1ma2 Citations

Solution and micelle-bound structures of tachyplesin I and its active aromatic linear derivatives.

Biochemistry 41 12359-68 (2002)
Related entries: 1ma4, 1ma5, 1ma6

Cited: 49 times
EuropePMC logo PMID: 12369825

Abstract

Tachyplesin I is a 17-residue peptide isolated from the horseshoe crab, Tachypleus tridentatus. It has high antimicrobial activity and adopts a beta-hairpin conformation in solution stabilized by two cross-strand disulfide bonds. We report an NMR structural investigation of wild-type tachyplesin I and three linear derivatives (denoted TPY4, TPF4, and TPA4 in which the bridging cysteine residues are uniformly replaced with tyrosine, phenylalanine, and alanine, respectively). The three-dimensional aqueous solution structures of the wild type and the active variant TPY4 reveal very similar beta-hairpin conformations. In contrast, the inactive variant TPA4 is unstructured in solution. The arrangement of the tyrosine side chains in the TPY4 structure suggests that the beta-hairpin is stabilized by aromatic ring stacking interactions. This is supported by experiments in which the beta-hairpin structure of TPF4 is disrupted by the addition of phenol, but not by the addition of an equimolar amount of cyclohexanol. We have also determined the structures of wild-type tachyplesin I and TPY4 in the presence of dodecylphosphocholine micelles. Both peptides undergo significant conformational rearrangement upon micelle association. Analysis of the micelle-associated peptide structures shows an increased level of exposure of specific hydrophobic side chains and an increased hydrophobic integy moment. Comparison of the structures in micelle and aqueous solution for both wild-type tachyplesin I and TPY4 reveals two requirements for high antimicrobial activity: a beta-hairpin fold in solution and the ability to rearrange critical side chain residues upon membrane association.

Articles - 1ma2 mentioned but not cited (2)

  1. Multidimensional signatures in antimicrobial peptides. Yount NY, Yeaman MR. Proc Natl Acad Sci U S A 101 7363-7368 (2004)
  2. Interfacial orientation and secondary structure change in tachyplesin I: molecular dynamics and sum frequency generation spectroscopy studies. Boughton AP, Nguyen K, Andricioaei I, Chen Z. Langmuir 27 14343-14351 (2011)


Reviews citing this publication (12)

  1. The relationship between peptide structure and antibacterial activity. Powers JP, Hancock RE. Peptides 24 1681-1691 (2003)
  2. Antimicrobial peptides from marine invertebrates. Tincu JA, Taylor SW. Antimicrob Agents Chemother 48 3645-3654 (2004)
  3. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. Otero-González AJ, Magalhães BS, Garcia-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, Franco OL. FASEB J 24 1320-1334 (2010)
  4. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Front Chem 6 204 (2018)
  5. Antimicrobial peptides (AMPs): peptide structure and mode of action. Park Y, Hahm KS. J Biochem Mol Biol 38 507-516 (2005)
  6. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Koller D, Lohner K. Biochim Biophys Acta 1838 2250-2259 (2014)
  7. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Fu L, Wang Z, Yan EC. Int J Mol Sci 12 9404-9425 (2011)
  8. Antimicrobial Peptides: An Update on Classifications and Databases. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Int J Mol Sci 22 (2021)
  9. Cytotoxic and antitumor peptides as novel chemotherapeutics. Luan X, Wu Y, Shen YW, Zhang H, Zhou YD, Chen HZ, Nagle DG, Zhang WD. Nat Prod Rep 38 7-17 (2021)
  10. Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis. Solov'eva TF, Bakholdina SI, Naberezhnykh GA. Mar Drugs 21 581 (2023)
  11. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Mar Drugs 21 503 (2023)
  12. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Molecules 26 (2021)

Articles citing this publication (35)

  1. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Wang J, Chen X, Clarke ML, Chen Z. Proc Natl Acad Sci U S A 102 4978-4983 (2005)
  2. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, An FY, Shelburne CE. Biochemistry 45 6529-6540 (2006)
  3. Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Hong M, Su Y. Protein Sci 20 641-655 (2011)
  4. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. Japelj B, Pristovsek P, Majerle A, Jerala R. J Biol Chem 280 16955-16961 (2005)
  5. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Powers JP, Tan A, Ramamoorthy A, Hancock RE. Biochemistry 44 15504-15513 (2005)
  6. Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. Robinson JA, Shankaramma SC, Jetter P, Kienzl U, Schwendener RA, Vrijbloed JW, Obrecht D. Bioorg Med Chem 13 2055-2064 (2005)
  7. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, Demura M, Kawabata S, Kawano K. Biochim Biophys Acta 1844 527-534 (2014)
  8. Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Lee JU, Kang DI, Zhu WL, Shin SY, Hahm KS, Kim Y. Biopolymers 88 208-216 (2007)
  9. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Cui HK, Guo Y, He Y, Wang FL, Chang HN, Wang YJ, Wu FM, Tian CL, Liu L. Angew Chem Int Ed Engl 52 9558-9562 (2013)
  10. The structure of the Cys-rich terminal domain of Hydra minicollagen, which is involved in disulfide networks of the nematocyst wall. Pokidysheva E, Milbradt AG, Meier S, Renner C, Häussinger D, Bächinger HP, Moroder L, Grzesiek S, Holstein TW, Ozbek S, Engel J. J Biol Chem 279 30395-30401 (2004)
  11. Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes. Andrä J, Hammer MU, Grötzinger J, Jakovkin I, Lindner B, Vollmer E, Fedders H, Leippe M, Gutsmann T. Biol Chem 390 337-349 (2009)
  12. Molecular dynamics simulation of antimicrobial peptide arenicin-2: beta-hairpin stabilization by noncovalent interactions. Stavrakoudis A, Tsoulos IG, Shenkarev ZO, Ovchinnikova TV. Biopolymers 92 143-155 (2009)
  13. Catalysis of protein disulfide bond isomerization in a homogeneous substrate. Kersteen EA, Barrows SR, Raines RT. Biochemistry 44 12168-12178 (2005)
  14. Antimicrobial and conformational studies of the active and inactive analogues of the protegrin-1 peptide. Rodziewicz-Motowidło S, Mickiewicz B, Greber K, Sikorska E, Szultka L, Kamysz E, Kamysz W. FEBS J 277 1010-1022 (2010)
  15. Structural similarity between defense peptide from wheat and scorpion neurotoxin permits rational functional design. Berkut AA, Usmanova DR, Peigneur S, Oparin PB, Mineev KS, Odintsova TI, Tytgat J, Arseniev AS, Grishin EV, Vassilevski AA. J Biol Chem 289 14331-14340 (2014)
  16. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Panteleev PV, Ovchinnikova TV. Biotechnol Appl Biochem 64 35-42 (2017)
  17. Structural malleability of plasticins: preorganized conformations in solution and relevance for antimicrobial activity. Bruston F, Lacombe C, Zimmermann K, Piesse C, Nicolas P, El Amri C. Biopolymers 86 42-56 (2007)
  18. The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif. Fujitani N, Kouno T, Nakahara T, Takaya K, Osaki T, Kawabata S, Mizuguchi M, Aizawa T, Demura M, Nishimura S, Kawano K. J Pept Sci 13 269-279 (2007)
  19. Transmembrane Pore Structures of β-Hairpin Antimicrobial Peptides by All-Atom Simulations. Lipkin R, Pino-Angeles A, Lazaridis T. J Phys Chem B 121 9126-9140 (2017)
  20. Antibacterial activity of linear peptides spanning the carboxy-terminal beta-sheet domain of arthropod defensins. Varkey J, Singh S, Nagaraj R. Peptides 27 2614-2623 (2006)
  21. Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs. Lipkin RB, Lazaridis T. J Membr Biol 248 469-486 (2015)
  22. Outer Membranes of Polymyxin-Resistant Acinetobacter baumannii with Phosphoethanolamine-Modified Lipid A and Lipopolysaccharide Loss Display Different Atomic-Scale Interactions with Polymyxins. Jiang X, Yang K, Han ML, Yuan B, Li J, Gong B, Velkov T, Schreiber F, Wang L, Li J. ACS Infect Dis 6 2698-2708 (2020)
  23. Synthesis of a biological active β-hairpin peptide by addition of two structural motifs. Fischer S, Lamping M, Gold M, Röttger Y, Brödje D, Dodel R, Frantz R, Mraheil MA, Chakraborty T, Geyer A. Bioorg Med Chem 25 603-608 (2017)
  24. Fine-tuning the π-π aromatic interactions in peptides: somatostatin analogues containing mesityl alanine. Martín-Gago P, Gomez-Caminals M, Ramón R, Verdaguer X, Martin-Malpartida P, Aragón E, Fernández-Carneado J, Ponsati B, López-Ruiz P, Cortes MA, Colás B, Macias MJ, Riera A. Angew Chem Int Ed Engl 51 1820-1825 (2012)
  25. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides. Wang X, Yang P, Mondiot F, Li Y, Miller DS, Chen Z, Abbott NL. Chem Commun (Camb) 51 16844-16847 (2015)
  26. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Troeira Henriques S. Int J Mol Sci 20 (2019)
  27. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R, Waring AJ, Hong M. Chembiochem 8 1877-1884 (2007)
  28. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. Lipsky A, Joshi JR, Carmi N, Yedidia I. J Biotechnol 238 22-29 (2016)
  29. Hairpin structure stability plays a role in the activity of two antimicrobial peptides. Sivanesam K, Kier BL, Whedon SD, Chatterjee C, Andersen NH. FEBS Lett 590 4480-4488 (2016)
  30. Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds. Kozic M, Fox SJ, Thomas JM, Verma CS, Rigden DJ. Proteins 86 548-565 (2018)
  31. In Silico Structural Evaluation of Short Cationic Antimicrobial Peptides. Passarini I, Rossiter S, Malkinson J, Zloh M. Pharmaceutics 10 (2018)
  32. Structural effects of tachyplesin I and its linear derivative on their aggregation and mobility in lipid bilayers. Han E, Lee H. J Mol Graph Model 59 123-128 (2015)
  33. A sulfur-free peptide mimic of surfactant protein B (B-YL) exhibits high in vitro and in vivo surface activities. Walther FJ, Gupta M, Gordon LM, Waring AJ. Gates Open Res 2 13 (2018)
  34. A Novel β-Hairpin Peptide Z-d14CFR Enhances Multidrug-Resistant Bacterial Clearance in a Murine Model of Mastitis. Wang X, Li S, Du M, Liu N, Shan Q, Zou Y, Wang J, Zhu Y. Int J Mol Sci 23 4617 (2022)
  35. Influences of disulfide connectivity on structure and antimicrobial activity of tachyplesin I. Shi J, So LY, Chen F, Liang J, Chow HY, Wong KY, Wan S, Jiang T, Yu R, Yu R. J Pept Sci 24 e3087 (2018)