1lda Citations

Control of the selectivity of the aquaporin water channel family by global orientational tuning.

Science 296 525-30 (2002)
Related entries: 1ldf, 1ldi

Cited: 391 times
EuropePMC logo PMID: 11964478

Abstract

Aquaporins are transmembrane channels found in cell membranes of all life forms. We examine their apparently paradoxical property, facilitation of efficient permeation of water while excluding protons, which is of critical importance to preserving the electrochemical potential across the cell membrane. We have determined the structure of the Escherichia coli aquaglyceroporin GlpF with bound water, in native (2.7 angstroms) and in W48F/F200T mutant (2.1 angstroms) forms, and carried out 12-nanosecond molecular dynamics simulations that define the spatial and temporal probability distribution and orientation of a single file of seven to nine water molecules inside the channel. Two conserved asparagines force a central water molecule to serve strictly as a hydrogen bond donor to its neighboring water molecules. Assisted by the electrostatic potential generated by two half-membrane spanning loops, this dictates opposite orientations of water molecules in the two halves of the channel, and thus prevents the formation of a "proton wire," while permitting rapid water diffusion. Both simulations and observations revealed a more regular distribution of channel water and an increased water permeability for the W48F/F200T mutant.

Reviews - 1lda mentioned but not cited (4)

  1. Aquaporins: important but elusive drug targets. Verkman AS, Anderson MO, Papadopoulos MC. Nat Rev Drug Discov 13 259-277 (2014)
  2. Aquaglyceroporins: generalized metalloid channels. Mukhopadhyay R, Bhattacharjee H, Rosen BP. Biochim Biophys Acta 1840 1583-1591 (2014)
  3. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Diep P, Mahadevan R, Yakunin AF. Front Bioeng Biotechnol 6 157 (2018)
  4. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Int J Mol Sci 23 12317 (2022)

Articles - 1lda mentioned but not cited (12)



Reviews citing this publication (95)

  1. CHARMM: the biomolecular simulation program. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. J Comput Chem 30 1545-1614 (2009)
  2. Aquaporin water channels--from atomic structure to clinical medicine. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S. J Physiol 542 3-16 (2002)
  3. From structure to disease: the evolving tale of aquaporin biology. King LS, Kozono D, Agre P. Nat Rev Mol Cell Biol 5 687-698 (2004)
  4. Plant aquaporins: membrane channels with multiple integrated functions. Maurel C, Verdoucq L, Luu DT, Santoni V. Annu Rev Plant Biol 59 595-624 (2008)
  5. Biomolecular simulation: a computational microscope for molecular biology. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Annu Rev Biophys 41 429-452 (2012)
  6. Voltage-gated proton channels and other proton transfer pathways. Decoursey TE. Physiol Rev 83 475-579 (2003)
  7. Molecular Dynamics Simulation for All. Hollingsworth SA, Dror RO. Neuron 99 1129-1143 (2018)
  8. Aquaporin water channels: molecular mechanisms for human diseases. Agre P, Kozono D. FEBS Lett 555 72-78 (2003)
  9. Water in nonpolar confinement: from nanotubes to proteins and beyond. Rasaiah JC, Garde S, Hummer G. Annu Rev Phys Chem 59 713-740 (2008)
  10. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Bahar I, Lezon TR, Bakan A, Shrivastava IH. Chem Rev 110 1463-1497 (2010)
  11. Water Determines the Structure and Dynamics of Proteins. Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Chem Rev 116 7673-7697 (2016)
  12. Do we underestimate the importance of water in cell biology? Chaplin M. Nat Rev Mol Cell Biol 7 861-866 (2006)
  13. Plant aquaporins: novel functions and regulation properties. Maurel C. FEBS Lett 581 2227-2236 (2007)
  14. Regulation of plant aquaporin activity. Chaumont F, Moshelion M, Daniels MJ. Biol Cell 97 749-764 (2005)
  15. Molecular biology of hereditary diabetes insipidus. Fujiwara TM, Bichet DG. J Am Soc Nephrol 16 2836-2846 (2005)
  16. Structure and function of water channels. Fujiyoshi Y, Mitsuoka K, de Groot BL, Philippsen A, Grubmüller H, Agre P, Engel A. Curr Opin Struct Biol 12 509-515 (2002)
  17. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. Kozono D, Yasui M, King LS, Agre P. J Clin Invest 109 1395-1399 (2002)
  18. Bioinspired super-wettability from fundamental research to practical applications. Wen L, Tian Y, Jiang L. Angew Chem Int Ed Engl 54 3387-3399 (2015)
  19. The membrane protein universe: what's out there and why bother? von Heijne G. J Intern Med 261 543-557 (2007)
  20. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  21. Functions of aquaporins in the eye. Verkman AS, Ruiz-Ederra J, Levin MH. Prog Retin Eye Res 27 420-433 (2008)
  22. Ion conduction and selectivity in K(+) channels. Roux B. Annu Rev Biophys Biomol Struct 34 153-171 (2005)
  23. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Forrest KL, Bhave M. Funct Integr Genomics 7 263-289 (2007)
  24. Molecular dynamics simulations of proteins in lipid bilayers. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K. Curr Opin Struct Biol 15 423-431 (2005)
  25. Structural insights into eukaryotic aquaporin regulation. Törnroth-Horsefield S, Hedfalk K, Fischer G, Lindkvist-Petersson K, Neutze R. FEBS Lett 584 2580-2588 (2010)
  26. What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Wang Y, Schulten K, Tajkhorshid E. Structure 13 1107-1118 (2005)
  27. Invertebrate aquaporins: a review. Campbell EM, Ball A, Hoppler S, Bowman AS. J Comp Physiol B 178 935-955 (2008)
  28. Aquaporin gating. Hedfalk K, Törnroth-Horsefield S, Nyblom M, Johanson U, Kjellbom P, Neutze R. Curr Opin Struct Biol 16 447-456 (2006)
  29. Computational studies of membrane channels. Roux B, Schulten K. Structure 12 1343-1351 (2004)
  30. Ion channel gating: insights via molecular simulations. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MS. FEBS Lett 555 85-90 (2003)
  31. Water channel proteins (later called aquaporins) and relatives: past, present, and future. Benga G. IUBMB Life 61 112-133 (2009)
  32. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. DeCoursey TE. Physiology (Bethesda) 25 27-40 (2010)
  33. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Chem Rev 119 6086-6161 (2019)
  34. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q Rev Biophys 43 65-158 (2010)
  35. High performance computing in biology: multimillion atom simulations of nanoscale systems. Sanbonmatsu KY, Tung CS. J Struct Biol 157 470-480 (2007)
  36. Piscine aquaporins: an overview of recent advances. Cerdà J, Finn RN. J Exp Zool A Ecol Genet Physiol 313 623-650 (2010)
  37. Nephrogenic diabetes insipidus. Bichet DG. Adv Chronic Kidney Dis 13 96-104 (2006)
  38. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Müller DJ, Wu N, Palczewski K. Pharmacol Rev 60 43-78 (2008)
  39. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations. Kato M, Pisliakov AV, Warshel A. Proteins 64 829-844 (2006)
  40. Aquaporins from pathogenic protozoan parasites: structure, function and potential for chemotherapy. Beitz E. Biol Cell 97 373-383 (2005)
  41. Aquaglyceroporins: implications in adipose biology and obesity. Madeira A, Moura TF, Soveral G. Cell Mol Life Sci 72 759-771 (2015)
  42. Structural insights into aquaporin selectivity and regulation. Kreida S, Törnroth-Horsefield S. Curr Opin Struct Biol 33 126-134 (2015)
  43. Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Krane CM, Goldstein DL. Mamm Genome 18 452-462 (2007)
  44. Glycerol facilitator GlpF and the associated aquaporin family of channels. Stroud RM, Miercke LJ, O'Connell J, Khademi S, Lee JK, Remis J, Harries W, Robles Y, Akhavan D. Curr Opin Struct Biol 13 424-431 (2003)
  45. The structural basis of water permeation and proton exclusion in aquaporins. Fu D, Lu M. Mol Membr Biol 24 366-374 (2007)
  46. Water as a biomolecule. Ball P. Chemphyschem 9 2677-2685 (2008)
  47. Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Ludewig U, Dynowski M. Cell Mol Life Sci 66 3161-3175 (2009)
  48. Progress in the analysis of membrane protein structure and function. Werten PJ, Rémigy HW, de Groot BL, Fotiadis D, Philippsen A, Stahlberg H, Grubmüller H, Engel A. FEBS Lett 529 65-72 (2002)
  49. Ion transport versus gas conduction: function of AMT/Rh-type proteins. Ludewig U. Transfus Clin Biol 13 111-116 (2006)
  50. Plant and Mammal Aquaporins: Same but Different. Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Int J Mol Sci 19 E521 (2018)
  51. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. Stroud RM, Savage D, Miercke LJ, Lee JK, Khademi S, Harries W. FEBS Lett 555 79-84 (2003)
  52. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions. Rambow J, Wu B, Rönfeldt D, Beitz E. Front Pharmacol 5 199 (2014)
  53. Philosophy of voltage-gated proton channels. DeCoursey TE, Hosler J. J R Soc Interface 11 20130799 (2014)
  54. Computer simulations of transport through membranes: passive diffusion, pores, channels and transporters. Tieleman DP. Clin Exp Pharmacol Physiol 33 893-903 (2006)
  55. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Ho FM. Photosynth Res 98 503-522 (2008)
  56. Molecular mechanisms and drug development in aquaporin water channel diseases: structure and function of aquaporins. Yasui M. J Pharmacol Sci 96 260-263 (2004)
  57. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Srivastava AK, Penna S, Nguyen DV, Tran LS. Crit Rev Biotechnol 36 389-398 (2016)
  58. Osmosis, from molecular insights to large-scale applications. Marbach S, Bocquet L. Chem Soc Rev 48 3102-3144 (2019)
  59. Exploring transmembrane diffusion pathways with molecular dynamics. Wang Y, Shaikh SA, Tajkhorshid E. Physiology (Bethesda) 25 142-154 (2010)
  60. The role of molecular modeling in bionanotechnology. Lu D, Aksimentiev A, Shih AY, Cruz-Chu E, Freddolino PL, Arkhipov A, Schulten K. Phys Biol 3 S40-53 (2006)
  61. Aquaporins: another piece in the osmotic puzzle. Alleva K, Chara O, Amodeo G. FEBS Lett 586 2991-2999 (2012)
  62. Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: lessons from other proteins. Mills DA, Ferguson-Miller S. FEBS Lett 545 47-51 (2003)
  63. Influence of lipids on protein-mediated transmembrane transport. Denning EJ, Beckstein O. Chem Phys Lipids 169 57-71 (2013)
  64. Hereditary polyuric disorders: new concepts and differential diagnosis. Bichet DG. Semin Nephrol 26 224-233 (2006)
  65. Voltage-gated proton channels. Decoursey TE. Compr Physiol 2 1355-1385 (2012)
  66. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  67. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Front Genet 12 654865 (2021)
  68. Insights into structural mechanisms of gating induced regulation of aquaporins. Sachdeva R, Singh B. Prog Biophys Mol Biol 114 69-79 (2014)
  69. Water channel structures analysed by electron crystallography. Tani K, Fujiyoshi Y. Biochim Biophys Acta 1840 1605-1613 (2014)
  70. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Curr Protein Pept Sci 20 368-395 (2019)
  71. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Biochim Biophys Acta 1848 246-259 (2015)
  72. G-protein-coupled receptor structures were not built in a day. Blois TM, Bowie JU. Protein Sci 18 1335-1342 (2009)
  73. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Sutka M, Amodeo G, Ozu M. Biophys Rev 9 545-562 (2017)
  74. Retinol and retinol-binding protein in cerebrospinal fluid: can vitamin A take the "idiopathic" out of idiopathic intracranial hypertension? Libien J, Blaner WS. J Neuroophthalmol 27 253-257 (2007)
  75. Yeast water channels: an overview of orthodox aquaporins. Soveral G, Prista C, Moura TF, Loureiro-Dias MC. Biol Cell 103 35-54 (2010)
  76. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. Peng S, Tasara T, Hummerjohann J, Stephan R. J Food Prot 74 849-864 (2011)
  77. Computational studies of proton transport through the M2 channel. Wu Y, Voth GA. FEBS Lett 552 23-27 (2003)
  78. Role of aquaporins and regulation of secretory vesicle volume in cell secretion. Sugiya H, Matsuki-Fukushima M, Hashimoto S. J Cell Mol Med 12 1486-1494 (2008)
  79. Electron crystallography of aquaporins. Andrews S, Reichow SL, Gonen T. IUBMB Life 60 430-436 (2008)
  80. Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals? Imbrogno J, Belfort G. Annu Rev Chem Biomol Eng 7 29-64 (2016)
  81. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Li C, Meckler SM, Smith ZP, Bachman JE, Maserati L, Long JR, Helms BA. Adv Mater 30 (2018)
  82. Molecular dynamics of water in the neighborhood of aquaporins. Ozu M, Alvarez HA, McCarthy AN, Grigera JR, Chara O. Eur Biophys J 42 223-239 (2013)
  83. Structure of urea transporters. Levin EJ, Zhou M. Subcell Biochem 73 65-78 (2014)
  84. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Biophys Rev 14 181-198 (2022)
  85. Water as a cofactor in the unidirectional light-driven proton transfer steps in bacteriorhodopsin. Maeda A, Morgan JE, Gennis RB, Ebrey TG. Photochem Photobiol 82 1398-1405 (2006)
  86. Current Understanding of Water Properties inside Carbon Nanotubes. Chatzichristos A, Hassan J. Nanomaterials (Basel) 12 174 (2022)
  87. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes? To J, Torres J. Membranes (Basel) 5 352-368 (2015)
  88. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Int J Mol Sci 17 E1119 (2016)
  89. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Ulian G, Moro D, Valdrè G. Biomolecules 11 728 (2021)
  90. The energetic barrier to single-file water flow through narrow channels. Pfeffermann J, Goessweiner-Mohr N, Pohl P. Biophys Rev 13 913-923 (2021)
  91. Diffusion coefficient in biomembrane critical pores. Haque MM. J Bioenerg Biomembr 49 445-450 (2017)
  92. Aquaporin water channels: roles beyond renal water handling. Login FH, Nejsum LN. Nat Rev Nephrol 19 604-618 (2023)
  93. Aquaporins Display a Diversity in their Substrates. Sachdeva R, Priyadarshini P, Gupta S. J Membr Biol 256 1-23 (2023)
  94. Characterization of the Features of Water Inside the SecY Translocon. Capponi S. J Membr Biol 254 133-139 (2021)
  95. Structure and function of a silicic acid channel Lsi1. Saitoh Y, Suga M. Front Plant Sci 13 982068 (2022)

Articles citing this publication (280)



Related citations provided by authors (1)