1lpp Citations

Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase.

Biochemistry 33 3494-500 (1994)
Related entries: 1lpn, 1lpo

Cited: 101 times
EuropePMC logo PMID: 8142346

Abstract

The structures of Candida rugosa lipase-inhibitor complexes demonstrate that the scissile fatty acyl chain is bound in a narrow, hydrophobic tunnel which is unique among lipases studied to date. Modeling of triglyceride binding suggests that the bound lipid must adopt a "tuning fork" conformation. The complexes, analogs of tetrahedral intermediates of the acylation and deacylation steps of the reaction pathway, localize the components of the oxyanion hole and define the stereochemistry of ester hydrolysis. Comparison with other lipases suggests that the positioning of the scissile fatty acyl chain and ester bond and the stereochemistry of hydrolysis are the same in all lipases which share the alpha/beta-hydrolase fold.

Articles - 1lpp mentioned but not cited (6)

  1. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct Biol 7 44 (2007)
  2. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking. Juhl PB, Trodler P, Tyagi S, Pleiss J. BMC Struct Biol 9 39 (2009)
  3. A model of the pressure dependence of the enantioselectivity of Candida rugosalipase towards (+/-)-menthol. Kahlow UH, Schmid RD, Pleiss J. Protein Sci 10 1942-1952 (2001)
  4. In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases. Samira N, Khedidja B, Zahra AF, Elyakine CKN, Mohamed Y. Antiinflamm Antiallergy Agents Med Chem 19 387-392 (2020)
  5. Green biosynthesis of rare DHA-phospholipids by lipase-catalyzed transesterification with edible algal oil in solvent-free system and catalytic mechanism study. Zhang T, Li B, Wang Z, Hu D, Zhang X, Zhao B, Wang J. Front Bioeng Biotechnol 11 1158348 (2023)
  6. Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate. Brabcová J, Blažek J, Krečmerová M, Vondrášek J, Palomo JM, Zarevúcka M. Molecules 21 E648 (2016)


Reviews citing this publication (22)

  1. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Jaeger KE, Dijkstra BW, Reetz MT. Annu Rev Microbiol 53 315-351 (1999)
  2. GDSL family of serine esterases/lipases. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. Prog Lipid Res 43 534-552 (2004)
  3. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. Front Bioeng Biotechnol 5 16 (2017)
  4. Lipase protein engineering. Svendsen A. Biochim Biophys Acta 1543 223-238 (2000)
  5. Substrate tunnels in enzymes: structure-function relationships and computational methodology. Kingsley LJ, Lill MA. Proteins 83 599-611 (2015)
  6. Understanding Candida rugosa lipases: an overview. Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR. Biotechnol Adv 24 180-196 (2006)
  7. Effects of surfactants on lipase structure, activity, and inhibition. Delorme V, Dhouib R, Canaan S, Fotiadu F, Carrière F, Cavalier JF. Pharm Res 28 1831-1842 (2011)
  8. Exploring the specific features of interfacial enzymology based on lipase studies. Aloulou A, Rodriguez JA, Fernandez S, van Oosterhout D, Puccinelli D, Carrière F. Biochim Biophys Acta 1761 995-1013 (2006)
  9. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Kazlauskas RJ. Trends Biotechnol 12 464-472 (1994)
  10. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Gupta R, Kumari A, Syal P, Singh Y. Prog Lipid Res 57 40-54 (2015)
  11. Protein engineering and applications of Candida rugosa lipase isoforms. Akoh CC, Lee GC, Shaw JF. Lipids 39 513-526 (2004)
  12. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Med Res Rev 37 1095-1139 (2017)
  13. Structure-function relationships of hormone-sensitive lipase. Osterlund T. Eur J Biochem 268 1899-1907 (2001)
  14. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Barriuso J, Vaquero ME, Prieto A, Martínez MJ. Biotechnol Adv 34 874-885 (2016)
  15. Structure and conformational flexibility of Candida rugosa lipase. Cygler M, Schrag JD. Biochim Biophys Acta 1441 205-214 (1999)
  16. Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Holmquist M. Chem Phys Lipids 93 57-66 (1998)
  17. Effect of the lipid interface on the catalytic activity and spectroscopic properties of a fungal lipase. Cajal Y, Svendsen A, De Bolós J, Patkar SA, Alsina MA. Biochimie 82 1053-1061 (2000)
  18. Characterization of the Candida rugosa lipase system and overexpression of the lip1 isoenzyme in a non-conventional yeast. Mileto D, Brocca S, Lotti M, Takagi M, Alquati C, Alberghina L. Chem Phys Lipids 93 47-55 (1998)
  19. Molecular modeling as a powerful technique for understanding small-large molecules interactions. Botta M, Corelli F, Manetti F, Tafi A. Farmaco 57 153-165 (2002)
  20. Structural determinants defining common stereoselectivity of lipases toward secondary alcohols. Cygler M, Grochulski P, Schrag JD. Can J Microbiol 41 Suppl 1 289-296 (1995)
  21. Macromolecular Interactions of Lipoprotein Lipase (LPL). Wheless A, Gunn KH, Neher SB. Subcell Biochem 104 139-179 (2024)
  22. Targeting host-specific metabolic pathways-opportunities and challenges for anti-infective therapy. Konaklieva MI, Plotkin BJ. Front Mol Biosci 11 1338567 (2024)

Articles citing this publication (73)

  1. Anatomy of lipase binding sites: the scissile fatty acid binding site. Pleiss J, Fischer M, Schmid RD. Chem Phys Lipids 93 67-80 (1998)
  2. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Shin DH, Lee JY, Hwang KY, Kim KK, Suh SW. Structure 3 189-199 (1995)
  3. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Kim KK, Song HK, Shin DH, Hwang KY, Suh SW. Structure 5 173-185 (1997)
  4. The open conformation of a Pseudomonas lipase. Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A. Structure 5 187-202 (1997)
  5. Functional characteristics of the oxyanion hole in human acetylcholinesterase. Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, Shafferman A. J Biol Chem 273 19509-19517 (1998)
  6. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. Lo YC, Lin SC, Shaw JF, Liaw YC. J Mol Biol 330 539-551 (2003)
  7. Kinetics and mechanisms of reactions catalyzed by immobilized lipases* Paiva AL, Balcão VM, Malcata FX. Enzyme Microb Technol 27 187-204 (2000)
  8. Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Ghosh D, Wawrzak Z, Pletnev VZ, Li N, Kaiser R, Pangborn W, Jörnvall H, Erman M, Duax WL. Structure 3 279-288 (1995)
  9. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Mancheño JM, Pernas MA, Martínez MJ, Ochoa B, Rúa ML, Hermoso JA. J Mol Biol 332 1059-1069 (2003)
  10. Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Gatto MT, Falcocchio S, Grippa E, Mazzanti G, Battinelli L, Nicolosi G, Lambusta D, Saso L. Bioorg Med Chem 10 269-272 (2002)
  11. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Haeffner F, Norin T, Hult K. Biophys J 74 1251-1262 (1998)
  12. Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Longhi S, Mannesse M, Verheij HM, De Haas GH, Egmond M, Knoops-Mouthuy E, Cambillau C. Protein Sci 6 275-286 (1997)
  13. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Tang SJ, Shaw JF, Sun KH, Sun GH, Chang TY, Lin CK, Lo YC, Lee GC. Arch Biochem Biophys 387 93-98 (2001)
  14. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Yang J, Koga Y, Nakano H, Yamane T. Protein Eng 15 147-152 (2002)
  15. An active-site titration method for lipases. Rotticci D, Norin T, Hult K, Martinelle M. Biochim Biophys Acta 1483 132-140 (2000)
  16. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C. Proteins 26 442-458 (1996)
  17. Crystal structure of the catalytic domain of human bile salt activated lipase. Terzyan S, Wang CS, Downs D, Hunter B, Zhang XC. Protein Sci 9 1783-1790 (2000)
  18. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S, Lafaquière V, Guieysse D, Monsan P, Remaud-Siméon M, André I. Proteins 77 509-523 (2009)
  19. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N, Pernas MA, Pastrana LM, Sánchez A, Valero F, Rúa ML. Biotechnol Prog 20 65-73 (2004)
  20. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Norin M, Haeffner F, Achour A, Norin T, Hult K. Protein Sci 3 1493-1503 (1994)
  21. Different active-site loop orientation in serine hydrolases versus acyltransferases. Jiang Y, Morley KL, Schrag JD, Kazlauskas RJ. Chembiochem 12 768-776 (2011)
  22. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Lee GC, Lee LC, Sava V, Shaw JF. Biochem J 366 603-611 (2002)
  23. Quantitative structure-activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-N-substituted carbamates. Lin G, Liao WC, Chiou SY. Bioorg Med Chem 8 2601-2607 (2000)
  24. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Pletnev VZ, Zamolodchikova TS, Pangborn WA, Duax WL. Proteins 41 8-16 (2000)
  25. Structure-reactivity probes for active site shapes of cholesterol esterase by carbamate inhibitors. Lin G, Shieh CT, Tsai YC, Hwang CI, Lu CP, Chen GH. Biochim Biophys Acta 1431 500-511 (1999)
  26. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, Manco G. Proteins 71 1721-1731 (2008)
  27. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols. Holmquist M, Haeffner F, Norin T, Hult K. Protein Sci 5 83-88 (1996)
  28. Enantiomeric inhibitors of cholesterol esterase and acetylcholinesterase. Lin G, Tsai YC, Liu HC, Liao WC, Chang CH. Biochim Biophys Acta 1388 161-174 (1998)
  29. Expression and characterization of Geotrichum candidum lipase I gene. Comparison of specificity profile with lipase II. Bertolini MC, Schrag JD, Cygler M, Ziomek E, Thomas DY, Vernet T. Eur J Biochem 228 863-869 (1995)
  30. Direct determination of the chemical composition of acetylcholinesterase phosphonylation products utilizing electrospray-ionization mass spectrometry. Barak R, Ordentlich A, Barak D, Fischer M, Benschop HP, De Jong LP, Segall Y, Velan B, Shafferman A. FEBS Lett 407 347-352 (1997)
  31. Research Support, Non-U.S. Gov't Grease pit chemistry exposed. Rubin B. Nat Struct Biol 1 568-572 (1994)
  32. A novel biotinylated suicide inhibitor for directed molecular evolution of lipolytic enzymes. Deussen HJ, Danielsen S, Breinholt J, Borchert TV. Bioorg Med Chem 8 507-513 (2000)
  33. Small changes in cationic substituents of diphenylfuran derivatives have major effects on the binding affinity and the binding mode with RNA helical duplexes. Zhao M, Ratmeyer L, Peloquin RG, Yao S, Kumar A, Spychala J, Boykin DW, Wilson WD. Bioorg Med Chem 3 785-794 (1995)
  34. High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris. Fernández L, Pérez-Victoria I, Zafra A, Benítez PL, Morales JC, Velasco J, Adrio JL. Protein Expr Purif 49 256-264 (2006)
  35. Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Brocca S, Persson M, Wehtje E, Adlercreutz P, Alberghina L, Lotti M. Protein Sci 9 985-990 (2000)
  36. Packing forces in nine crystal forms of cutinase. Jelsch C, Longhi S, Cambillau C. Proteins 31 320-333 (1998)
  37. Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis. Lin CN, Tsai SW. Biotechnol Bioeng 69 31-38 (2000)
  38. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Durmaz E, Kuyucak S, Sezerman UO. Protein Eng Des Sel 26 325-333 (2013)
  39. A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst. Ge J, Lu D, Yang C, Liu Z. Macromol Rapid Commun 32 546-550 (2011)
  40. Characterization of novel cholesterol esterase from Trichoderma sp. AS59 with high ability to synthesize steryl esters. Maeda A, Mizuno T, Bunya M, Sugihara S, Nakayama D, Tsunasawa S, Hirota Y, Sugihara A. J Biosci Bioeng 105 341-349 (2008)
  41. Crystal structure of a secreted lipase from Gibberella zeae reveals a novel "double-lock" mechanism. Lou Z, Li M, Sun Y, Liu Y, Liu Z, Wu W, Rao Z. Protein Cell 1 760-770 (2010)
  42. Homology modelling and molecular dynamics aided analysis of ligand complexes demonstrates functional properties of lipid-transfer proteins encoded by the barley low-temperature-inducible gene family, blt4. Keresztessy Z, Hughes MA. Plant J 14 523-533 (1998)
  43. Molecular modeling of the structures of human and rat pancreatic cholesterol esterases. Feaster SR, Quinn DM, Barnett BL. Protein Sci 6 73-79 (1997)
  44. Prediction of the Candida antarctica lipase A protein structure by comparative modeling and site-directed mutagenesis. Kasrayan A, Bocola M, Sandström AG, Lavén G, Bäckvall JE. Chembiochem 8 1409-1415 (2007)
  45. Synthesis of a chiral artificial receptor with catalytic activity in Michael additions and its chiral resolution by a new methodology. Simón L, Muñiz FM, de Arriba AF, Alcázar V, Raposo C, Morán JR. Org Biomol Chem 8 1763-1768 (2010)
  46. The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism. Bakolitsa C, Kumar A, McMullan D, Krishna SS, Miller MD, Carlton D, Najmanovich R, Abdubek P, Astakhova T, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Feuerhelm J, Grant JC, Grzechnik SK, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, Rife CL, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 1211-1217 (2010)
  47. A mixed molecular modeling-robotics approach to investigate lipase large molecular motions. Barbe S, Cortés J, Siméon T, Monsan P, Remaud-Siméon M, André I. Proteins 79 2517-2529 (2011)
  48. Investigation of lipase-catalysed hydrolysis of naproxen methyl ester: use of NMR spectroscopy methods to study substrate-enzyme interaction. Cernia E, Delfini M, Di Cocco E, Palocci C, Soro S. Bioorg Chem 30 276-284 (2002)
  49. Probing stereoselective inhibition of the acyl binding site of cholesterol esterase with four diastereomers of 2'-N-alpha-methylbenzylcarbamyl-1, 1'-bi-2-naphthol. Chiou SY, Lai CY, Lin LY, Lin G. BMC Biochem 6 17 (2005)
  50. Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Gunn KH, Neher SB. Nat Commun 14 2569 (2023)
  51. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase. Nedrud DM, Lin H, Lopez G, Padhi SK, Legatt GA, Kaz-Lauskas RJ. Chem Sci 5 4265-4277 (2014)
  52. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Zandonella G, Stadler P, Haalck L, Spener F, Paltauf F, Hermetter A. Eur J Biochem 262 63-69 (1999)
  53. Revealing the Roles of Subdomains in the Catalytic Behavior of Lipases/Acyltransferases Homologous to CpLIP2 through Rational Design of Chimeric Enzymes. Jan AH, Dubreucq É, Subileau M. Chembiochem 18 941-950 (2017)
  54. Structure-guided protein engineering increases enzymatic activities of the SGNH family esterases. Li Z, Li L, Huo Y, Chen Z, Zhao Y, Huang J, Jian S, Rong Z, Wu D, Gan J, Hu X, Li J, Xu XW. Biotechnol Biofuels 13 107 (2020)
  55. A highly selective receptor for zwitterionic proline. Temprano ÁG, Monleón LM, Rubio OH, Rubio LS, Pérez AB, Sanz F, Morán JR. Org Biomol Chem 14 1325-1331 (2016)
  56. A molecular receptor for zwitterionic phenylalanine. Herrero FG, Rubio OH, Monleón LM, Fuentes de Arriba ÁL, Rubio LS, Morán JR. Org Biomol Chem 14 3906-3912 (2016)
  57. Counteraction of Trehalose on N, N-Dimethylformamide-Induced Candida rugosa Lipase Denaturation: Spectroscopic Insight and Molecular Dynamic Simulation. Yang X, Jiang L, Jia Y, Hu Y, Xu Q, Xu X, Huang H. PLoS One 11 e0152275 (2016)
  58. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge. Tan Z, Li J, Wu M, Wang J. Appl Biochem Biotechnol 173 1752-1764 (2014)
  59. Recombinant Candida rugosa lipase 2 from Pichia pastoris: immobilization and use as biocatalyst in a stereoselective reaction. Benaiges MD, Alarcón M, Fuciños P, Ferrer P, Rua M, Valero F. Biotechnol Prog 26 1252-1258 (2010)
  60. Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester. Casas-Godoy L, Meunchan M, Cot M, Duquesne S, Bordes F, Marty A. J Biotechnol 180 30-36 (2014)
  61. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: application to the hydrolysis of triacylglycerols by lipases. Mitchell DA, Rodriguez JA, Carrière F, Baratti J, Krieger N. J Biotechnol 133 343-350 (2008)
  62. Inhibition or activation of Pseudomonas species lipase by 1,2-ethylene-di-N-alkylcarbamates in detergents. Lin MC, Lu CP, Cheng YR, Lin YF, Lin CS, Lin G. Chem Phys Lipids 146 85-93 (2007)
  63. New insights in the activation of human cholesterol esterase to design potent anti-cholesterol drugs. John S, Thangapandian S, Lazar P, Son M, Park C, Lee KW. Mol Divers 18 119-131 (2014)
  64. Production, characterization, and molecular modeling of lipases for esterification. Jääskeläinen S, Wu XY, Linko S, Wang Y, Linko YY, Teleman O, Linko P. Ann N Y Acad Sci 799 129-138 (1996)
  65. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor. Jammer S, Rizkov D, Gelman F, Lev O. Environ Sci Process Impacts 17 1370-1376 (2015)
  66. Quantitative structure-activity relationships for the pre-steady state of Pseudomonas species lipase inhibitions by p-nirophenyl-N-substituted carbamates. Lin G, Liao WC, Ku ZH. Protein J 24 201-207 (2005)
  67. A cleft type receptor which combines an oxyanion hole with electrostatic interactions. Rubio OH, Mazo SD, Monleón LM, Simón L, Temprano ÁG, Morán JR. Org Biomol Chem 15 4571-4578 (2017)
  68. A fast, miniaturised in-vitro assay developed for quantification of lipase enzyme activity. Menden A, Hall D, Paris D, Mathura V, Crawford F, Mullan M, Crynen S, Ait-Ghezala G. J Enzyme Inhib Med Chem 34 1474-1480 (2019)
  69. Distant homology modeling of LCAT and its validation through in silico targeting and in vitro and in vivo assays. Sensi C, Simonelli S, Zanotti I, Tedeschi G, Lusardi G, Franceschini G, Calabresi L, Eberini I. PLoS One 9 e95044 (2014)
  70. Enantioselectivity of recombinant Rhizomucor miehei lipase in the ring opening of oxazolin-5(4H)-ones. Turner NA, Gaskin DJ, Yagnik AT, Littlechild JA, Vulfson EN. Protein Eng 14 269-278 (2001)
  71. Inhibition of Rhizomucor miehei and Candida rugosa lipases by D-glucose in esterification between L-alanine and D-glucose. Somashekar BR, Lohith K, Manohar B, Divakar S. J Biosci Bioeng 103 122-128 (2007)
  72. Design of hyperthermophilic lipase chimeras by key motif-directed recombination. Zhou X, Gao L, Yang G, Liu D, Bai A, Li B, Deng Z, Feng Y. Chembiochem 16 455-462 (2015)
  73. Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation. Palayam M, Yan L, Nagalakshmi U, Gilio AK, Cornu D, Boyer FD, Dinesh-Kumar SP, Shabek N. Nat Commun 15 6500 (2024)


Related citations provided by authors (3)

  1. Two Conformational States of Candida Rugosa Lipase. Grochulski P, Li Y, Schrag JD, Cygler M Protein Sci. 3 82- (1994)
  2. A Structural Basis for the Chiral Preferences of Lipases. Cygler M, Grochulski P, Kazlauskas RJ, Schrag JD, Bouthillier F, Rubin B, Serregi AN, Gupta AK J. Am. Chem. Soc. 116 3180- (1994)
  3. Insights Into Interfacial Activation from an Open Structure of Candida Rugosa Lipase. Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M J. Biol. Chem. 268 12843- (1993)