1lsm Citations

Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules.

Protein Sci 4 2050-62 (1995)
Cited: 46 times
EuropePMC logo PMID: 8535241

Abstract

A series of 24 mutants was made in the buried core of chicken lysozyme at positions 40, 55, and 91. The midpoint temperature of thermal denaturation transition (Tm) values of these core constructs range from 60.9 to 77.3 degrees C, extending an earlier, more limited investigation on thermostability. The Tm values of variants containing conservative replacements for the wild type (WT) (Thr 40-Ile 55-Ser 91) triplet are linearly correlated with hydrophobicity (r = 0.81) and, to a lesser degree, with combined side-chain volume (r = 0.75). The X-ray structures of the S91A (1.9 A) and I55L/S91T/D101S (1.7 A) mutants are presented. The former amino acid change is found in duck and mammalian lysozymes, and the latter contains the most thermostable core triplet. A network of four conserved, buried water molecules is associated with the core. It is postulated that these water molecules significantly influence the mutational tolerance at the individual triplet positions. The pH dependence of Tm for the S91D mutant was compared with that of WT enzyme. The pKa of S91D is 1.2 units higher in the native than in the denatured state, corresponding to delta delta G298 = 1.7 kcal/mol. This is a low value for charge burial and likely reflects the moderating influence of the buried water molecules or a conformational change. Thermal and chemical denaturation and far UV CD spectroscopy were used to characterize the in vitro properties of I55T. This variant, which buries a hydroxyl group, has similar properties to those of the human amyloidogenic variant I56T.

Reviews citing this publication (1)

  1. Stabilization of protein structures. Lee B, Vasmatzis G. Curr Opin Biotechnol 8 423-428 (1997)

Articles citing this publication (45)

  1. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB. Nature 385 787-793 (1997)
  2. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM. J Mol Biol 300 541-549 (2000)
  3. High apparent dielectric constants in the interior of a protein reflect water penetration. Dwyer JJ, Gittis AG, Karp DA, Lattman EE, Spencer DS, Stites WE, García-Moreno E B. Biophys J 79 1610-1620 (2000)
  4. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. Gilis D, Rooman M. J Mol Biol 272 276-290 (1997)
  5. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T. J Mol Biol 296 713-735 (2000)
  6. NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules. Otting G, Liepinsh E, Halle B, Frey U. Nat Struct Biol 4 396-404 (1997)
  7. Mutagenesis-based definitions and probes of residue burial in proteins. Bajaj K, Chakrabarti P, Varadarajan R. Proc Natl Acad Sci U S A 102 16221-16226 (2005)
  8. The equilibrium unfolding of Azotobacter vinelandii apoflavodoxin II occurs via a relatively stable folding intermediate. van Mierlo CP, van Dongen WM, Vergeldt F, van Berkel WJ, Steensma E. Protein Sci 7 2331-2344 (1998)
  9. Design and structural analysis of an engineered thermostable chicken lysozyme. Shih P, Kirsch JF. Protein Sci 4 2063-2072 (1995)
  10. Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility. Parthiban V, Gromiha MM, Hoppe C, Schomburg D. Proteins 66 41-52 (2007)
  11. Regulation of the Equilibrium between Closed and Open Conformations of Annexin A2 by N-Terminal Phosphorylation and S100A4-Binding. Ecsédi P, Kiss B, Gógl G, Radnai L, Buday L, Koprivanacz K, Liliom K, Leveles I, Vértessy B, Jeszenői N, Hetényi C, Schlosser G, Katona G, Nyitray L. Structure 25 1195-1207.e5 (2017)
  12. Prediction of protein thermostability with a direction- and distance-dependent knowledge-based potential. Hoppe C, Schomburg D. Protein Sci 14 2682-2692 (2005)
  13. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. Stefanovic L, Longo L, Zhang Y, Stefanovic B. RNA Biol 11 1386-1401 (2014)
  14. Unfolding of hen egg lysozyme by molecular dynamics simulations at 300K: insight into the role of the interdomain interface. Gilquin B, Guilbert C, Perahia D. Proteins 41 58-74 (2000)
  15. A near-native state on the slow refolding pathway of hen lysozyme. Kulkarni SK, Ashcroft AE, Carey M, Masselos D, Robinson CV, Radford SE. Protein Sci 8 35-44 (1999)
  16. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme: the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds. Xie J, Qin M, Cao Y, Wang W. Proteins 79 2505-2516 (2011)
  17. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins. Mitropoulos V, Mütze A, Fischer P. Adv Colloid Interface Sci 206 195-206 (2014)
  18. An effective thiol-reactive probe for differential scanning fluorimetry with a standard real-time polymerase chain reaction device. Hofmann L, Gulati S, Sears A, Stewart PL, Palczewski K. Anal Biochem 499 63-65 (2016)
  19. Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Moure VR, Razzera G, Araújo LM, Oliveira MAS, Gerhardt ECM, Müller-Santos M, Almeida F, Pedrosa FO, Valente AP, Souza EM, Huergo LF. Protein Expr Purif 81 83-88 (2012)
  20. Biochemical characterization of thermostable β-1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Sakai K, Mochizuki M, Yamada M, Shinzawa Y, Minezawa M, Kimoto S, Murata S, Kaneko Y, Ishihara S, Jindou S, Kobayashi T, Kato M, Shimizu M. Appl Microbiol Biotechnol 101 3237-3245 (2017)
  21. Remarkably slow folding of a small protein. Aronsson G, Brorsson AC, Sahlman L, Jonsson BH. FEBS Lett 411 359-364 (1997)
  22. Photoinduced fibrils formation of chicken egg white lysozyme under native conditions. Xie JB, Cao Y, Pan H, Qin M, Yan ZQ, Xiong X, Wang W. Proteins 80 2501-2513 (2012)
  23. Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating. Mazurenko S, Kunka A, Beerens K, Johnson CM, Damborsky J, Prokop Z. Sci Rep 7 16321 (2017)
  24. Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Murvai N, Kalmar L, Szalaine Agoston B, Szabo B, Tantos A, Csikos G, Micsonai A, Kardos J, Vertommen D, Nguyen PN, Hristozova N, Lang A, Kovacs D, Buday L, Han KH, Perczel A, Tompa P. Cells 9 E1856 (2020)
  25. A mix-and-click method to measure amyloid-β concentration with sub-micromolar sensitivity. Xue C, Lee YK, Tran J, Chang D, Guo Z. R Soc Open Sci 4 170325 (2017)
  26. Substituent, Charge, and Size Effects on the Fluorogenic Performance of Amyloid Ligands: A Small-Library Screening Study. Donabedian PL, Evanoff M, Monge FA, Whitten DG, Chi EY. ACS Omega 2 3192-3200 (2017)
  27. Disordered Regions of Mixed Lineage Leukemia 4 (MLL4) Protein Are Capable of RNA Binding. Szabó B, Murvai N, Abukhairan R, Schád É, Kardos J, Szeder B, Buday L, Tantos Á. Int J Mol Sci 19 E3478 (2018)
  28. Myoglobin structure and function: A multiweek biochemistry laboratory project. Silverstein TP, Kirk SR, Meyer SC, Holman KL. Biochem Mol Biol Educ 43 181-188 (2015)
  29. Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. Murvai N, Kalmar L, Szabo B, Schad E, Micsonai A, Kardos J, Buday L, Han KH, Tompa P, Tantos A. Int J Mol Sci 22 6190 (2021)
  30. Recent advances in our understanding of protein conformational stability from a pharmaceutical perspective. Middaugh CR, Edwards KL. Expert Opin Investig Drugs 7 1493-1500 (1998)
  31. The "two-state folder" MerP forms partially unfolded structures that show temperature dependent hydrogen exchange. Brorsson AC, Kjellson A, Aronsson G, Sethson I, Hambraeus C, Jonsson BH. J Mol Biol 340 333-344 (2004)
  32. Deciphering the Binding Mechanism of Noscapine with Lysozyme: Biophysical and Chemoinformatic Approaches. Sood D, Kumar N, Kumar N, Singh A, Tomar V, Dass SK, Chandra R. ACS Omega 4 16233-16241 (2019)
  33. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis. Mariño L, Pauwels K, Casasnovas R, Sanchis P, Sanchis P, Vilanova B, Muñoz F, Donoso J, Adrover M. Sci Rep 5 12052 (2015)
  34. Time-dependent X-ray diffraction studies on urea/hen egg white lysozyme complexes reveal structural changes that indicate onset of denaturation. Raskar T, Khavnekar S, Hosur M. Sci Rep 6 32277 (2016)
  35. Crystal structures of mutants of Thermus thermophilus IPMDH adapted to low temperatures. Hirose R, Suzuki T, Moriyama H, Sato T, Yamagishi A, Oshima T, Tanaka N. Protein Eng 14 81-84 (2001)
  36. Elevated temperatures accelerate the formation of toxic amyloid fibrils of hen egg-white lysozyme. Feng Z, Li Y, Bai Y. Vet Med Sci 7 1938-1947 (2021)
  37. NMR investigations on residue level unfolding thermodynamics in DLC8 dimer by temperature dependent native state hydrogen exchange. Mohan PM, Chakraborty S, Hosur RV. J Biomol NMR 44 1-11 (2009)
  38. Letter Structural plasticity of the Salmonella FliS flagellar export chaperone. Sajó R, Tőke O, Hajdú I, Jankovics H, Micsonai A, Dobó J, Kardos J, Vonderviszt F. FEBS Lett 590 1103-1113 (2016)
  39. On the physics of thermal-stability changes upon mutations of a protein. Murakami S, Oshima H, Hayashi T, Kinoshita M. J Chem Phys 143 125102 (2015)
  40. Role of the minor energetic determinants of chicken egg white lysozyme (HEWL) to the stability of the HEWL.antibody scFv-10 complex. Rajpal A, Kirsch JF. Proteins 40 49-57 (2000)
  41. Analysis of the dynamics of rhizomucor miehei lipase at different temperatures. Peters GH, Toxvaerd S, Andersen KV, Svendsen A. J Biomol Struct Dyn 16 1003-1018 (1999)
  42. Structural basis for the appearance of a molten globule state in chimeric molecules derived from lysozyme and alpha-lactalbumin. Joniau M, Haezebrouck P, Noyelle K, Van Dael H. Proteins 44 1-11 (2001)
  43. Thermal resilience of ensilicated lysozyme via calorimetric and in vivo analysis. Doekhie A, Slade MN, Cliff L, Weaver L, Castaing R, Paulin J, Chen YC, Edler KJ, Koumanov F, Marchbank KJ, van den Elsen JMH, Sartbaeva A. RSC Adv 10 29789-29796 (2020)
  44. Multiple Timescale Dynamic Analysis of Functionally-Impairing Mutations in Human Ileal Bile Acid-Binding Protein. Horváth G, Balterer B, Micsonai A, Kardos J, Toke O. Int J Mol Sci 23 11346 (2022)
  45. The interaction between LC8 and LCA5 reveals a novel oligomerization function of LC8 in the ciliary-centrosome system. Szaniszló T, Fülöp M, Pajkos M, Erdős G, Kovács RÁ, Vadászi H, Kardos J, Dosztányi Z. Sci Rep 12 15623 (2022)


Related citations provided by authors (2)

  1. Structural and Thermodynamic Analysis of Compensating Mutations within the Core of Chicken Egg White Lysozyme. Wilson KP, Malcolm BA, Matthews BW J. Biol. Chem. 267 10842- (1992)
  2. Ancestral Lysozymes Reconstructed, Neutrality Tested, and Thermostability Linked to Hydrocarbon Packing. Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC Nature 344 86- (1990)