1lx6 Citations

Discovery of aminopyridine-based inhibitors of bacterial enoyl-ACP reductase (FabI).

Abstract

Bacterial enoyl-ACP reductase (FabI) catalyzes the final step in each cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. Our efforts to identify potent, selective FabI inhibitors began with screening of the GlaxoSmithKline proprietary compound collection, which identified several small-molecule inhibitors of Staphylococcus aureus FabI. Through a combination of iterative medicinal chemistry and X-ray crystal structure based design, one of these leads was developed into the novel aminopyridine derivative 9, a low micromolar inhibitor of FabI from S. aureus (IC(50) = 2.4 microM) and Haemophilus influenzae (IC(50) = 4.2 microM). Compound 9 has good in vitro antibacterial activity against several organisms, including S. aureus (MIC = 0.5 microg/mL), and is effective in vivo in a S. aureus groin abscess infection model in rats. Through FabI overexpressor and macromolecular synthesis studies, the mode of action of 9 has been confirmed to be inhibition of fatty acid biosynthesis via inhibition of FabI. Taken together, these results support FabI as a valid antibacterial target and demonstrate the potential of small-molecule FabI inhibitors for the treatment of bacterial infections.

Articles - 1lx6 mentioned but not cited (4)

  1. Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI. Kiyoshi M, Caaveiro JM, Kawai T, Tashiro S, Ide T, Asaoka Y, Hatayama K, Tsumoto K. Nat Commun 6 6866 (2015)
  2. Letter Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides. Muench SP, Stec J, Zhou Y, Afanador GA, McPhillie MJ, Hickman MR, Lee PJ, Leed SE, Auschwitz JM, Prigge ST, Rice DW, McLeod R. Bioorg Med Chem Lett 23 3551-3555 (2013)
  3. Discrimination of potent inhibitors of Toxoplasma gondii enoyl-acyl carrier protein reductase by a thermal shift assay. Afanador GA, Muench SP, McPhillie M, Fomovska A, Schön A, Zhou Y, Cheng G, Stec J, Freundlich JS, Shieh HM, Anderson JW, Jacobus DP, Fidock DA, Kozikowski AP, Fishwick CW, Rice DW, Freire E, McLeod R, Prigge ST. Biochemistry 52 9155-9166 (2013)
  4. Synthesis, Characterization, and Biological Evaluation of Novel 7-Oxo-7H-thiazolo[3,2-b]-1,2,4-triazine-2-carboxylic Acid Derivatives. Cai D, Li T, Xie Q, Yu X, Xu W, Chen Y, Jin Z, Hu C. Molecules 25 E1307 (2020)


Reviews citing this publication (18)

  1. Challenges of antibacterial discovery. Silver LL. Clin Microbiol Rev 24 71-109 (2011)
  2. Bacterial lipids: metabolism and membrane homeostasis. Parsons JB, Rock CO. Prog Lipid Res 52 249-276 (2013)
  3. Antituberculosis drugs: ten years of research. Janin YL. Bioorg Med Chem 15 2479-2513 (2007)
  4. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Parsons JB, Rock CO. Curr Opin Microbiol 14 544-549 (2011)
  5. Fatty acid biosynthesis as a target for novel antibacterials. Heath RJ, Rock CO. Curr Opin Investig Drugs 5 146-153 (2004)
  6. Genetic strategies for antibacterial drug discovery. Miesel L, Greene J, Black TA. Nat Rev Genet 4 442-456 (2003)
  7. Exogenous fatty acid metabolism in bacteria. Yao J, Rock CO. Biochimie 141 30-39 (2017)
  8. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Zhang YM, Lu YJ, Rock CO. Lipids 39 1055-1060 (2004)
  9. Novel agents for the treatment of resistant Gram-positive infections. Woodford N. Expert Opin Investig Drugs 12 117-137 (2003)
  10. 'FAS't inhibition of malaria. Surolia A, Ramya TN, Ramya V, Surolia N. Biochem J 383 401-412 (2004)
  11. Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. Wang Y, Ma S. ChemMedChem 8 1589-1608 (2013)
  12. NAD+ utilization in Pasteurellaceae: simplification of a complex pathway. Gerlach G, Reidl J. J Bacteriol 188 6719-6727 (2006)
  13. Crystallizing new approaches for antimicrobial drug discovery. Schmid MB. Biochem Pharmacol 71 1048-1056 (2006)
  14. Structural proteomics: the potential of high-throughput structure determination. Schmid MB. Trends Microbiol 10 S27-31 (2002)
  15. Structure-based design of anti-infectives. Agarwal AK, Fishwick CW. Ann N Y Acad Sci 1213 20-45 (2010)
  16. Enoyl acyl carrier protein reductase inhibitors: a patent review (2006 - 2010). Lu X, Huang K, You Q. Expert Opin Ther Pat 21 1007-1022 (2011)
  17. A Review of Fatty Acid Biosynthesis Enzyme Inhibitors as Promising Antimicrobial Drugs. Bibens L, Becker JP, Dassonville-Klimpt A, Sonnet P. Pharmaceuticals (Basel) 16 425 (2023)
  18. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 - 2015). Zitko J, Doležal M. Expert Opin Ther Pat 26 1079-1094 (2016)

Articles citing this publication (39)

  1. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. PLoS Comput Biol 5 e1000423 (2009)
  2. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Parsons JB, Frank MW, Subramanian C, Saenkham P, Rock CO. Proc Natl Acad Sci U S A 108 15378-15383 (2011)
  3. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Häbich D, Ziegelbauer K. J Biol Chem 279 26066-26073 (2004)
  4. Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Kaplan N, Albert M, Awrey D, Bardouniotis E, Berman J, Clarke T, Dorsey M, Hafkin B, Ramnauth J, Romanov V, Schmid MB, Thalakada R, Yethon J, Pauls HW. Antimicrob Agents Chemother 56 5865-5874 (2012)
  5. Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. Ji Y, Yin D, Fox B, Holmes DJ, Payne D, Rosenberg M. FEMS Microbiol Lett 231 177-184 (2004)
  6. Identification and characterization of inhibitors of bacterial enoyl-acyl carrier protein reductase. Ling LL, Xian J, Ali S, Geng B, Fan J, Mills DM, Arvanites AC, Orgueira H, Ashwell MA, Carmel G, Xiang Y, Moir DT. Antimicrob Agents Chemother 48 1541-1547 (2004)
  7. Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids. Delekta PC, Shook JC, Lydic TA, Mulks MH, Hammer ND. J Bacteriol 200 e00728-17 (2018)
  8. Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. Hevener KE, Mehboob S, Su PC, Truong K, Boci T, Deng J, Ghassemi M, Cook JL, Johnson ME. J Med Chem 55 268-279 (2012)
  9. Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, Duhme-Klair AK. Org Biomol Chem 11 3461-3468 (2013)
  10. Identification and development of novel inhibitors of Toxoplasma gondii enoyl reductase. Tipparaju SK, Muench SP, Mui EJ, Ruzheinikov SN, Lu JZ, Hutson SL, Kirisits MJ, Prigge ST, Roberts CW, Henriquez FL, Kozikowski AP, Rice DW, McLeod RL. J Med Chem 53 6287-6300 (2010)
  11. Cephalochromin, a FabI-directed antibacterial of microbial origin. Zheng CJ, Sohn MJ, Lee S, Hong YS, Kwak JH, Kim WG. Biochem Biophys Res Commun 362 1107-1112 (2007)
  12. In vitro activity (MICs and rate of kill) of AFN-1252, a novel FabI inhibitor, in the presence of serum and in combination with other antibiotics. Kaplan N, Awrey D, Bardouniotis E, Berman J, Yethon J, Pauls HW, Hafkin B. J Chemother 25 18-25 (2013)
  13. Atromentin and leucomelone, the first inhibitors specific to enoyl-ACP reductase (FabK) of Streptococcus pneumoniae. Zheng CJ, Sohn MJ, Kim WG. J Antibiot (Tokyo) 59 808-812 (2006)
  14. Design and synthesis of aryl ether inhibitors of the Bacillus anthracis enoyl-ACP reductase. Tipparaju SK, Mulhearn DC, Klein GM, Chen Y, Tapadar S, Bishop MH, Yang S, Chen J, Ghassemi M, Santarsiero BD, Cook JL, Johlfs M, Mesecar AD, Johnson ME, Kozikowski AP. ChemMedChem 3 1250-1268 (2008)
  15. Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Flamm RK, Rhomberg PR, Kaplan N, Jones RN, Farrell DJ. Antimicrob Agents Chemother 59 2583-2587 (2015)
  16. Cross-docking study on InhA inhibitors: a combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations. Stigliani JL, Bernardes-Génisson V, Bernadou J, Pratviel G. Org Biomol Chem 10 6341-6349 (2012)
  17. Substituted diphenyl ethers as a broad-spectrum platform for the development of chemotherapeutics for the treatment of tularaemia. England K, am Ende C, Lu H, Sullivan TJ, Marlenee NL, Bowen RA, Knudson SE, Knudson DL, Tonge PJ, Slayden RA. J Antimicrob Chemother 64 1052-1061 (2009)
  18. Vinaxanthone, a new FabI inhibitor from Penicillium sp. Zheng CJ, Sohn MJ, Kim WG. J Antimicrob Chemother 63 949-953 (2009)
  19. 4-Pyridone derivatives as new inhibitors of bacterial enoyl-ACP reductase FabI. Kitagawa H, Kumura K, Takahata S, Iida M, Atsumi K. Bioorg Med Chem 15 1106-1116 (2007)
  20. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Kim YJ, Sohn MJ, Kim WG. Biol Pharm Bull 35 791-795 (2012)
  21. 7.5-Å cryo-em structure of the mycobacterial fatty acid synthase. Boehringer D, Ban N, Leibundgut M. J Mol Biol 425 841-849 (2013)
  22. Structural and enzymatic analyses reveal the binding mode of a novel series of Francisella tularensis enoyl reductase (FabI) inhibitors. Mehboob S, Hevener KE, Truong K, Boci T, Santarsiero BD, Johnson ME. J Med Chem 55 5933-5941 (2012)
  23. The Francisella tularensis FabI enoyl-acyl carrier protein reductase gene is essential to bacterial viability and is expressed during infection. Kingry LC, Cummings JE, Brookman KW, Bommineni GR, Tonge PJ, Slayden RA. J Bacteriol 195 351-358 (2013)
  24. Complexomics study of two Helicobacter pylori strains of two pathological origins: potential targets for vaccine development and new insight in bacteria metabolism. Bernarde C, Lehours P, Lasserre JP, Castroviejo M, Bonneu M, Mégraud F, Ménard A. Mol Cell Proteomics 9 2796-2826 (2010)
  25. Spiro-naphthyridinone piperidines as inhibitors of S. aureus and E. coli enoyl-ACP reductase (FabI). Sampson PB, Picard C, Handerson S, McGrath TE, Domagala M, Leeson A, Romanov V, Awrey DE, Thambipillai D, Bardouniotis E, Kaplan N, Berman JM, Pauls HW. Bioorg Med Chem Lett 19 5355-5358 (2009)
  26. Aquastatin A, a new inhibitor of enoyl-acyl carrier protein reductase from Sporothrix sp. FN611. Kwon YJ, Fang Y, Xu GH, Kim WG. Biol Pharm Bull 32 2061-2064 (2009)
  27. Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development. Mistry TL, Truong L, Ghosh AK, Johnson ME, Mehboob S. ACS Infect Dis 3 54-61 (2017)
  28. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL, Arnaud P, Delaine T, Bernardes-Génisson V, Meunier B, Bernadou J. J Mol Graph Model 27 536-545 (2008)
  29. The Burkholderia pseudomallei enoyl-acyl carrier protein reductase FabI1 is essential for in vivo growth and is the target of a novel chemotherapeutic with efficacy. Cummings JE, Kingry LC, Rholl DA, Schweizer HP, Tonge PJ, Slayden RA. Antimicrob Agents Chemother 58 931-935 (2014)
  30. Phenylimidazole derivatives as new inhibitors of bacterial enoyl-ACP reductase FabK. Kitagawa H, Ozawa T, Takahata S, Iida M. Bioorg Med Chem Lett 17 4982-4986 (2007)
  31. Phenylimidazole derivatives as specific inhibitors of bacterial enoyl-acyl carrier protein reductase FabK. Ozawa T, Kitagawa H, Yamamoto Y, Takahata S, Iida M, Osaki Y, Yamada K. Bioorg Med Chem 15 7325-7336 (2007)
  32. SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. Kumar G, Banerjee T, Kapoor N, Surolia N, Surolia A. IUBMB Life 62 204-213 (2010)
  33. AFN-1252 is a potent inhibitor of enoyl-ACP reductase from Burkholderia pseudomallei--Crystal structure, mode of action, and biological activity. Rao KN, Lakshminarasimhan A, Joseph S, Lekshmi SU, Lau MS, Takhi M, Sreenivas K, Nathan S, Yusof R, Abd Rahman N, Ramachandra M, Antony T, Subramanya H. Protein Sci 24 832-840 (2015)
  34. Novel Schiff-base-derived FabH inhibitors with dioxygenated rings as antibiotic agents. Zhou Y, Du QR, Sun J, Li JR, Fang F, Li DD, Qian Y, Gong HB, Zhao J, Zhu HL. ChemMedChem 8 433-441 (2013)
  35. Pharmacophore and molecular docking guided 3D-QSAR study of bacterial enoyl-ACP reductase (FabI) Inhibitors. Lu X, Lv M, Huang K, Ding K, Ding K, You Q. Int J Mol Sci 13 6620-6638 (2012)
  36. Characterization of protein-ligand binding interactions of enoyl-ACP reductase (FabI) by native MS reveals allosteric effects of coenzymes and the inhibitor triclosan. Joyner PM, Tran DP, Zenaidee MA, Loo JA. Protein Sci 31 568-579 (2022)
  37. Synthesis and anticholinesterase activity of 2-substituted-N-alkynylindoles. Prochnow T, Maroneze A, Back DF, Jardim NS, Nogueira CW, Zeni G. Org Biomol Chem 16 7926-7934 (2018)
  38. The trans/cis photoisomerization in hydrogen bonded complexes with stability controlled by substituent effects: 3-(6-aminopyridin-3-yl)acrylate case study. Kwiatkowski A, Jędrzejewska B, Józefowicz M, Grela I, Ośmiałowski B. RSC Adv 8 23698-23710 (2018)
  39. Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure-activity relationship analyses. Kronenberger T, Asse LR, Wrenger C, Trossini GH, Honorio KM, Maltarollo VG. Future Med Chem 9 135-151 (2017)