA 21 2067-2075 (2015)
  47. Hantavirus nucleocapsid protein has distinct m7G cap- and RNA-binding sites. Mir MA, Mir MA, Sheema S, Haseeb A, Haque A. J Biol Chem 285 11357-11368 (2010)
  48. Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein. Cuesta R, Xi Q, Schneider RJ. J Virol 78 7707-7716 (2004)
  49. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento Jde F, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. RNA 20 1272-1286 (2014)
  50. New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. Ayuso MI, Hernández-Jiménez M, Martín ME, Salinas M, Alcázar A. J Biol Chem 285 34355-34363 (2010)
  51. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Trotman JB, Giltmier AJ, Mukherjee C, Schoenberg DR. Nucleic Acids Res 45 10726-10739 (2017)
  52. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Kowalska J, Wypijewska del Nogal A, Darzynkiewicz ZM, Buck J, Nicola C, Kuhn AN, Lukaszewicz M, Zuberek J, Strenkowska M, Ziemniak M, Maciejczyk M, Bojarska E, Rhoads RE, Darzynkiewicz E, Sahin U, Jemielity J. Nucleic Acids Res 42 10245-10264 (2014)
  53. Weak binding affinity of human 4EHP for mRNA cap analogs. Zuberek J, Kubacka D, Jablonowska A, Jemielity J, Stepinski J, Sonenberg N, Darzynkiewicz E. RNA 13 691-697 (2007)
  54. Cap-binding activity of an eIF4E homolog from Leishmania. Yoffe Y, Zuberek J, Lewdorowicz M, Zeira Z, Keasar C, Orr-Dahan I, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Shapira M. RNA 10 1764-1775 (2004)
  55. Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. Freire ER, Malvezzi AM, Vashisht AA, Zuberek J, Saada EA, Langousis G, Nascimento JD, Moura D, Darzynkiewicz E, Hill K, de Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. Eukaryot Cell 13 896-908 (2014)
  56. Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Strenkowska M, Grzela R, Majewski M, Wnek K, Kowalska J, Lukaszewicz M, Zuberek J, Darzynkiewicz E, Kuhn AN, Sahin U, Jemielity J. Nucleic Acids Res 44 9578-9590 (2016)
  57. Structural insights into the allosteric effects of 4EBP1 on the eukaryotic translation initiation factor eIF4E. Siddiqui N, Tempel W, Nedyalkova L, Volpon L, Wernimont AK, Osborne MJ, Park HW, Borden KL. J Mol Biol 415 781-792 (2012)
  58. Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Vogel D, Thorkelsson SR, Quemin ERJ, Meier K, Kouba T, Gogrefe N, Busch C, Reindl S, Günther S, Cusack S, Grünewald K, Rosenthal M. Nucleic Acids Res 48 5749-5765 (2020)
  59. Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. Li J, Wang W, He Y, Li Y, Yan EZ, Zhang K, Irvine DJ, Hammond PT. ACS Nano 11 2531-2544 (2017)
  60. Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms. Rosettani P, Knapp S, Vismara MG, Rusconi L, Cameron AD. J Mol Biol 368 691-705 (2007)
  61. Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety--fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, Darzynkiewicz E, Jemielity J. Bioorg Med Chem 20 1699-1710 (2012)
  62. Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn7-GMP. Jia Y, Chiu TL, Amin EA, Polunovsky V, Bitterman PB, Wagner CR. Eur J Med Chem 45 1304-1313 (2010)
  63. Enzymatically stable 5' mRNA cap analogs: synthesis and binding studies with human DcpS decapping enzyme. Kalek M, Jemielity J, Darzynkiewicz ZM, Bojarska E, Stepinski J, Stolarski R, Davis RE, Darzynkiewicz E. Bioorg Med Chem 14 3223-3230 (2006)
  64. New AdoMet Analogues as Tools for Enzymatic Transfer of Photo-Cross-Linkers and Capturing RNA-Protein Interactions. Muttach F, Mäsing F, Studer A, Rentmeister A. Chemistry 23 5988-5993 (2017)
  65. Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5',5' bridge containing methylenebis(phosphonate) modification. Rydzik AM, Lukaszewicz M, Zuberek J, Kowalska J, Darzynkiewicz ZM, Darzynkiewicz E, Jemielity J. Org Biomol Chem 7 4763-4776 (2009)
  66. Folding transitions during assembly of the eukaryotic mRNA cap-binding complex. von der Haar T, Oku Y, Ptushkina M, Moerke N, Wagner G, Gross JD, McCarthy JE. J Mol Biol 356 982-992 (2006)
  67. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. Ashby JA, Stevenson CE, Jarvis GE, Lawson DM, Maule AJ. PLoS One 6 e15873 (2011)
  68. Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinski J, Kierzek R, Stolarski R, Shapira M, Darzynkiewicz E. RNA 10 1469-1478 (2004)
  69. Kinetic mechanism for assembly of the m7GpppG.eIF4E.eIF4G complex. Slepenkov SV, Korneeva NL, Rhoads RE. J Biol Chem 283 25227-25237 (2008)
  70. Intrinsic RNA binding by the eukaryotic initiation factor 4F depends on a minimal RNA length but not on the m7G cap. Kaye NM, Emmett KJ, Merrick WC, Jankowsky E. J Biol Chem 284 17742-17750 (2009)
  71. Structural basis for nematode eIF4E binding an m(2,2,7)G-Cap and its implications for translation initiation. Liu W, Jankowska-Anyszka M, Piecyk K, Dickson L, Wallace A, Niedzwiecka A, Stepinski J, Stolarski R, Darzynkiewicz E, Kieft J, Zhao R, Jones DN, Davis RE. Nucleic Acids Res 39 8820-8832 (2011)
  72. Structure of a functional cap-binding domain in Rift Valley fever virus L protein. Gogrefe N, Reindl S, Günther S, Rosenthal M. PLoS Pathog 15 e1007829 (2019)
  73. Synthesis and evaluation of potential inhibitors of eIF4E cap binding to 7-methyl GTP. Ghosh P, Park C, Peterson MS, Bitterman PB, Polunovsky VA, Wagner CR. Bioorg Med Chem Lett 15 2177-2180 (2005)
  74. Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules. Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M. BMC Mol Biol 17 21 (2016)
  75. Structural insights into parasite eIF4E binding specificity for m7G and m2,2,7G mRNA caps. Liu W, Zhao R, McFarland C, Kieft J, Niedzwiecka A, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Jones DN, Davis RE. J Biol Chem 284 31336-31349 (2009)
  76. The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro. Westman B, Beeren L, Grudzien E, Stepinski J, Worch R, Zuberek J, Jemielity J, Stolarski R, Darzynkiewicz E, Rhoads RE, Preiss T. RNA 11 1505-1513 (2005)
  77. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity. Wypijewska A, Bojarska E, Lukaszewicz M, Stepinski J, Jemielity J, Davis RE, Darzynkiewicz E. Biochemistry 51 8003-8013 (2012)
  78. A multifunctional RNA recognition motif in poly(A)-specific ribonuclease with cap and poly(A) binding properties. Nilsson P, Henriksson N, Niedzwiecka A, Balatsos NA, Kokkoris K, Eriksson J, Virtanen A. J Biol Chem 282 32902-32911 (2007)
  79. Crystal structure of the RRM domain of poly(A)-specific ribonuclease reveals a novel m(7)G-cap-binding mode. Monecke T, Schell S, Dickmanns A, Ficner R. J Mol Biol 382 827-834 (2008)
  80. A high-throughput screening assay for the identification of flavivirus NS5 capping enzyme GTP-binding inhibitors: implications for antiviral drug development. Geiss BJ, Stahla-Beek HJ, Hannah AM, Gari HH, Henderson BR, Saeedi BJ, Keenan SM. J Biomol Screen 16 852-861 (2011)
  81. A novel route for preparing 5' cap mimics and capped RNAs: phosphate-modified cap analogues obtained via click chemistry. Walczak S, Nowicka A, Kubacka D, Fac K, Wanat P, Mroczek S, Kowalska J, Jemielity J. Chem Sci 8 260-267 (2017)
  82. Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation. Kowalska J, Lukaszewicz M, Zuberek J, Ziemniak M, Darzynkiewicz E, Jemielity J. Bioorg Med Chem Lett 19 1921-1925 (2009)
  83. Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Kocmik I, Piecyk K, Rudzinska M, Niedzwiecka A, Darzynkiewicz E, Grzela R, Jankowska-Anyszka M. Cell Cycle 17 1624-1636 (2018)
  84. Recognition of cap structure by influenza B virus RNA polymerase is less dependent on the methyl residue than recognition by influenza A virus polymerase. Wakai C, Iwama M, Mizumoto K, Nagata K. J Virol 85 7504-7512 (2011)
  85. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Galloway A, Kaskar A, Ditsova D, Atrih A, Yoshikawa H, Gomez-Moreira C, Suska O, Warminski M, Grzela R, Lamond AI, Darzynkiewicz E, Jemielity J, Cowling VH. Nucleic Acids Res 49 6722-6738 (2021)
  86. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. Korneeva NL, Song A, Gram H, Edens MA, Rhoads RE. J Biol Chem 291 3455-3467 (2016)
  87. Oxytocin modulates mTORC1 pathway in the gut. Klein BY, Tamir H, Hirschberg DL, Glickstein SB, Welch MG. Biochem Biophys Res Commun 432 466-471 (2013)
  88. A Benzophenone-Based Photocaging Strategy for the N7 Position of Guanosine. Anhäuser L, Klöcker N, Muttach F, Mäsing F, Špaček P, Studer A, Rentmeister A. Angew Chem Int Ed Engl 59 3161-3165 (2020)
  89. Importance of C-terminal flexible region of 4E-binding protein in binding with eukaryotic initiation factor 4E. Mizuno A, In Y, Fujita Y, Abiko F, Miyagawa H, Kitamura K, Tomoo K, Ishida T. FEBS Lett 582 3439-3444 (2008)
  90. Synthesis and biochemical properties of novel mRNA 5' cap analogs resistant to enzymatic hydrolysis. Kalek M, Jemielity J, Grudzien E, Zuberek J, Bojarska E, Cohen LS, Stepinski J, Stolarski R, Davis RE, Rhoads RE, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 24 615-621 (2005)
  91. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists. Jagus R, Bachvaroff TR, Joshi B, Place AR. Comp Funct Genomics 2012 134839 (2012)
  92. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. Nucleic Acids Res 46 11539-11552 (2018)
  93. Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities. Benarroch D, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Shuman S. RNA 16 211-220 (2010)
  94. Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate. Volpon L, Osborne MJ, Zahreddine H, Romeo AA, Borden KL. Biochem Biophys Res Commun 434 614-619 (2013)
  95. Effect of N-terminal region of eIF4E and Ser65-phosphorylation of 4E-BP1 on interaction between eIF4E and 4E-BP1 fragment peptide. Tomoo K, Abiko F, Miyagawa H, Kitamura K, Ishida T. J Biochem 140 237-246 (2006)
  96. Global analysis of polysome-associated mRNA in vesicular stomatitis virus infected cells. Neidermyer WJ, Whelan SPJ. PLoS Pathog 15 e1007875 (2019)
  97. Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. Su W, Slepenkov S, Grudzien-Nogalska E, Kowalska J, Kulis M, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J, Rhoads RE. RNA 17 978-988 (2011)
  98. VP1 and VP3 Are Required and Sufficient for Translation Initiation of Uncapped Infectious Bursal Disease Virus Genomic Double-Stranded RNA. Ye C, Wang Y, Zhang E, Han X, Yu Z, Liu H. J Virol 92 e01345-17 (2018)
  99. Binding preference of eIF4E for 4E-binding protein isoform and function of eIF4E N-terminal flexible region for interaction, studied by SPR analysis. Abiko F, Tomoo K, Mizuno A, Morino S, Imataka H, Ishida T. Biochem Biophys Res Commun 355 667-672 (2007)
  100. Functional characterization of a 48 kDa Trypanosoma brucei cap 2 RNA methyltransferase. Hall MP, Ho CK. Nucleic Acids Res 34 5594-5602 (2006)
  101. Towards mRNA with superior translational activity: synthesis and properties of ARCA tetraphosphates with single phosphorothioate modifications. Strenkowska M, Kowalska J, Lukaszewicz M, Zuberek J, Su W, Rhoads RE, Darzynkiewicz E, Jemielity J. New J Chem 34 993-1007 (2010)
  102. Analysis of the interacting partners eIF4F and 3'-CITE required for Melon necrotic spot virus cap-independent translation. Miras M, Truniger V, Querol-Audi J, Aranda MA. Mol Plant Pathol 18 635-648 (2017)
  103. Five eIF4E isoforms from Arabidopsis thaliana are characterized by distinct features of cap analogs binding. Kropiwnicka A, Kuchta K, Lukaszewicz M, Kowalska J, Jemielity J, Ginalski K, Darzynkiewicz E, Zuberek J. Biochem Biophys Res Commun 456 47-52 (2015)
  104. Kinetic mechanism for the binding of eIF4F and tobacco Etch virus internal ribosome entry site rna: effects of eIF4B and poly(A)-binding protein. Khan MA, Yumak H, Goss DJ. J Biol Chem 284 35461-35470 (2009)
  105. Charge distribution in 7-methylguanine regarding cation-pi interaction with protein factor eIF4E. Ruszczynska K, Kamienska-Trela K, Wojcik J, Stepinski J, Darzynkiewicz E, Stolarski R. Biophys J 85 1450-1456 (2003)
  106. Design, synthesis and biological evaluation of dinucleotide mRNA cap analog containing propargyl moiety. Shanmugasundaram M, Charles I, Kore AR. Bioorg Med Chem 24 1204-1208 (2016)
  107. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap. Modrak-Wojcik A, Gorka M, Niedzwiecka K, Zdanowski K, Zuberek J, Niedzwiecka A, Stolarski R. FEBS Lett 587 3928-3934 (2013)
  108. Phosphoroselenoate dinucleotides for modification of mRNA 5' end. Kowalska J, Lukaszewicz M, Zuberek J, Darzynkiewicz E, Jemielity J. Chembiochem 10 2469-2473 (2009)
  109. The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Warminski M, Kowalska J, Buck J, Zuberek J, Lukaszewicz M, Nicola C, Kuhn AN, Sahin U, Darzynkiewicz E, Jemielity J. Bioorg Med Chem Lett 23 3753-3758 (2013)
  110. Analysis of decapping scavenger cap complex using modified cap analogs reveals molecular determinants for efficient cap binding. Wypijewska del Nogal A, Surleac MD, Kowalska J, Lukaszewicz M, Jemielity J, Bisaillon M, Darzynkiewicz E, Milac AL, Bojarska E. FEBS J 280 6508-6527 (2013)
  111. Diverse role of three tyrosines in binding of the RNA 5' cap to the human nuclear cap binding complex. Worch R, Jankowska-Anyszka M, Niedzwiecka A, Stepinski J, Mazza C, Darzynkiewicz E, Cusack S, Stolarski R. J Mol Biol 385 618-627 (2009)
  112. Synthesis of biotin labelled cap analogue--incorporable into mRNA transcripts and promoting cap-dependent translation. Jemielity J, Lukaszewicz M, Kowalska J, Czarnecki J, Zuberek J, Darzynkiewicz E. Org Biomol Chem 10 8570-8574 (2012)
  113. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. Q Rev Biophys 49 e11 (2016)
  114. CMTR1-Catalyzed 2'-O-Ribose Methylation Controls Neuronal Development by Regulating Camk2α Expression Independent of RIG-I Signaling. Lee YL, Kung FC, Lin CH, Huang YS. Cell Rep 33 108269 (2020)
  115. Deciphering the mechanistic effects of eIF4E phosphorylation on mRNA-cap recognition. Lama D, Verma CS. Protein Sci 29 1373-1386 (2020)
  116. Development of biochemical assays for the identification of eIF4E-specific inhibitors. Visco C, Perrera C, Thieffine S, Sirtori FR, D'Alessio R, Magnaghi P. J Biomol Screen 17 581-592 (2012)
  117. Fluorescent Turn-On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Cap-Recognizing Proteins. Kasprzyk R, Starek BJ, Ciechanowicz S, Kubacka D, Kowalska J, Jemielity J. Chemistry 25 6728-6740 (2019)
  118. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners. May ER, Armen RS, Mannan AM, Brooks CL. Proteins 78 2251-2264 (2010)
  119. Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. Piecyk K, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. RNA 20 1539-1547 (2014)
  120. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation. Collado D, Yoshihara T, Hamaguchi M. Biochem Biophys Res Commun 360 600-603 (2007)
  121. Exploring the potential of phosphotriazole 5' mRNA cap analogues as efficient translation initiators. Walczak S, Sikorski PJ, Kasprzyk R, Kowalska J, Jemielity J. Org Biomol Chem 16 6741-6748 (2018)
  122. Heterogeneous Dynamics of Protein-RNA Interactions across Transcriptome-Derived Messenger RNA Populations. Çetin B, Song GJ, O'Leary SE. J Am Chem Soc 142 21249-21253 (2020)
  123. Stacking efficiency and flexibility analysis of aromatic amino acids in cap-binding proteins. Worch R, Stolarski R. Proteins 71 2026-2037 (2008)
  124. Cap analogs containing 6-thioguanosine--reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Nowakowska M, Kowalska J, Martin F, d'Orchymont A, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J. Org Biomol Chem 12 4841-4847 (2014)
  125. Chemo-enzymatic modification of eukaryotic mRNA. Muttach F, Muthmann N, Rentmeister A. Org Biomol Chem 15 278-284 (2017)
  126. Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. Yu D, Dai N, Wolf EJ, Corrêa IR, Zhou J, Wu T, Blumenthal RM, Zhang X, Cheng X. J Biol Chem 298 101751 (2022)
  127. Expression, purification and characterization of recombinant mouse translation initiation factor eIF4E as a dihydrofolate reductase (DHFR) fusion protein. Ghosh P, Cheng J, Chou TF, Jia Y, Avdulov S, Bitterman PB, Polunovsky VA, Wagner CR. Protein Expr Purif 60 132-139 (2008)
  128. Quantification of mRNA cap-modifications by means of LC-QqQ-MS. Muthmann N, Špaček P, Reichert D, van Dülmen M, Rentmeister A. Methods 203 196-206 (2022)
  129. Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5' end of mRNA. Jankowska-Anyszka M, Piecyk K, Šamonina-Kosicka J. Org Biomol Chem 9 5564-5572 (2011)
  130. mRNAs biotinylated within the 5' cap and protected against decapping: new tools to capture RNA-protein complexes. Bednarek S, Madan V, Sikorski PJ, Bartenschlager R, Kowalska J, Jemielity J. Philos Trans R Soc Lond B Biol Sci 373 20180167 (2018)
  131. CMTr cap-adjacent 2'-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses. Haussmann IU, Wu Y, Nallasivan MP, Archer N, Archer N, Bodi Z, Hebenstreit D, Waddell S, Fray R, Soller M. Nat Commun 13 1209 (2022)
  132. High resolution biosensor to test the capping level and integrity of mRNAs. Moya-Ramírez I, Bouton C, Kontoravdi C, Polizzi K. Nucleic Acids Res 48 e129 (2020)
  133. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. Khan MA. J Biochem 165 167-176 (2019)
  134. Affinity resins containing enzymatically resistant mRNA cap analogs--a new tool for the analysis of cap-binding proteins. Szczepaniak SA, Zuberek J, Darzynkiewicz E, Kufel J, Jemielity J. RNA 18 1421-1432 (2012)
  135. Letter Backbone resonance assignment of human eukaryotic translation initiation factor 4E (eIF4E) in complex with 7-methylguanosine diphosphate (m7GDP) and a 17-amino acid peptide derived from human eIF4GII. Miura T, Shiratori Y, Shimma N. J Biomol NMR 27 279-280 (2003)
  136. Dynamical insight into Caenorhabditis elegans eIF4E recognition specificity for mono-and trimethylated structures of mRNA 5' cap. Ruszczyńska-Bartnik K, Maciejczyk M, Stolarski R. J Mol Model 17 727-737 (2011)
  137. N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the Study of Cap-Binding Proteins. Kopcial M, Wojtczak BA, Kasprzyk R, Kowalska J, Jemielity J. Molecules 24 E1899 (2019)
  138. Novel dinucleoside 5',5'-triphosphate cap analogues. Synthesis and affinity for murine translation factor eIF4E. Stepinski J, Zuberek J, Jemielity J, Kalek M, Stolarski R, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 24 629-633 (2005)
  139. Towards novel efficient and stable nuclear import signals: synthesis and properties of trimethylguanosine cap analogs modified within the 5',5'-triphosphate bridge. Zytek M, Kowalska J, Lukaszewicz M, Wojtczak BA, Zuberek J, Ferenc-Mrozek A, Darzynkiewicz E, Niedzwiecka A, Jemielity J. Org Biomol Chem 12 9184-9199 (2014)
  140. Cellular delivery of dinucleotides by conjugation with small molecules: targeting translation initiation for anticancer applications. Kleczewska N, Sikorski PJ, Warminska Z, Markiewicz L, Kasprzyk R, Baran N, Kwapiszewska K, Karpinska A, Michalski J, Holyst R, Kowalska J, Jemielity J. Chem Sci 12 10242-10251 (2021)
  141. Computational studies on the substrate interactions of influenza A virus PB2 subunit. Wang YJ, Wang JF, Ping J, Yu Y, Wang Y, Lian P, Li X, Li YX, Hao P. PLoS One 7 e44079 (2012)
  142. Deaggregation of eIF4E induced by mRNA 5' cap binding. Niedzwiecka A, Darzynkiewicz E, Stolarski R. Nucleosides Nucleotides Nucleic Acids 24 507-511 (2005)
  143. Evaluation of carboxyfluorescein-labeled 7-methylguanine nucleotides as probes for studying cap-binding proteins by fluorescence anisotropy. Wojtczak A, Kasprzyk R, Warmiński M, Ubych K, Kubacka D, Sikorski PJ, Jemielity J, Kowalska J. Sci Rep 11 7687 (2021)
  144. How to find the optimal partner--studies of snurportin 1 interactions with U snRNA 5' TMG-cap analogues containing modified 2-amino group of 7-methylguanosine. Piecyk K, Niedzwiecka A, Ferenc-Mrozek A, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. Bioorg Med Chem 23 4660-4668 (2015)
  145. Kinetics of binding the mRNA cap analogues to the translation initiation factor eIF4E under second-order reaction conditions. Błachut-Okrasińska E, Bojarska E, Stepiński J, Antosiewicz JM. Biophys Chem 129 289-297 (2007)
  146. N2 modified dinucleotide cap analogs as a potent tool for mRNA engineering. Grzela R, Piecyk K, Stankiewicz-Drogon A, Pietrow P, Lukaszewicz M, Kurpiejewski K, Darzynkiewicz E, Jankowska-Anyszka M. RNA 29 200-216 (2023)
  147. RNA-binding proteins and heat-shock protein 90 are constituents of the cytoplasmic capping enzyme interactome. Trotman JB, Agana BA, Giltmier AJ, Wysocki VH, Schoenberg DR. J Biol Chem 293 16596-16607 (2018)
  148. Solid-supported synthesis of 5'-mRNA CAP-4 from Trypanosomatids. Lewdorowicz M, Jemielity J, Kierzek R, Shapira M, Stepinski J, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 26 1329-1333 (2007)
  149. Structure of the poxvirus decapping enzyme D9 reveals its mechanism of cap recognition and catalysis. Peters JK, Tibble RW, Warminski M, Jemielity J, Gross JD. Structure 30 721-732.e4 (2022)
  150. Synthesis and properties of mRNA cap analogs containing phosphorothioate moiety in 5',5'-triphosphate chain. Kowalska J, Lewdorowicz M, Zuberek J, Bojarska E, Wojcik J, Cohen LS, Davis RE, Stepinski J, Stolarski R, Darzynkiewicz E, Jemielity J. Nucleosides Nucleotides Nucleic Acids 24 595-600 (2005)
  151. Design and Facile Synthesis of New Dinucleotide Cap Analog Containing Both 2' and 3'-OH Modification on M⁷Guanosine Moiety. Kore AR, Bugarin A, Shanmugasundaram M. Nucleosides Nucleotides Nucleic Acids 34 611-619 (2015)
  152. Enzymatic Modification of the 5' Cap with Photocleavable ONB-Derivatives Using GlaTgs V34A. Klöcker N, Anhäuser L, Rentmeister A. Chembiochem 24 e202200522 (2023)
  153. Influence of the length of the phosphate chain in mRNA 5' cap analogues on their interaction with eukaryotic initiation factor 4E. Zuberek J, Jemielity J, Niedzwiecka A, Stepinski J, Wyslouch-Cieszynska A, Stolarski R, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 22 1707-1710 (2003)
  154. Interaction between yeast eukaryotic initiation factor eIF4E and mRNA 5' cap analogues differs from that for murine eIF4E. Kiraga-Motoszko K, Stepinski J, Niedzwiecka A, Jemielity J, Wszelaka-Rylik M, Stolarski R, Zielenkiewicz W, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 22 1711-1714 (2003)
  155. Light-control of cap methylation and mRNA translation via genetic code expansion of Ecm1. Reichert D, Mootz HD, Rentmeister A. Chem Sci 12 4383-4388 (2021)
  156. Poisson-Boltzmann model analysis of binding mRNA cap analogues to the translation initiation factor eIF4E. Szklarczyk O, Zuberek J, Antosiewicz JM. Biophys Chem 140 16-23 (2009)
  157. Functional characterization of the translation initiation factor eIF4E of Echinococcus granulosus. Santos Pereira-Dutra F, Cancela M, Valandro Meneghetti B, Bunselmeyer Ferreira H, Mariante Monteiro K, Zaha A. Parasitol Res 118 2843-2855 (2019)
  158. High-throughput translational profiling with riboPLATE-seq. Metz JB, Hornstein NJ, Sharma SD, Worley J, Gonzalez C, Sims PA. Sci Rep 12 5718 (2022)
  159. Interpretation of intramolecular stacking effect on the fluorescence intensity decay of 3-methylbenzimidazolyl(5'-5')guanosine dinucleotides using a model of lifetime distribution. Kierdaszuk B, Włodarczyk J. Eur Biophys J 35 424-430 (2006)
  160. Novel way of capping mRNA trimer and studies of its interaction with human nuclear cap-binding complex. Worch R, Stepinski J, Niedzwiecka A, Jankowska-Anyszka M, Mazza C, Cusack S, Stolarski R, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 24 1131-1134 (2005)
  161. RNA Cap Methyltransferase Activity Assay. Trotman JB, Schoenberg DR. Bio Protoc 8 e2767 (2018)
  162. Synthesis of Leishmania cap-4 intermediates, cap-2 and cap-3. Lewdorowicz M, Stepinski J, Kierzek R, Jemielity J, Zuberek J, Yoffe Y, Shapira M, Stolarski R, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 26 1339-1348 (2007)
  163. Synthesis of ¹³C- and ¹⁴C-labeled dinucleotide mRNA cap analogues for structural and biochemical studies. Piecyk K, Davis RE, Jankowska-Anyszka M. Bioorg Med Chem Lett 22 4391-4395 (2012)
  164. The translation initiation factor EIF4E5 from Leishmania: crystal structure and interacting partners. de Lima GB, de Lima Cavalcanti TYV, de Brito ANALM, de Assis LA, Andrade-Vieira RP, Freire ER, da Silva Assunção TR, de Souza Reis CR, Zanchin NIT, Guimarães BG, de-Melo-Neto OP. RNA Biol 18 2433-2449 (2021)
  165. Thermodynamics of 7-methylguanosine cation stacking with tryptophan upon mRNA 5' cap binding to translation factor eIF4E. Niedzwiecka A, Stepinski J, Balaspiri L, Darzynkiewicz E, Stolarski R. Nucleosides Nucleotides Nucleic Acids 22 1557-1561 (2003)
  166. Towards superior mRNA caps accessible by click chemistry: synthesis and translational properties of triazole-bearing oligonucleotide cap analogs. Kozarski M, Drazkowska K, Bednarczyk M, Warminski M, Jemielity J, Kowalska J. RSC Adv 13 12809-12824 (2023)
  167. Analysis of domain organization and functional signatures of trypanosomatid keIF4Gs. Das S. Mol Cell Biochem 477 2415-2431 (2022)
  168. Assignment of the absolute configuration of P-chiral 5' mRNA cap analogues containing phosphorothioate moiety. Kowalska J, Lewdorowicz M, Zuberek J, Bojarska E, Stepinski J, Stolarski R, Darzynkiewicz E, Jemielity J. Nucleosides Nucleotides Nucleic Acids 26 1301-1305 (2007)
  169. Binding studies of eukaryotic initiation factor eIF4E with novel mRNA dinucleotide cap analogues. Zuberek J, Jemielity J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Haber D, Stolarski R, Rhoads RE, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 22 1703-1706 (2003)
  170. Computational design and experimental characterization of a photo-controlled mRNA-cap guanine-N7 methyltransferase. Reichert D, Schepers H, Simke J, Lechner H, Dörner W, Höcker B, Ravoo BJ, Rentmeister A. RSC Chem Biol 2 1484-1490 (2021)
  171. Crystal structure of a cap-independent translation enhancer RNA. Lewicka A, Roman C, Jones S, Disare M, Rice PA, Piccirilli JA. Nucleic Acids Res 51 8891-8907 (2023)
  172. Development of a novel peptide aptamer that interacts with the eIF4E capped-mRNA binding site using peptide epitope linker evolution (PELE). Frosi Y, Ng S, Lin YC, Jiang S, Ramlan SR, Lama D, Verma CS, Asial I, Brown CJ. RSC Chem Biol 3 916-930 (2022)
  173. Diversity of hydrodynamic radii of intrinsically disordered proteins. Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Eur Biophys J 52 607-618 (2023)
  174. New affinity resin for purification of cap-binding proteins. Jankowska-Anyszka M, Nogalski M, Darzynkiewicz E. Nucleosides Nucleotides Nucleic Acids 24 503-506 (2005)
  175. Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins. Perzanowska O, Majewski M, Strenkowska M, Głowala P, Czarnocki-Cieciura M, Mazur M, Kowalska J, Jemielity J. Sci Rep 11 15741 (2021)
  176. Partial molar volumes of mRNA 5' cap analogues. Szymanski J, Stepinski J, Poznanski J, Darzynkiewicz E, Zielenkiewicz W, Stolarski R. Nucleosides Nucleotides Nucleic Acids 22 1553-1556 (2003)
  177. Post-synthetic benzylation of the mRNA 5' cap via enzymatic cascade reactions. Cornelissen NV, Mineikaitė R, Erguven M, Muthmann N, Peters A, Bartels A, Rentmeister A. Chem Sci 14 10962-10970 (2023)
  178. Solution-based approach to study binding to the eIF4E cap-binding site using CD spectroscopy. Garvie CW. Anal Biochem 434 166-171 (2013)
  179. Synthesis and substrate validation of cap analogs containing 7-deazaguanosine moiety by RNA polymerase. Kore AR, Shanmugasundaram M, Barta TJ. Nucleosides Nucleotides Nucleic Acids 29 821-830 (2010)