1m9z Citations

The 1.1 A crystal structure of human TGF-beta type II receptor ligand binding domain.

Structure 10 913-9 (2002)
Cited: 53 times
EuropePMC logo PMID: 12121646

Abstract

Transforming growth factor beta (TGF-beta) is involved in a wide range of biological functions including development, carcinogenesis, and immune regulation. Here we report the 1.1 A resolution crystal structure of human TGF-beta type II receptor ectodomain (TBRII). The overall structure of TBRII is similar to that of activin type II receptor ectodomain (ActRII) and bone morphogenic protein receptor type IA (BRIA). It displays a three-finger toxin fold with fingers formed by the beta strand pairs beta1-beta2, beta3-beta4, and beta5-beta6. The first finger in the TBRII is significantly longer than in ActRII and BRIA and folds tightly between the second finger and the C terminus. Surface charge distributions and hydrophobic patches predict potential TBRII binding sites.

Reviews - 1m9z mentioned but not cited (1)

Articles - 1m9z mentioned but not cited (21)

  1. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  2. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. Chaudhury S, Gray JJ. J Mol Biol 381 1068-1087 (2008)
  3. Ternary complex of transforming growth factor-beta1 reveals isoform-specific ligand recognition and receptor recruitment in the superfamily. Radaev S, Zou Z, Huang T, Lafer EM, Hinck AP, Sun PD. J Biol Chem 285 14806-14814 (2010)
  4. Solution structure and phylogenetics of Prod1, a member of the three-finger protein superfamily implicated in salamander limb regeneration. Garza-Garcia A, Harris R, Esposito D, Gates PB, Driscoll PC. PLoS One 4 e7123 (2009)
  5. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling. Kim SK, Barron L, Hinck CS, Petrunak EM, Cano KE, Thangirala A, Iskra B, Brothers M, Vonberg M, Leal B, Richter B, Kodali R, Taylor AB, Du S, Barnes CO, Sulea T, Calero G, Hart PJ, Hart MJ, Demeler B, Hinck AP. J Biol Chem 292 7173-7188 (2017)
  6. Structure of AMH bound to AMHR2 provides insight into a unique signaling pair in the TGF-β family. Hart KN, Stocker WA, Nagykery NG, Walton KL, Harrison CA, Donahoe PK, Pépin D, Thompson TB. Proc Natl Acad Sci U S A 118 e2104809118 (2021)
  7. Application of Enhanced Sampling Monte Carlo Methods for High-Resolution Protein-Protein Docking in Rosetta. Zhang Z, Schindler CE, Lange OF, Zacharias M. PLoS One 10 e0125941 (2015)
  8. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. Wang S, Gu J, Larson SA, Whitten ST, Hilser VJ. J Mol Biol 381 1184-1201 (2008)
  9. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  10. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells. Chen J, Mu Q, Li X, Yin X, Yu M, Jin J, Li C, Zhou Y, Zhou J, Suo S, Lu D, Jin J. Oncotarget 8 40318-40326 (2017)
  11. ppGalNAc-T4-catalyzed O-Glycosylation of TGF-β type Ⅱ receptor regulates breast cancer cells metastasis potential. Wu Q, Zhang C, Zhang K, Chen Q, Wu S, Huang H, Huang T, Zhang N, Wang X, Li W, Liu Y, Zhang J. J Biol Chem 296 100119 (2021)
  12. Modeling and fitting protein-protein complexes to predict change of binding energy. Dourado DF, Flores SC. Sci Rep 6 25406 (2016)
  13. Calculating ensemble averaged descriptions of protein rigidity without sampling. González LC, Wang H, Livesay DR, Jacobs DJ. PLoS One 7 e29176 (2012)
  14. Specificity of broad protein interaction surfaces for proteins with multiple binding partners. Uchikoga N, Matsuzaki Y, Ohue M, Akiyama Y. Biophys Physicobiol 13 105-115 (2016)
  15. BAYESIAN ALIGNMENT OF SIMILARITY SHAPES. Mardia KV, Fallaize CJ, Barber S, Jackson RM, Theobald DL. Ann Appl Stat 7 989-1009 (2013)
  16. Evaluating the accuracy of protein design using native secondary sub-structures. Movahedi M, Zare-Mirakabad F, Arab SS. BMC Bioinformatics 17 353 (2016)
  17. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  18. The non-detergent sulfobetaine-201 acts as a pharmacological chaperone to promote folding and crystallization of the type II TGF-β receptor extracellular domain. Wangkanont K, Forest KT, Kiessling LL. Protein Expr Purif 115 19-25 (2015)
  19. research-article Design of High Affinity Binders to Convex Protein Target Sites. Yang W, Hicks DR, Ghosh A, Schwartze TA, Conventry B, Goreshnik I, Allen A, Halabiya SF, Kim CJ, Hinck CS, Lee DS, Bera AK, Li Z, Wang Y, Schlichthaerle T, Cao L, Huang B, Garrett S, Gerben SR, Rettie S, Heine P, Murray A, Edman N, Carter L, Stewart L, Almo S, Hinck AP, Baker D. bioRxiv 2024.05.01.592114 (2024)
  20. In Silico Analysis and Comparative Molecular Docking Study of FDA Approved Drugs with Transforming Growth Factor Beta Receptors in Oral Submucous Fibrosis. Rai A, Qazi S, Raza K. Indian J Otolaryngol Head Neck Surg 74 2111-2121 (2022)
  21. Virtual Screening and Network Pharmacology-Based Study to Explore the Pharmacological Mechanism of Clerodendrum Species for Anticancer Treatment. Gogoi B, Saikia SP. Evid Based Complement Alternat Med 2022 3106363 (2022)


Reviews citing this publication (10)

  1. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Shi Y, Massagué J. Cell 113 685-700 (2003)
  2. Specificity and versatility in tgf-beta signaling through Smads. Feng XH, Derynck R. Annu Rev Cell Dev Biol 21 659-693 (2005)
  3. Structural Biology and Evolution of the TGF-β Family. Hinck AP, Mueller TD, Springer TA. Cold Spring Harb Perspect Biol 8 a022103 (2016)
  4. Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction. Sebald W, Nickel J, Zhang JL, Mueller TD. Biol Chem 385 697-710 (2004)
  5. Intricacies of BMP receptor assembly. Nickel J, Sebald W, Groppe JC, Mueller TD. Cytokine Growth Factor Rev 20 367-377 (2009)
  6. Regulation of TGF-beta signalling by protein phosphatases. Liu T, Feng XH. Biochem J 430 191-198 (2010)
  7. Oligomeric interactions of TGF-β and BMP receptors. Ehrlich M, Gutman O, Knaus P, Henis YI. FEBS Lett 586 1885-1896 (2012)
  8. Design of growth factor sequestering biomaterials. Belair DG, Le NN, Murphy WL. Chem Commun (Camb) 50 15651-15668 (2014)
  9. Structural biology of the TGFβ family. Goebel EJ, Hart KN, McCoy JC, Thompson TB. Exp Biol Med (Maywood) 244 1530-1546 (2019)
  10. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Chia ZJ, Cao YN, Little PJ, Kamato D. Acta Pharmacol Sin 45 1337-1348 (2024)

Articles citing this publication (21)

  1. Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB, Schwarz PM, Wrana JL, Hinck AP. Mol Cell 29 157-168 (2008)
  2. Assembly of TbetaRI:TbetaRII:TGFbeta ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent. Zúñiga JE, Groppe JC, Cui Y, Hinck CS, Contreras-Shannon V, Pakhomova ON, Yang J, Tang Y, Mendoza V, López-Casillas F, Sun L, Hinck AP. J Mol Biol 354 1052-1068 (2005)
  3. Conserved structural determinants in three-fingered protein domains. Galat A, Gross G, Drevet P, Sato A, Ménez A. FEBS J 275 3207-3225 (2008)
  4. In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. del Re E, Babitt JL, Pirani A, Schneyer AL, Lin HY. J Biol Chem 279 22765-22772 (2004)
  5. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: implications for ligand binding. Mace PD, Cutfield JF, Cutfield SM. Biochem Biophys Res Commun 351 831-838 (2006)
  6. Retroactive, a membrane-anchored extracellular protein related to vertebrate snake neurotoxin-like proteins, is required for cuticle organization in the larva of Drosophila melanogaster. Moussian B, Söding J, Schwarz H, Nüsslein-Volhard C. Dev Dyn 233 1056-1063 (2005)
  7. Correlation of transforming growth factor beta-1 gene polymorphisms C-509T and T869C and the risk of gastric cancer in China. Li T, Cao BW, Dai Y, Cui H, Yang HL, Xu CQ. J Gastroenterol Hepatol 23 638-642 (2008)
  8. Peptide ligands that use a novel binding site to target both TGF-β receptors. Li L, Orner BP, Huang T, Hinck AP, Kiessling LL. Mol Biosyst 6 2392-2402 (2010)
  9. Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. Huang T, Hinck AP. Methods Mol Biol 1344 63-92 (2016)
  10. A Novel miRNA From Egg-Derived Exosomes of Schistosoma japonicum Promotes Liver Fibrosis in Murine Schistosomiasis. Wang Y, Gong W, Zhou H, Hu Y, Wang L, Shen Y, Yu G, Cao J. Front Immunol 13 860807 (2022)
  11. Secreted phosphoprotein 24 kD (Spp24) and Spp14 affect TGF-β induced bone formation differently. Tian H, Bi X, Li CS, Zhao KW, Brochmann EJ, Montgomery SR, Aghdasi B, Chen D, Daubs MD, Wang JC, Murray SS. PLoS One 8 e72645 (2013)
  12. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Sun Z, Ettensohn CA. Dev Biol 421 149-160 (2017)
  13. TGFbeta1 T29C polymorphism and cancer risk: a meta-analysis based on 40 case-control studies. Wei BB, Xi B, Wang R, Bai JM, Chang JK, Zhang YY, Yoneda R, Su JT, Hua LX. Cancer Genet Cytogenet 196 68-75 (2010)
  14. Solution structure of the chick TGFbeta type II receptor ligand-binding domain. Marlow MS, Brown CB, Barnett JV, Krezel AM. J Mol Biol 326 989-997 (2003)
  15. Letter Sequential resonance assignments of the extracellular domain of the human TGFbeta type II receptor in complex with monomeric TGFbeta3. Ilangovan U, Deep S, Hinck CS, Hinck AP. J Biomol NMR 29 103-104 (2004)
  16. ALK4/5-dependent TGF-β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Raffo-Romero A, Arab T, Van Camp C, Lemaire Q, Wisztorski M, Franck J, Aboulouard S, Le Marrec-Croq F, Sautiere PE, Vizioli J, Salzet M, Lefebvre C. Sci Rep 9 6896 (2019)
  17. A host-guest relationship in bone morphogenetic protein receptor-II defines specificity in ligand-receptor recognition. Yeh LC, Falcon WE, Garces A, Lee JC, Lee JC. Biochemistry 51 6968-6980 (2012)
  18. TGFβ1 Leu10Pro polymorphism contributes to the development of prostate cancer: evidence from a meta-analysis. Cai Q, Tang Y, Zhang M, Shang Z, Li G, Tian J, Jiang N, Quan C, Niu Y. Tumour Biol 35 667-673 (2014)
  19. In Vitro Chondrogenesis Induction by Short Peptides of the Carboxy-Terminal Domain of Transforming Growth Factor β1. Pitou M, Papachristou E, Bratsios D, Kefala GM, Tsagkarakou AS, Leonidas DD, Aggeli A, Papadopoulos GE, Papi RM, Choli-Papadopoulou T. Biomedicines 11 3182 (2023)
  20. Localization of recognition site between transforming growth factor-beta1 (TGF-beta1) and TGF beta receptor type II: possible implications in breast cancer. Ivanović V, Demajo M, Todorović-Raković N, Nikolić-Vukosavljević D, Nesković-Konstantinović Z, Krtolica K, Veljković V, Prljić J, Dimitrijević B. Med Hypotheses 62 727-732 (2004)
  21. Novel Sulforaphane Analog Disrupts Phosphatidylinositol-3-Kinase-Protein Kinase B Pathway and Inhibits Cancer Cell Progression via Reactive Oxygen Species-Mediated Caspase-Independent Apoptosis. Dutta A, Halder S, Bhaumik I, Debnath U, Dhara D, Misra AK, Jana K. ACS Pharmacol Transl Sci 7 195-211 (2024)