1m54 Citations

Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme.

Biochemistry 41 10454-61 (2002)
Cited: 84 times
EuropePMC logo PMID: 12173932

Abstract

Elevated levels of homocysteine, a sulfur-containing amino acid, are correlated with increased risk for cardiovascular diseases and Alzheimers disease and with neural tube defects. The only route for the catabolic removal of homocysteine in mammals begins with the pyridoxal phosphate- (PLP-) dependent beta-replacement reaction catalyzed by cystathionine beta-synthase. The enzyme has a b-type heme with unusual spectroscopic properties but as yet unknown function. The human enzyme has a modular organization and can be cleaved into an N-terminal catalytic core, which retains both the heme and PLP-binding sites and is highly active, and a C-terminal regulatory domain, where the allosteric activator S-adenosylmethionine is presumed to bind. Studies with the isolated recombinant enzyme and in transformed human liver cells indicate that the enzyme is approximately 2-fold more active under oxidizing conditions. In addition to heme, the enzyme contains a CXXC oxidoreductase motif that could, in principle, be involved in redox sensing. In this study, we have examined the role of heme versus the vicinal thiols in modulating the redox responsiveness of the enzyme. Deletion of the heme domain leads to loss of redox sensitivity. In contrast, substitution of either cysteine with a non-redox-active amino acid does not affect the responsiveness of the enzyme to reductants. We also report the crystal structure of the catalytic core of the enzyme in which the vicinal cysteines are reduced without any discernible differences in the remainder of the protein. The structure of the catalytic core is compared to those of other members of the fold II family of PLP-dependent enzymes and provides insights into active site residues that may be important in interacting with the substrates and intermediates.

Reviews - 1m54 mentioned but not cited (1)

  1. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Pietri R, Román-Morales E, López-Garriga J. Antioxid Redox Signal 15 393-404 (2011)

Articles - 1m54 mentioned but not cited (17)

  1. SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Wang Q, Canutescu AA, Dunbrack RL. Nat Protoc 3 1832-1847 (2008)
  2. The protein common interface database (ProtCID)--a comprehensive database of interactions of homologous proteins in multiple crystal forms. Xu Q, Dunbrack RL. Nucleic Acids Res 39 D761-70 (2011)
  3. Structural basis of regulation and oligomerization of human cystathionine β-synthase, the central enzyme of transsulfuration. Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Proc Natl Acad Sci U S A 110 E3790-9 (2013)
  4. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL. Proteins 78 2058-2074 (2010)
  5. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine beta-synthase sumoylation. Agrawal N, Banerjee R. PLoS One 3 e4032 (2008)
  6. Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. Weeks CL, Singh S, Madzelan P, Banerjee R, Spiro TG. J Am Chem Soc 131 12809-12816 (2009)
  7. "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model. McCune CD, Chan SJ, Beio ML, Shen W, Chung WJ, Szczesniak LM, Chai C, Koh SQ, Wong PT, Berkowitz DB. ACS Cent Sci 2 242-252 (2016)
  8. High-Throughput parallel blind Virtual Screening using BINDSURF. Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM. BMC Bioinformatics 13 Suppl 14 S13 (2012)
  9. Allosteric communication between the pyridoxal 5'-phosphate (PLP) and heme sites in the H2S generator human cystathionine β-synthase. Yadav PK, Xie P, Banerjee R. J Biol Chem 287 37611-37620 (2012)
  10. webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Felline A, Seeber M, Fanelli F. Nucleic Acids Res 48 W94-W103 (2020)
  11. Investigations of low-frequency vibrational dynamics and ligand binding kinetics of cystathionine beta-synthase. Karunakaran V, Benabbas A, Sun Y, Zhang Z, Singh S, Banerjee R, Champion PM. J Phys Chem B 114 3294-3306 (2010)
  12. Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time. Tu Y, Kreinbring CA, Hill M, Liu C, Petsko GA, McCune CD, Berkowitz DB, Liu D, Ringe D. Biochemistry 57 3134-3145 (2018)
  13. Mouse modeling and structural analysis of the p.G307S mutation in human cystathionine β-synthase (CBS) reveal effects on CBS activity but not stability. Gupta S, Kelow S, Wang L, Andrake MD, Dunbrack RL, Kruger WD. J Biol Chem 293 13921-13931 (2018)
  14. 'Hot' macromolecular crystals. Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. Cryst Growth Des 10 580 (2009)
  15. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  16. Case study on the evolution of hetero-oligomer interfaces based on the differences in paralogous proteins. Aoto S, Yura K. Biophys Physicobiol 12 103-116 (2015)
  17. Disease-causing cystathionine β-synthase linker mutations impair allosteric regulation. Roman JV, Mascarenhas R, Ceric K, Ballou DP, Banerjee R. J Biol Chem 299 105449 (2023)


Reviews citing this publication (20)

  1. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Stipanuk MH. Annu Rev Nutr 24 539-577 (2004)
  2. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Fiorucci S, Distrutti E, Cirino G, Wallace JL. Gastroenterology 131 259-271 (2006)
  3. Chemical Biology of H2S Signaling through Persulfidation. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem Rev 118 1253-1337 (2018)
  4. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Banerjee R, Zou CG. Arch Biochem Biophys 433 144-156 (2005)
  5. PLP-dependent H(2)S biogenesis. Singh S, Banerjee R. Biochim Biophys Acta 1814 1518-1527 (2011)
  6. Hypermethioninemias of genetic and non-genetic origin: A review. Mudd SH. Am J Med Genet C Semin Med Genet 157C 3-32 (2011)
  7. Homocysteine and redox signaling. Zou CG, Banerjee R. Antioxid Redox Signal 7 547-559 (2005)
  8. The role of cystathionine beta-synthase in homocysteine metabolism. Jhee KH, Kruger WD. Antioxid Redox Signal 7 813-822 (2005)
  9. Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Singh S, Madzelan P, Banerjee R. Nat Prod Rep 24 631-639 (2007)
  10. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Banerjee R. Curr Opin Chem Biol 37 115-121 (2017)
  11. Gas biology: tiny molecules controlling metabolic systems. Kajimura M, Nakanishi T, Takenouchi T, Morikawa T, Hishiki T, Yukutake Y, Suematsu M. Respir Physiol Neurobiol 184 139-148 (2012)
  12. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Zuhra K, Augsburger F, Majtan T, Szabo C. Biomolecules 10 (2020)
  13. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Pajares MA, Pérez-Sala D. Antioxid Redox Signal 29 408-452 (2018)
  14. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. Front Cell Infect Microbiol 10 586923 (2020)
  15. Therapy Follows Diagnosis: Old and New Approaches for the Treatment of Acute Porphyrias, What We Know and What We Should Know. Petrides PE. Diagnostics (Basel) 12 1618 (2022)
  16. Structural Basis for Allostery in PLP-dependent Enzymes. Tran JU, Brown BL. Front Mol Biosci 9 884281 (2022)
  17. Structural perspectives on H2S homeostasis. Landry AP, Roman J, Banerjee R. Curr Opin Struct Biol 71 27-35 (2021)
  18. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. Cancers (Basel) 13 (2021)
  19. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Cornwell A, Badiei A. Antioxidants (Basel) 12 935 (2023)
  20. How to fix a broken protein: restoring function to mutant human cystathionine β-synthase. Kruger WD. Hum Genet (2021)

Articles citing this publication (46)

  1. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine {beta}-synthase. Koutmos M, Kabil O, Smith JL, Banerjee R. Proc Natl Acad Sci U S A 107 20958-20963 (2010)
  2. Dynamics of carbon monoxide binding to cystathionine beta-synthase. Puranik M, Weeks CL, Lahaye D, Kabil Ö, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG. J Biol Chem 281 13433-13438 (2006)
  3. Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes. Majtan T, Liu L, Carpenter JF, Kraus JP. J Biol Chem 285 15866-15873 (2010)
  4. S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Niu WN, Yadav PK, Adamec J, Banerjee R. Antioxid Redox Signal 22 350-361 (2015)
  5. Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S-adenosylmethionine. Ereño-Orbea J, Majtan T, Oyenarte I, Kraus JP, Martínez-Cruz LA. Proc Natl Acad Sci U S A 111 E3845-52 (2014)
  6. Human cystathionine β-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): complex regulation of CBS activity and stability by SAM. Pey AL, Majtan T, Sanchez-Ruiz JM, Kraus JP. Biochem J 449 109-121 (2013)
  7. Modulation of the heme electronic structure and cystathionine beta-synthase activity by second coordination sphere ligands: The role of heme ligand switching in redox regulation. Singh S, Madzelan P, Stasser J, Weeks CL, Becker D, Spiro TG, Penner-Hahn J, Banerjee R. J Inorg Biochem 103 689-697 (2009)
  8. Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP. J Biol Chem 283 34588-34595 (2008)
  9. NO* binds human cystathionine β-synthase quickly and tightly. Vicente JB, Vicente JB, Colaço HG, Mendes MI, Sarti P, Leandro P, Giuffrè A. J Biol Chem 289 8579-8587 (2014)
  10. Visualization of PLP-bound intermediates in hemeless variants of human cystathionine beta-synthase: evidence that lysine 119 is a general base. Evande R, Ojha S, Banerjee R. Arch Biochem Biophys 427 188-196 (2004)
  11. Reversible heme-dependent regulation of human cystathionine β-synthase by a flavoprotein oxidoreductase. Kabil O, Weeks CL, Carballal S, Gherasim C, Alvarez B, Spiro TG, Banerjee R. Biochemistry 50 8261-8263 (2011)
  12. Nitrite reductase activity and inhibition of H₂S biogenesis by human cystathionine ß-synthase. Gherasim C, Yadav PK, Kabil O, Niu WN, Banerjee R. PLoS One 9 e85544 (2014)
  13. Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Frank N, Kent JO, Meier M, Kraus JP. Arch Biochem Biophys 470 64-72 (2008)
  14. Inter-domain communication of human cystathionine β-synthase: structural basis of S-adenosyl-L-methionine activation. McCorvie TJ, Kopec J, Hyung SJ, Fitzpatrick F, Feng X, Termine D, Strain-Damerell C, Vollmar M, Fleming J, Janz JM, Bulawa C, Yue WW. J Biol Chem 289 36018-36030 (2014)
  15. Kinetics of reversible reductive carbonylation of heme in human cystathionine β-synthase. Carballal S, Cuevasanta E, Marmisolle I, Kabil O, Gherasim C, Ballou DP, Banerjee R, Alvarez B. Biochemistry 52 4553-4562 (2013)
  16. Thymoquinone and Nigella sativa oil protection against methionine-induced hyperhomocysteinemia in rats. El-Saleh SC, Al-Sagair OA, Al-Khalaf MI. Int J Cardiol 93 19-23 (2004)
  17. A pathogenic linked mutation in the catalytic core of human cystathionine beta-synthase disrupts allosteric regulation and allows kinetic characterization of a full-length dimer. Sen S, Banerjee R. Biochemistry 46 4110-4116 (2007)
  18. Oxidative stress in mothers who have conceived fetus with neural tube defects: the role of aminothiols and selenium. Martín I, Gibert MJ, Pintos C, Noguera A, Besalduch A, Obrador A. Clin Nutr 23 507-514 (2004)
  19. Allosteric control of human cystathionine β-synthase activity by a redox active disulfide bond. Niu W, Wang J, Qian J, Wang M, Wu P, Chen F, Yan S. J Biol Chem 293 2523-2533 (2018)
  20. Inactivation of cystathionine beta-synthase with peroxynitrite. Celano L, Gil M, Carballal S, Durán R, Denicola A, Banerjee R, Alvarez B. Arch Biochem Biophys 491 96-105 (2009)
  21. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. Chembiochem 12 2846-2855 (2011)
  22. Folding and activity of mutant cystathionine β-synthase depends on the position and nature of the purification tag: characterization of the R266K CBS mutant. Majtan T, Kraus JP. Protein Expr Purif 82 317-324 (2012)
  23. Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients. Mendes MI, Colaço HG, Smith DE, Ramos RJ, Pop A, van Dooren SJ, Tavares de Almeida I, Kluijtmans LA, Janssen MC, Rivera I, Salomons GS, Leandro P, Blom HJ. J Inherit Metab Dis 37 245-254 (2014)
  24. Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling. Hnízda A, Spiwok V, Jurga V, Kozich V, Kodícek M, Kraus JP. Biochemistry 49 10526-10534 (2010)
  25. Identification and functional analyses of CBS alleles in Spanish and Argentinian homocystinuric patients. Cozar M, Urreizti R, Vilarinho L, Grosso C, Dodelson de Kremer R, Asteggiano CG, Dalmau J, García AM, Vilaseca MA, Grinberg D, Balcells S. Hum Mutat 32 835-842 (2011)
  26. Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase. Carballal S, Cuevasanta E, Yadav PK, Gherasim C, Ballou DP, Alvarez B, Banerjee R. J Biol Chem 291 8004-8013 (2016)
  27. Cobalt cystathionine β-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Smith AT, Majtan T, Freeman KM, Su Y, Kraus JP, Burstyn JN. Inorg Chem 50 4417-4427 (2011)
  28. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Biochemistry 52 741-751 (2013)
  29. Detection of reaction intermediates during human cystathionine β-synthase-monitored turnover and H2S production. Yadav PK, Banerjee R. J Biol Chem 287 43464-43471 (2012)
  30. Alteration of homocysteine catabolism in pre-eclampsia, HELLP syndrome and placental insufficiency. Herrmann W, Hübner U, Koch I, Obeid R, Retzke U, Geisel J. Clin Chem Lab Med 42 1109-1116 (2004)
  31. Plasma homocysteine is related to folate intake but not training status. Rousseau AS, Robin S, Roussel AM, Ducros V, Margaritis I. Nutr Metab Cardiovasc Dis 15 125-133 (2005)
  32. Insights into the regulatory domain of cystathionine Beta-synthase: characterization of six variant proteins. Mendes MI, Santos AS, Smith DE, Lino PR, Colaço HG, de Almeida IT, Vicente JB, Vicente JB, Salomons GS, Rivera I, Blom HJ, Leandro P. Hum Mutat 35 1195-1202 (2014)
  33. Characterization of two pathogenic mutations in cystathionine beta-synthase: different intracellular locations for wild-type and mutant proteins. Casique L, Kabil O, Banerjee R, Martinez JC, De Lucca M. Gene 531 117-124 (2013)
  34. Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients. Bao X, Wu J, Kim S, LoRusso P, Li J. J Clin Pharmacol 59 20-34 (2019)
  35. Structural characterization and functional analysis of cystathionine β-synthase: an enzyme involved in the reverse transsulfuration pathway of Bacillus anthracis. Devi S, Abdul Rehman SA, Tarique KF, Gourinath S. FEBS J 284 3862-3880 (2017)
  36. A continuous spectrophotometric assay for human cystathionine beta-synthase. Shen W, McGath MK, Evande R, Berkowitz DB. Anal Biochem 342 103-110 (2005)
  37. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli. Belew MS, Quazi FI, Willmore WG, Aitken SM. Protein Expr Purif 64 139-145 (2009)
  38. Purification and characterization of cystathionine β-synthase bearing a cobalt protoporphyrin. Majtan T, Freeman KM, Smith AT, Burstyn JN, Kraus JP. Arch Biochem Biophys 508 25-30 (2011)
  39. The role of surface electrostatics on the stability, function and regulation of human cystathionine β-synthase, a complex multidomain and oligomeric protein. Pey AL, Majtan T, Kraus JP. Biochim Biophys Acta 1844 1453-1462 (2014)
  40. Investigation of residues Lys112, Glu136, His138, Gly247, Tyr248, and Asp249 in the active site of yeast cystathionine beta-synthase. Lodha PH, Shadnia H, Woodhouse CM, Wright JS, Aitken SM. Biochem Cell Biol 87 531-540 (2009)
  41. Cystathionine β-synthase is involved in cysteine biosynthesis and H2S generation in Toxoplasma gondii. Conter C, Fruncillo S, Fernández-Rodríguez C, Martínez-Cruz LA, Dominici P, Astegno A. Sci Rep 10 14657 (2020)
  42. Heme-Thiolate Perturbation in Cystathionine β-Synthase by Mercury Compounds. Benchoam D, Cuevasanta E, Julió Plana L, Capece L, Banerjee R, Alvarez B. ACS Omega 6 2192-2205 (2021)
  43. Modulation of cystathionine beta-synthase activity by the Arg-51 and Arg-224 mutations. Ozaki S, Inada A, Sada K. Biosci Biotechnol Biochem 72 2318-2323 (2008)
  44. Insights into Domain Organization and Regulatory Mechanism of Cystathionine Beta-Synthase from Toxoplasma gondii. Conter C, Fruncillo S, Favretto F, Fernández-Rodríguez C, Dominici P, Martínez-Cruz LA, Astegno A. Int J Mol Sci 23 8169 (2022)
  45. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Biomolecules 13 1031 (2023)
  46. Structural insight into the unique conformation of cystathionine β-synthase from Toxoplasma gondii. Fernández-Rodríguez C, Oyenarte I, Conter C, González-Recio I, Núñez-Franco R, Gil-Pitarch C, Quintana I, Jiménez-Osés G, Dominici P, Martinez-Chantar ML, Astegno A, Martínez-Cruz LA. Comput Struct Biotechnol J 19 3542-3555 (2021)


Related citations provided by authors (1)

  1. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein.. Meier M, Janosik M, Kery V, Kraus JP, Burkhard P EMBO J 20 3910-6 (2001)