1mmd Citations

X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-.

Biochemistry 34 8960-72 (1995)
Cited: 378 times
EuropePMC logo PMID: 7619795

Abstract

The three-dimensional structures of the truncated myosin head from Dictyostelium discoideum myosin II complexed with beryllium and aluminum fluoride and magnesium ADP are reported at 2.0 and 2.6 A resolution, respectively. Crystals of the beryllium fluoride-MgADP complex belong to space group P2(1)2(1)2 with unit cell parameters of a = 105.3 A, b = 182.6 A, and c = 54.7 A, whereas the crystals of the aluminum fluoride complex belong to the orthorhombic space group C222(1) with unit cell dimensions of a = 87.9 A, b = 149.0 A, and c = 153.8 A. Chemical modification was not necessary to obtain these crystals. These structures reveal the location of the nucleotide complexes and define the amino acid residues that form the active site. The tertiary structure of the protein complexed with MgADP.BeFx is essentially identical to that observed previously in the three-dimensional model of chicken skeletal muscle myosin subfragment-1 in which no nucleotide was present. By contrast, the complex with MgADP.AlF4- exhibits significant domain movements. The structures suggest that the MgADP.BeFx complex mimics the ATP bound state and the MgADP.AlF4- complex is an analog of the transition state for hydrolysis. The domain movements observed in the MgADP.AlF4- complex indicate that myosin undergoes a conformational change during hydrolysis that is not associated with the nucleotide binding pocket but rather occurs in the COOH-terminal segment of the myosin motor domain.

Reviews - 1mmd mentioned but not cited (1)

  1. Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes. Jin Y, Molt RW, Blackburn GM. Top Curr Chem (Cham) 375 36 (2017)

Articles - 1mmd mentioned but not cited (24)

  1. Three myosin V structures delineate essential features of chemo-mechanical transduction. Coureux PD, Sweeney HL, Houdusse A. EMBO J 23 4527-4537 (2004)
  2. Structural mechanism of the recovery stroke in the myosin molecular motor. Fischer S, Windshügel B, Horak D, Holmes KC, Smith JC. Proc Natl Acad Sci U S A 102 6873-6878 (2005)
  3. Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin. Zheng W, Brooks BR. Biophys J 89 167-178 (2005)
  4. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. EMBO J 31 214-227 (2012)
  5. Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. Song YH, Marx A, Müller J, Woehlke G, Schliwa M, Krebs A, Hoenger A, Mandelkow E. EMBO J 20 6213-6225 (2001)
  6. Structure of a genetically engineered molecular motor. Kliche W, Fujita-Becker S, Kollmar M, Manstein DJ, Kull FJ. EMBO J 20 40-46 (2001)
  7. Atomically detailed simulation of the recovery stroke in myosin by Milestoning. Elber R, West A. Proc Natl Acad Sci U S A 107 5001-5005 (2010)
  8. Predicting allosteric communication in myosin via a pathway of conserved residues. Tang S, Liao JC, Dunn AR, Altman RB, Spudich JA, Schmidt JP. J Mol Biol 373 1361-1373 (2007)
  9. Pi release from myosin: a simulation analysis of possible pathways. Cecchini M, Alexeev Y, Karplus M. Structure 18 458-470 (2010)
  10. Molecular dynamics analysis of structural factors influencing back door pi release in myosin. Lawson JD, Pate E, Rayment I, Yount RG. Biophys J 86 3794-3803 (2004)
  11. Myosin isoforms show unique conformations in the actin-bound state. Volkmann N, Ouyang G, Trybus KM, DeRosier DJ, Lowey S, Hanein D. Proc Natl Acad Sci U S A 100 3227-3232 (2003)
  12. Muscle and nonmuscle myosins probed by a spin label at equivalent sites in the force-generating domain. Agafonov RV, Nesmelov YE, Titus MA, Thomas DD. Proc Natl Acad Sci U S A 105 13397-13402 (2008)
  13. Drosophila melanogaster myosin-18 represents a highly divergent motor with actin tethering properties. Guzik-Lendrum S, Nagy A, Takagi Y, Houdusse A, Sellers JR. J Biol Chem 286 21755-21766 (2011)
  14. Myosin cleft closure determines the energetics of the actomyosin interaction. Takács B, O'Neall-Hennessey E, Hetényi C, Kardos J, Szent-Györgyi AG, Kovács M. FASEB J 25 111-121 (2011)
  15. Experimental investigation of the seesaw mechanism of the relay region that moves the myosin lever arm. Kintses B, Yang Z, Málnási-Csizmadia A. J Biol Chem 283 34121-34128 (2008)
  16. Structural basis for the allosteric interference of myosin function by reactive thiol region mutations G680A and G680V. Preller M, Bauer S, Adamek N, Fujita-Becker S, Fedorov R, Geeves MA, Manstein DJ. J Biol Chem 286 35051-35060 (2011)
  17. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. Nagy NT, Sakamoto T, Takács B, Gyimesi M, Hazai E, Bikádi Z, Sellers JR, Kovács M. FASEB J 24 4480-4490 (2010)
  18. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin. Nowakowski SG, Regnier M, Daggett V. Protein Sci 26 749-762 (2017)
  19. Structural model of weak binding actomyosin in the prepowerstroke state. Várkuti BH, Yang Z, Malnasi-Csizmadia A. J Biol Chem 290 1679-1688 (2015)
  20. X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila melanogaster Embryonic Muscle Myosin Define Domains Responsible for Isoform-Specific Properties. Caldwell JT, Mermelstein DJ, Walker RC, Bernstein SI, Huxford T. J Mol Biol 432 427-447 (2020)
  21. EPR spectra and molecular dynamics agree that the nucleotide pocket of myosin V is closed and that it opens on binding actin. Purcell TJ, Naber N, Sutton S, Cooke R, Pate E. J Mol Biol 411 16-26 (2011)
  22. Analysis of the interaction of the nucleotide base with myosin and the effect on substrate efficacy. Hyatt D, Cooke R, Pate E. Biophys J 97 1952-1960 (2009)
  23. Binding Networks Identify Targetable Protein Pockets for Mechanism-Based Drug Design. Bálint M, Zsidó BZ, van der Spoel D, Hetényi C. Int J Mol Sci 23 7313 (2022)
  24. Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function. Woodward M, Ostrander E, Jeong SP, Liu X, Scott B, Unger M, Chen J, Venkataraman D, Debold EP. Biophys J 119 567-580 (2020)


Reviews citing this publication (62)

  1. P-glycoprotein: from genomics to mechanism. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. Oncogene 22 7468-7485 (2003)
  2. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Deeley RG, Westlake C, Cole SP. Physiol Rev 86 849-899 (2006)
  3. Structural mechanism of muscle contraction. Geeves MA, Holmes KC. Annu Rev Biochem 68 687-728 (1999)
  4. Structural and functional insights into the Myosin motor mechanism. Sweeney HL, Houdusse A. Annu Rev Biophys 39 539-557 (2010)
  5. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. Vale RD. J Cell Biol 135 291-302 (1996)
  6. The swinging lever-arm hypothesis of muscle contraction. Holmes KC. Curr Biol 7 R112-8 (1997)
  7. The myosin power stroke. Tyska MJ, Warshaw DM. Cell Motil Cytoskeleton 51 1-15 (2002)
  8. Myosin VI: cellular functions and motor properties. Buss F, Spudich G, Kendrick-Jones J. Annu Rev Cell Dev Biol 20 649-676 (2004)
  9. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Maegley KA, Admiraal SJ, Herschlag D. Proc Natl Acad Sci U S A 93 8160-8166 (1996)
  10. Myosin motors: missing structures and hidden springs. Houdusse A, Sweeney HL. Curr Opin Struct Biol 11 182-194 (2001)
  11. The structural basis of muscle contraction. Holmes KC, Geeves MA. Philos Trans R Soc Lond B Biol Sci 355 419-431 (2000)
  12. Signaling mechanistics: aluminum fluoride for molecule of the year. Wittinghofer A. Curr Biol 7 R682-5 (1997)
  13. The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. Davies DR, Hol WG. FEBS Lett 577 315-321 (2004)
  14. Conformational changes during kinesin motility. Schief WR, Howard J. Curr Opin Cell Biol 13 19-28 (2001)
  15. Coupling between phosphate release and force generation in muscle actomyosin. Takagi Y, Shuman H, Goldman YE. Philos Trans R Soc Lond B Biol Sci 359 1913-1920 (2004)
  16. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. Sack S, Kull FJ, Mandelkow E. Eur J Biochem 262 1-11 (1999)
  17. Unconventional myosins and the genetics of hearing loss. Friedman TB, Sellers JR, Avraham KB. Am J Med Genet 89 147-157 (1999)
  18. Force generation by kinesin and myosin cytoskeletal motor proteins. Kull FJ, Endow SA. J Cell Sci 126 9-19 (2013)
  19. Myosin at work: motor adaptations for a variety of cellular functions. O'Connell CB, Tyska MJ, Mooseker MS. Biochim Biophys Acta 1773 615-630 (2007)
  20. Fifty ways to love your lever: myosin motors. Block SM. Cell 87 151-157 (1996)
  21. The motor mechanism of myosin V: insights for muscle contraction. Sweeney HL, Houdusse A. Philos Trans R Soc Lond B Biol Sci 359 1829-1841 (2004)
  22. Muscle proteins--their actions and interactions. Holmes KC. Curr Opin Struct Biol 6 781-789 (1996)
  23. Single molecule analysis of the actomyosin motor. Yanagida T, Kitamura K, Tanaka H, Hikikoshi Iwane A, Esaki S. Curr Opin Cell Biol 12 20-25 (2000)
  24. Site-directed spectroscopic probes of actomyosin structural dynamics. Thomas DD, Kast D, Korman VL. Annu Rev Biophys 38 347-369 (2009)
  25. A myosin family reunion. Sellers JR, Goodson HV, Wang F. J Muscle Res Cell Motil 17 7-22 (1996)
  26. Review: The ATPase mechanism of myosin and actomyosin. Geeves MA. Biopolymers 105 483-491 (2016)
  27. Emerging complex pathways of the actomyosin powerstroke. Málnási-Csizmadia A, Kovács M. Trends Biochem Sci 35 684-690 (2010)
  28. Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Zeng W, Conibear PB, Dickens JL, Cowie RA, Wakelin S, Málnási-Csizmadia A, Bagshaw CR. Philos Trans R Soc Lond B Biol Sci 359 1843-1855 (2004)
  29. The sliding filament model: 1972-2004. Cooke R. J Gen Physiol 123 643-656 (2004)
  30. Poorly understood aspects of striated muscle contraction. Månsson A, Rassier D, Tsiavaliaris G. Biomed Res Int 2015 245154 (2015)
  31. Crossbridge and filament compliance in muscle: implications for tension generation and lever arm swing. Offer G, Ranatunga KW. J Muscle Res Cell Motil 31 245-265 (2010)
  32. Structural studies on myosin II: communication between distant protein domains. Gulick AM, Rayment I. Bioessays 19 561-569 (1997)
  33. Actomyosin: law and order in motility. Volkmann N, Hanein D. Curr Opin Cell Biol 12 26-34 (2000)
  34. Metal Fluorides as Analogues for Studies on Phosphoryl Transfer Enzymes. Jin Y, Richards NG, Waltho JP, Blackburn GM. Angew Chem Int Ed Engl 56 4110-4128 (2017)
  35. Myosin I and adaptation of mechanical transduction by the inner ear. Gillespie PG. Philos Trans R Soc Lond B Biol Sci 359 1945-1951 (2004)
  36. The mechanics of calcium transport. Young HS, Stokes DL. J Membr Biol 198 55-63 (2004)
  37. Structure-mutation analysis of the ATPase site of Dictyostelium discoideum myosin II. Sasaki N, Sutoh K. Adv Biophys 35 1-24 (1998)
  38. Structure and dynamics of molecular motors. Amos LA, Cross RA. Curr Opin Struct Biol 7 239-246 (1997)
  39. To understand muscle you must take it apart. Batters C, Veigel C, Homsher E, Sellers JR. Front Physiol 5 90 (2014)
  40. ATP synthases in the year 2000: defining the different levels of mechanism and getting a grip on each. Pedersen PL, Ko YH, Hong S. J Bioenerg Biomembr 32 423-432 (2000)
  41. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Kraft T, Montag J. Pflugers Arch 471 719-733 (2019)
  42. Lever arms and necks: a common mechanistic theme across the myosin superfamily. Warshaw DM. J Muscle Res Cell Motil 25 467-474 (2004)
  43. Molecular mechanism of actin-myosin motor in muscle. Koubassova NA, Tsaturyan AK. Biochemistry (Mosc) 76 1484-1506 (2011)
  44. Towards an atomic model of the thick filaments of muscle. Padrón R, Alamo L, Murgich J, Craig R. J Mol Biol 275 35-41 (1998)
  45. Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation. Sasaki N, Ohkura R, Sutoh K. J Muscle Res Cell Motil 23 697-702 (2002)
  46. Fifty years of contractility research post sliding filament hypothesis. Sellers JR. J Muscle Res Cell Motil 25 475-482 (2004)
  47. Molecular engineering of myosin. Manstein DJ. Philos Trans R Soc Lond B Biol Sci 359 1907-1912 (2004)
  48. Actomyosin systems of biological motility. Levitsky DI. Biochemistry (Mosc) 69 1177-1189 (2004)
  49. Switch movements and the myosin crossbridge stroke. Málnási-Csizmadia A, Dickens JL, Zeng W, Bagshaw CR. J Muscle Res Cell Motil 26 31-37 (2005)
  50. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes. Wakelin S, Conibear PB, Woolley RJ, Floyd DN, Bagshaw CR, Kovács M, Málnási-Csizmadia A. J Muscle Res Cell Motil 23 673-683 (2002)
  51. How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1. Qin J, Zhang H, Geng Y, Ji Q. Int J Mol Sci 21 E6977 (2020)
  52. Molecular machines directly observed by high-speed atomic force microscopy. Ando T. FEBS Lett 587 997-1007 (2013)
  53. Molecular motors: single-molecule mechanics. Simmons R. Curr Biol 6 392-394 (1996)
  54. Insights into Actin-Myosin Interactions within Muscle from 3D Electron Microscopy. Taylor KA, Rahmani H, Edwards RJ, Reedy MK. Int J Mol Sci 20 E1703 (2019)
  55. Myosin structure: does the tail wag the dog? Cooke R. Curr Biol 9 R773-5 (1999)
  56. Recent insights into the relative timing of myosin's powerstroke and release of phosphate. Debold EP. Cytoskeleton (Hoboken) 78 448-458 (2021)
  57. F1F0-ATP synthase: development of direct optical probes of the catalytic mechanism. Weber J, Senior AE. Biochim Biophys Acta 1275 101-104 (1996)
  58. Kinesin and NCD, two structural cousins of myosin. Sellers JR. J Muscle Res Cell Motil 17 173-175 (1996)
  59. Myosin and kinesin: mother and child reunited. Hackney DD. Chem Biol 3 525-528 (1996)
  60. Quantum chemical studies of the myosin ATPase mechanism. Kagawa H. J Nippon Med Sch 74 4-10 (2007)
  61. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. Elkrief D, Matusovsky O, Cheng YS, Rassier DE. J Muscle Res Cell Motil 44 225-254 (2023)
  62. Structural changes during ATP hydrolysis activity of the ATP synthase from Escherichia coli as revealed by fluorescent probes. Turina P. J Bioenerg Biomembr 32 373-381 (2000)

Articles citing this publication (291)

  1. Mechanism of blebbistatin inhibition of myosin II. Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR. J Biol Chem 279 35557-35563 (2004)
  2. A structural change in the kinesin motor protein that drives motility. Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD. Nature 402 778-784 (1999)
  3. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Dominguez R, Freyzon Y, Trybus KM, Cohen C. Cell 94 559-571 (1998)
  4. Myosin VI is an actin-based motor that moves backwards. Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL. Nature 401 505-508 (1999)
  5. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD. Nature 380 550-555 (1996)
  6. Structure of the AAA ATPase p97. Zhang X, Shaw A, Bates PA, Newman RH, Gowen B, Orlova E, Gorman MA, Kondo H, Dokurno P, Lally J, Leonard G, Meyer H, van Heel M, Freemont PS. Mol Cell 6 1473-1484 (2000)
  7. Microtubule interaction site of the kinesin motor. Woehlke G, Ruby AK, Hart CL, Ly B, Hom-Booher N, Vale RD. Cell 90 207-216 (1997)
  8. Structure of ADP x AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC. Nature 387 370-376 (1997)
  9. A 35-A movement of smooth muscle myosin on ADP release. Whittaker M, Wilson-Kubalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL. Nature 378 748-751 (1995)
  10. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Kitamura K, Tokunaga M, Iwane AH, Yanagida T. Nature 397 129-134 (1999)
  11. Crystal structure of the motor domain of the kinesin-related motor ncd. Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ. Nature 380 555-559 (1996)
  12. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. Cell 119 47-60 (2004)
  13. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T. Cell 92 161-171 (1998)
  14. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG. Cell 108 371-381 (2002)
  15. A structural state of the myosin V motor without bound nucleotide. Coureux PD, Wells AL, Ménétrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A. Nature 425 419-423 (2003)
  16. Three conformational states of scallop myosin S1. Houdusse A, Szent-Gyorgyi AG, Cohen C. Proc Natl Acad Sci U S A 97 11238-11243 (2000)
  17. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Houdusse A, Kalabokis VN, Himmel D, Szent-Györgyi AG, Cohen C. Cell 97 459-470 (1999)
  18. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Liu F, Putnam A, Jankowsky E. Proc Natl Acad Sci U S A 105 20209-20214 (2008)
  19. Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation. Houdusse A, Cohen C. Structure 4 21-32 (1996)
  20. Conservation within the myosin motor domain: implications for structure and function. Cope MJ, Whisstock J, Rayment I, Kendrick-Jones J. Structure 4 969-987 (1996)
  21. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Smith CA, Rayment I. Biophys J 70 1590-1602 (1996)
  22. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Ghosh A, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C. Nature 440 101-104 (2006)
  23. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. Cell 113 369-381 (2003)
  24. A structural model for actin-induced nucleotide release in myosin. Reubold TF, Eschenburg S, Becker A, Kull FJ, Manstein DJ. Nat Struct Biol 10 826-830 (2003)
  25. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. Kagawa R, Montgomery MG, Braig K, Leslie AG, Walker JE. EMBO J 23 2734-2744 (2004)
  26. A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. Volkmann N. J Struct Biol 138 123-129 (2002)
  27. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Merino F, Pospich S, Funk J, Wagner T, Küllmer F, Arndt HD, Bieling P, Raunser S. Nat Struct Mol Biol 25 528-537 (2018)
  28. Structure of bovine mitochondrial F(1)-ATPase inhibited by Mg(2+) ADP and aluminium fluoride. Braig K, Menz RI, Montgomery MG, Leslie AG, Walker JE. Structure 8 567-573 (2000)
  29. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Suzuki Y, Yasunaga T, Ohkura R, Wakabayashi T, Sutoh K. Nature 396 380-383 (1998)
  30. ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. Parke CL, Wojcik EJ, Kim S, Worthylake DK. J Biol Chem 285 5859-5867 (2010)
  31. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA. Cell 102 683-694 (2000)
  32. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. Kull FJ, Vale RD, Fletterick RJ. J Muscle Res Cell Motil 19 877-886 (1998)
  33. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB. EMBO J 22 4877-4887 (2003)
  34. The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. Cuda G, Fananapazir L, Epstein ND, Sellers JR. J Muscle Res Cell Motil 18 275-283 (1997)
  35. The prepower stroke conformation of myosin V. Burgess S, Walker M, Wang F, Sellers JR, White HD, Knight PJ, Trinick J. J Cell Biol 159 983-991 (2002)
  36. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Györgyi AG, Cohen C. Proc Natl Acad Sci U S A 99 12645-12650 (2002)
  37. Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Guydosh NR, Block SM. Proc Natl Acad Sci U S A 103 8054-8059 (2006)
  38. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Admiraal SJ, Herschlag D. Chem Biol 2 729-739 (1995)
  39. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Shaner L, Sousa R, Morano KA. Biochemistry 45 15075-15084 (2006)
  40. Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV. Appleby TC, Anderson R, Fedorova O, Pyle AM, Wang R, Liu X, Brendza KM, Somoza JR. J Mol Biol 405 1139-1153 (2011)
  41. A structural pathway for activation of the kinesin motor ATPase. Yun M, Zhang X, Park CG, Park HW, Endow SA. EMBO J 20 2611-2618 (2001)
  42. AlF3 mimics the transition state of protein phosphorylation in the crystal structure of nucleoside diphosphate kinase and MgADP. Xu YW, Moréra S, Janin J, Cherfils J. Proc Natl Acad Sci U S A 94 3579-3583 (1997)
  43. The structural basis of myosin V processive movement as revealed by electron cryomicroscopy. Volkmann N, Liu H, Hazelwood L, Krementsova EB, Lowey S, Trybus KM, Hanein D. Mol Cell 19 595-605 (2005)
  44. Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head. Gourinath S, Himmel DM, Brown JH, Reshetnikova L, Szent-Györgyi AG, Cohen C. Structure 11 1621-1627 (2003)
  45. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. Hoenger A, Sack S, Thormählen M, Marx A, Müller J, Gross H, Mandelkow E. J Cell Biol 141 419-430 (1998)
  46. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. Mickolajczyk KJ, Deffenbaugh NC, Arroyo JO, Andrecka J, Kukura P, Hancock WO. Proc Natl Acad Sci U S A 112 E7186-93 (2015)
  47. Crystal structure of the motor domain of a class-I myosin. Kollmar M, Dürrwang U, Kliche W, Manstein DJ, Kull FJ. EMBO J 21 2517-2525 (2002)
  48. ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Regnier M, Lee DM, Homsher E. Biophys J 74 3044-3058 (1998)
  49. Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. Sata M, Ikebe M. J Clin Invest 98 2866-2873 (1996)
  50. Kinesin processivity is gated by phosphate release. Milic B, Andreasson JO, Hancock WO, Block SM. Proc Natl Acad Sci U S A 111 14136-14140 (2014)
  51. MgF(3)(-) as a transition state analog of phosphoryl transfer. Graham DL, Lowe PN, Grime GW, Marsh M, Rittinger K, Smerdon SJ, Gamblin SJ, Eccleston JF. Chem Biol 9 375-381 (2002)
  52. Organization of cytoplasmic domains of sarcoplasmic reticulum Ca(2+)-ATPase in E(1)P and E(1)ATP states: a limited proteolysis study. Danko S, Yamasaki K, Daiho T, Suzuki H, Toyoshima C. FEBS Lett 505 129-135 (2001)
  53. Orientation dependence of displacements by a single one-headed myosin relative to the actin filament. Tanaka H, Ishijima A, Honda M, Saito K, Yanagida T. Biophys J 75 1886-1894 (1998)
  54. Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase: changes in catalytic and transport sites during phosphoenzyme hydrolysis. Danko S, Yamasaki K, Daiho T, Suzuki H. J Biol Chem 279 14991-14998 (2004)
  55. ATP binding modulates the nucleic acid affinity of hepatitis C virus helicase. Levin MK, Gurjar MM, Patel SS. J Biol Chem 278 23311-23316 (2003)
  56. MgATP binding and hydrolysis determinants of NtrC, a bacterial enhancer-binding protein. Rombel I, Peters-Wendisch P, Mesecar A, Thorgeirsson T, Shin YK, Kustu S. J Bacteriol 181 4628-4638 (1999)
  57. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. Furch M, Fujita-Becker S, Geeves MA, Holmes KC, Manstein DJ. J Mol Biol 290 797-809 (1999)
  58. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Murphy CT, Rock RS, Spudich JA. Nat Cell Biol 3 311-315 (2001)
  59. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase. Li G, Cui Q. Biophys J 86 743-763 (2004)
  60. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Datta S, Prabu MM, Vaze MB, Ganesh N, Chandra NR, Muniyappa K, Vijayan M. Nucleic Acids Res 28 4964-4973 (2000)
  61. Myosin cleft movement and its coupling to actomyosin dissociation. Conibear PB, Bagshaw CR, Fajer PG, Kovács M, Málnási-Csizmadia A. Nat Struct Biol 10 831-835 (2003)
  62. The structural coupling between ATPase activation and recovery stroke in the myosin II motor. Koppole S, Smith JC, Fischer S. Structure 15 825-837 (2007)
  63. Sterol transfer by ABCG5 and ABCG8: in vitro assay and reconstitution. Wang J, Sun F, Zhang DW, Ma Y, Xu F, Belani JD, Cohen JC, Hobbs HH, Xie XS. J Biol Chem 281 27894-27904 (2006)
  64. Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. Kinose F, Wang SX, Kidambi US, Moncman CL, Winkelmann DA. J Cell Biol 134 895-909 (1996)
  65. The structural basis for the large powerstroke of myosin VI. Ménétrey J, Llinas P, Mukherjea M, Sweeney HL, Houdusse A. Cell 131 300-308 (2007)
  66. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Li XD, Jung HS, Wang Q, Ikebe R, Craig R, Ikebe M. Proc Natl Acad Sci U S A 105 1140-1145 (2008)
  67. Fine tuning a molecular motor: the location of alternative domains in the Drosophila myosin head. Bernstein SI, Milligan RA. J Mol Biol 271 1-6 (1997)
  68. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I. Elife 5 e15598 (2016)
  69. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Houdusse A, Silver M, Cohen C. Structure 4 1475-1490 (1996)
  70. Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. Fujita H, Sugiura S, Momomura S, Omata M, Sugi H, Sutoh K. J Clin Invest 99 1010-1015 (1997)
  71. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Weissbach L, Bernards A, Herion DW. Biochem Biophys Res Commun 251 269-276 (1998)
  72. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Risal D, Gourinath S, Himmel DM, Szent-Györgyi AG, Cohen C. Proc Natl Acad Sci U S A 101 8930-8935 (2004)
  73. Rigor to post-rigor transition in myosin V: link between the dynamics and the supporting architecture. Tehver R, Thirumalai D. Structure 18 471-481 (2010)
  74. The force exerted by a muscle cross-bridge depends directly on the strength of the actomyosin bond. Karatzaferi C, Chinn MK, Cooke R. Biophys J 87 2532-2544 (2004)
  75. Functional transitions in myosin: formation of a critical salt-bridge and transmission of effect to the sensitive tryptophan. Onishi H, Kojima S, Katoh K, Fujiwara K, Martinez HM, Morales MF. Proc Natl Acad Sci U S A 95 6653-6658 (1998)
  76. Structural kinetics of myosin by transient time-resolved FRET. Nesmelov YE, Agafonov RV, Negrashov IV, Blakely SE, Titus MA, Thomas DD. Proc Natl Acad Sci U S A 108 1891-1896 (2011)
  77. Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding. Münnich S, Taft MH, Taft MH, Manstein DJ. J Mol Biol 426 2070-2081 (2014)
  78. Deletion and site-directed mutagenesis of the ATP-binding motif (P-loop) in the bifunctional murine ATP-sulfurylase/adenosine 5'-phosphosulfate kinase enzyme. Deyrup AT, Krishnan S, Cockburn BN, Schwartz NB. J Biol Chem 273 9450-9456 (1998)
  79. Structural dynamics of the myosin relay helix by time-resolved EPR and FRET. Agafonov RV, Negrashov IV, Tkachev YV, Blakely SE, Titus MA, Thomas DD, Nesmelov YE. Proc Natl Acad Sci U S A 106 21625-21630 (2009)
  80. A comparison of vanadate to a 2'-5' linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. Torelli AT, Krucinska J, Wedekind JE. RNA 13 1052-1070 (2007)
  81. Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase. Sun X, Bognar AL, Baker EN, Smith CA. Proc Natl Acad Sci U S A 95 6647-6652 (1998)
  82. Thermal unfolding of G-actin monitored with the DNase I-inhibition assay stabilities of actin isoforms. Schüler H, Lindberg U, Schutt CE, Karlsson R. Eur J Biochem 267 476-486 (2000)
  83. Thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle. Brenner B, Kraft T, Yu LC, Chalovich JM. Biophys J 77 2677-2691 (1999)
  84. Cisplatin stops tubulin assembly into microtubules. A new insight into the mechanism of antitumor activity of platinum complexes. Tulub AA, Stefanov VE. Int J Biol Macromol 28 191-198 (2001)
  85. Engineering of the myosin-ibeta nucleotide-binding pocket to create selective sensitivity to N(6)-modified ADP analogs. Gillespie PG, Gillespie SK, Mercer JA, Shah K, Shokat KM. J Biol Chem 274 31373-31381 (1999)
  86. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain. Berger CL, Craik JS, Trentham DR, Corrie JE, Goldman YE. Biophys J 71 3330-3343 (1996)
  87. Mechanokinetics of rapid tension recovery in muscle: the Myosin working stroke is followed by a slower release of phosphate. Smith DA, Sleep J. Biophys J 87 442-456 (2004)
  88. DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage. Gubaev A, Klostermeier D. Proc Natl Acad Sci U S A 108 14085-14090 (2011)
  89. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of Myosin molecules. Debold EP, Walcott S, Woodward M, Turner MA. Biophys J 105 2374-2384 (2013)
  90. Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism. Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH. J Biol Chem 281 13777-13783 (2006)
  91. Mutagenesis of residue betaArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase. Ahmad Z, Senior AE. J Biol Chem 279 31505-31513 (2004)
  92. Theoretical studies of the ATP hydrolysis mechanism of myosin. Okimoto N, Yamanaka K, Ueno J, Hata M, Hoshino T, Tsuda M. Biophys J 81 2786-2794 (2001)
  93. Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Roopnarine O, Leinwand LA. Biophys J 75 3023-3030 (1998)
  94. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor. Mesentean S, Koppole S, Smith JC, Fischer S. J Mol Biol 367 591-602 (2007)
  95. Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR. Klein JC, Burr AR, Svensson B, Kennedy DJ, Allingham J, Titus MA, Rayment I, Thomas DD. Proc Natl Acad Sci U S A 105 12867-12872 (2008)
  96. Calcium-dependent structural changes in scallop heavy meromyosin. Stafford WF, Jacobsen MP, Woodhead J, Craig R, O'Neall-Hennessey E, Szent-Györgyi AG. J Mol Biol 307 137-147 (2001)
  97. Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations. Huang JD, Cope MJ, Mermall V, Strobel MC, Kendrick-Jones J, Russell LB, Mooseker MS, Copeland NG, Jenkins NA. Genetics 148 1951-1961 (1998)
  98. Multidrug resistance protein 4 (ABCC4)-mediated ATP hydrolysis: effect of transport substrates and characterization of the post-hydrolysis transition state. Sauna ZE, Nandigama K, Ambudkar SV. J Biol Chem 279 48855-48864 (2004)
  99. X-ray diffraction evidence for the lack of stereospecific protein interactions in highly activated actomyosin complex. Iwamoto H, Oiwa K, Suzuki T, Fujisawa T. J Mol Biol 305 863-874 (2001)
  100. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Biol Chem 389 1163-1171 (2008)
  101. Mechanochemistry of transcription termination factor Rho. Adelman JL, Jeong YJ, Liao JC, Patel G, Kim DE, Oster G, Patel SS. Mol Cell 22 611-621 (2006)
  102. Stabilization of helical order in the thick filaments by blebbistatin: further evidence of coexisting multiple conformations of myosin. Xu S, White HD, Offer GW, Yu LC. Biophys J 96 3673-3681 (2009)
  103. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA. Elife 6 e25235 (2017)
  104. Synergy between conserved ABC signature Ser residues in P-glycoprotein catalysis. Tombline G, Bartholomew L, Gimi K, Tyndall GA, Senior AE. J Biol Chem 279 5363-5373 (2004)
  105. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11). Luijendijk MW, Van Wijk E, Bischoff AM, Krieger E, Huygen PL, Pennings RJ, Brunner HG, Cremers CW, Cremers FP, Kremer H. Hum Genet 115 149-156 (2004)
  106. Cryo-EM reveals different coronin binding modes for ADP- and ADP-BeFx actin filaments. Ge P, Durer ZA, Kudryashov D, Zhou ZH, Reisler E. Nat Struct Mol Biol 21 1075-1081 (2014)
  107. Functional characterisation of Dictyostelium myosin II with conserved tryptophanyl residue 501 mutated to tyrosine. Batra R, Manstein DJ. Biol Chem 380 1017-1023 (1999)
  108. Switch 1 mutation S217A converts myosin V into a low duty ratio motor. Forgacs E, Sakamoto T, Cartwright S, Belknap B, Kovács M, Tóth J, Webb MR, Sellers JR, White HD. J Biol Chem 284 2138-2149 (2009)
  109. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Goedken ER, Kazmirski SL, Bowman GD, O'Donnell M, Kuriyan J. Nat Struct Mol Biol 12 183-190 (2005)
  110. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke. Koppole S, Smith JC, Fischer S. J Mol Biol 361 604-616 (2006)
  111. A point mutation in the regulatory light chain reduces the step size of skeletal muscle myosin. Sherwood JJ, Waller GS, Warshaw DM, Lowey S. Proc Natl Acad Sci U S A 101 10973-10978 (2004)
  112. Early stages of energy transduction by myosin: roles of Arg in switch I, of Glu in switch II, and of the salt-bridge between them. Onishi H, Ohki T, Mochizuki N, Morales MF. Proc Natl Acad Sci U S A 99 15339-15344 (2002)
  113. Nucleotide pyrophosphatase employs a P-loop-like motif to enhance catalytic power and NDP/NTP discrimination. Pécsi I, Szabó JE, Adams SD, Simon I, Sellers JR, Vértessy BG, Tóth J. Proc Natl Acad Sci U S A 108 14437-14442 (2011)
  114. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing. Wriggers W, Schulten K. Biophys J 75 646-661 (1998)
  115. Recombinant HLA-DP2 binds beryllium and tolerizes beryllium-specific pathogenic CD4+ T cells. Fontenot AP, Keizer TS, McCleskey M, Mack DG, Meza-Romero R, Huan J, Edwards DM, Chou YK, Vandenbark AA, Scott B, Burrows GG. J Immunol 177 3874-3883 (2006)
  116. Helical order in tarantula thick filaments requires the "closed" conformation of the myosin head. Zoghbi ME, Woodhead JL, Craig R, Padrón R. J Mol Biol 342 1223-1236 (2004)
  117. Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd. Minehardt TJ, Cooke R, Pate E, Kollman PA. Biophys J 80 1151-1168 (2001)
  118. Near attack conformers dominate β-phosphoglucomutase complexes where geometry and charge distribution reflect those of substrate. Griffin JL, Bowler MW, Baxter NJ, Leigh KN, Dannatt HR, Hounslow AM, Blackburn GM, Webster CE, Cliff MJ, Waltho JP. Proc Natl Acad Sci U S A 109 6910-6915 (2012)
  119. Myosin regulatory light chain phosphorylation inhibits shortening velocities of skeletal muscle fibers in the presence of the myosin inhibitor blebbistatin. Stewart M, Franks-Skiba K, Cooke R. J Muscle Res Cell Motil 30 17-27 (2009)
  120. Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers. Roopnarine O, Thomas DD. Biophys J 70 2795-2806 (1996)
  121. X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. Bauer CB, Kuhlman PA, Bagshaw CR, Rayment I. J Mol Biol 274 394-407 (1997)
  122. ATPase kinetics of the Dictyostelium discoideum myosin II motor domain. Kuhlman PA, Bagshaw CR. J Muscle Res Cell Motil 19 491-504 (1998)
  123. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M. J Biol Chem 280 40375-40383 (2005)
  124. Human myosin III is a motor having an extremely high affinity for actin. Kambara T, Komaba S, Ikebe M. J Biol Chem 281 37291-37301 (2006)
  125. The post-rigor structure of myosin VI and implications for the recovery stroke. Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A. EMBO J 27 244-252 (2008)
  126. A fluorescence temperature-jump study of conformational transitions in myosin subfragment 1. Urbanke C, Wray J. Biochem J 358 165-173 (2001)
  127. A model of cross-bridge attachment to actin in the A*M*ATP state based on x-ray diffraction from permeabilized rabbit psoas muscle. Gu J, Xu S, Yu LC. Biophys J 82 2123-2133 (2002)
  128. Catalytic strategy used by the myosin motor to hydrolyze ATP. Kiani FA, Fischer S. Proc Natl Acad Sci U S A 111 E2947-56 (2014)
  129. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides. Naber N, Purcell TJ, Pate E, Cooke R. Biophys J 92 172-184 (2007)
  130. Insight into catalysis of a unique GTPase reaction by a combined biochemical and FTIR approach. Chakrabarti PP, Daumke O, Suveyzdis Y, Kötting C, Gerwert K, Wittinghofer A. J Mol Biol 367 983-995 (2007)
  131. Luminescence resonance energy transfer measurements in myosin. Burmeister Getz E, Cooke R, Selvin PR. Biophys J 74 2451-2458 (1998)
  132. Switch II mutants reveal coupling between the nucleotide- and actin-binding regions in myosin V. Trivedi DV, David C, Jacobs DJ, Yengo CM. Biophys J 102 2545-2555 (2012)
  133. A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. Minehardt TJ, Marzari N, Cooke R, Pate E, Kollman PA, Car R. Biophys J 82 660-675 (2002)
  134. Chemistry and biology. Petsko GA. Proc Natl Acad Sci U S A 97 538-540 (2000)
  135. Conformational and functional characterization of trapped complexes of the P-glycoprotein multidrug transporter. Russell PL, Sharom FJ. Biochem J 399 315-323 (2006)
  136. Functional interactions between nucleotide binding domains and leukotriene C4 binding sites of multidrug resistance protein 1 (ABCC1). Payen L, Gao M, Westlake C, Theis A, Cole SP, Deeley RG. Mol Pharmacol 67 1944-1953 (2005)
  137. Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. Allali-Hassani A, Campbell TL, Ho A, Schertzer JW, Brown ED. Biochem J 384 577-584 (2004)
  138. Surface change of Ras enabling effector binding monitored in real time at atomic resolution. Kötting C, Kallenbach A, Suveyzdis Y, Eichholz C, Gerwert K. Chembiochem 8 781-787 (2007)
  139. The conformational changes coupling ATP hydrolysis and translocation in a bacterial DnaB helicase. Wiegand T, Cadalbert R, Lacabanne D, Timmins J, Terradot L, Böckmann A, Meier BH. Nat Commun 10 31 (2019)
  140. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function. Kronert WA, Dambacher CM, Knowles AF, Swank DM, Bernstein SI. J Mol Biol 379 443-456 (2008)
  141. Analyzing large-scale structural change in proteins: comparison of principal component projection and Sammon mapping. Mesentean S, Fischer S, Smith JC. Proteins 64 210-218 (2006)
  142. Effects of SH1 and SH2 modifications on myosin: similarities and differences. Bobkova EA, Bobkov AA, Levitsky DI, Reisler E. Biophys J 76 1001-1007 (1999)
  143. Functional characterization of the N-terminal region of myosin-2. Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K. J Biol Chem 281 36102-36109 (2006)
  144. Smooth muscle myosin mutants containing a single tryptophan reveal molecular interactions at the actin-binding interface. Yengo CM, Fagnant PM, Chrin L, Rovner AS, Berger CL. Proc Natl Acad Sci U S A 95 12944-12949 (1998)
  145. Structural dynamics of the actin-myosin interface by site-directed spectroscopy. Korman VL, Anderson SE, Prochniewicz E, Titus MA, Thomas DD. J Mol Biol 356 1107-1117 (2006)
  146. The myosin start-of-power stroke state and how actin binding drives the power stroke. Preller M, Holmes KC. Cytoskeleton (Hoboken) 70 651-660 (2013)
  147. The phosphoryl-transfer mechanism of Escherichia coli phosphoenolpyruvate carboxykinase from the use of AlF(3). Sudom AM, Prasad L, Goldie H, Delbaere LT. J Mol Biol 314 83-92 (2001)
  148. The role of methionine 156 in cross-subunit nucleotide interactions in the iron protein of nitrogenase. Bursey EH, Burgess BK. J Biol Chem 273 29678-29685 (1998)
  149. The structure of Ap(4)A hydrolase complexed with ATP-MgF(x) reveals the basis of substrate binding. Fletcher JI, Swarbrick JD, Maksel D, Gayler KR, Gooley PR. Structure 10 205-213 (2002)
  150. A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics. Offer G, Ranatunga KW. Biophys J 105 928-940 (2013)
  151. A new model for the surface arrangement of myosin molecules in tarantula thick filaments. Offer G, Knight PJ, Burgess SA, Alamo L, Padrón R. J Mol Biol 298 239-260 (2000)
  152. Biochemical and bioinformatic analysis of the myosin-XIX motor domain. Adikes RC, Unrath WC, Yengo CM, Quintero OA. Cytoskeleton (Hoboken) 70 281-295 (2013)
  153. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle. Chase PB, Denkinger TM, Kushmerick MJ. Biophys J 74 1428-1438 (1998)
  154. A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX. Kambara T, Ikebe M. J Biol Chem 281 4949-4957 (2006)
  155. Kinesin and myosin: molecular motors with similar engines. Rayment I. Structure 4 501-504 (1996)
  156. Mutational analysis of Ser14 and Asp157 in the nucleotide-binding site of beta-actin. Schüler H, Korenbaum E, Schutt CE, Lindberg U, Karlsson R. Eur J Biochem 265 210-220 (1999)
  157. Different degrees of lever arm rotation control myosin step size. Köhler D, Ruff C, Meyhöfer E, Bähler M. J Cell Biol 161 237-241 (2003)
  158. Influence of ionic strength on the actomyosin reaction steps in contracting skeletal muscle fibers. Iwamoto H. Biophys J 78 3138-3149 (2000)
  159. Structure and dynamics of the force-generating domain of myosin probed by multifrequency electron paramagnetic resonance. Nesmelov YE, Agafonov RV, Burr AR, Weber RT, Thomas DD. Biophys J 95 247-256 (2008)
  160. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics. Miller BM, Zhang S, Suggs JA, Swank DM, Littlefield KP, Knowles AF, Bernstein SI. J Mol Biol 353 14-25 (2005)
  161. Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in Mhc. Montana ES, Littleton JT. J Cell Biol 164 1045-1054 (2004)
  162. Conformational selection during weak binding at the actin and myosin interface. Xu J, Root DD. Biophys J 79 1498-1510 (2000)
  163. EF-G Activation by Phosphate Analogs. Salsi E, Farah E, Ermolenko DN. J Mol Biol 428 2248-2258 (2016)
  164. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Cavalier MC, Kim SG, Neau D, Lee YH. Proteins 80 1143-1153 (2012)
  165. Molecular cloning and expression of adenosine kinase from Leishmania donovani: identification of unconventional P-loop motif. Sinha KM, Ghosh M, Das I, Datta AK. Biochem J 339 ( Pt 3) 667-673 (1999)
  166. A metal switch for controlling the activity of molecular motor proteins. Cochran JC, Zhao YC, Wilcox DE, Kull FJ. Nat Struct Mol Biol 19 122-127 (2011)
  167. Fluorescently labelled guanine nucleotide binding proteins to analyse elementary steps of GAP-catalysed reactions. Kraemer A, Brinkmann T, Plettner I, Goody R, Wittinghofer A. J Mol Biol 324 763-774 (2002)
  168. Independent mobility of catalytic and regulatory domains of myosin heads. Adhikari B, Hideg K, Fajer PG. Proc Natl Acad Sci U S A 94 9643-9647 (1997)
  169. Inhibition of P-glycoprotein ATPase activity by procedures involving trapping of nucleotide in catalytic sites. Sankaran B, Bhagat S, Senior AE. Arch Biochem Biophys 341 160-169 (1997)
  170. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Zheng W. Proteins 78 638-660 (2010)
  171. Nucleotide and actin binding properties of the isolated motor domain from Dictyostelium discoideum myosin. Bobkov AA, Sutoh K, Reisler E. J Muscle Res Cell Motil 18 563-571 (1997)
  172. Predicting allosteric switches in myosins. Kirshenbaum K, Young M, Highsmith S. Protein Sci 8 1806-1815 (1999)
  173. The small molecule tool (S)-(-)-blebbistatin: novel insights of relevance to myosin inhibitor design. Lucas-Lopez C, Allingham JS, Lebl T, Lawson CP, Brenk R, Sellers JR, Rayment I, Westwood NJ. Org Biomol Chem 6 2076-2084 (2008)
  174. A point mutation in the SH1 helix alters elasticity and thermal stability of myosin II. Iwai S, Hanamoto D, Chaen S. J Biol Chem 281 30736-30744 (2006)
  175. Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Inobe T, Takahashi K, Maki K, Enoki S, Kamagata K, Kadooka A, Arai M, Kuwajima K. Biophys J 94 1392-1402 (2008)
  176. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin. Zheng W. Proteins 79 2291-2305 (2011)
  177. Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function. Watanabe S, Umeki N, Ikebe R, Ikebe M. Biochemistry 47 9505-9513 (2008)
  178. The GTPase hGBP1 converts GTP to GMP in two steps via proton shuttle mechanisms. Tripathi R, Glaves R, Marx D. Chem Sci 8 371-380 (2017)
  179. Effect of ionic strength on the conformation of myosin subfragment 1-nucleotide complexes. Peyser YM, Ajtai K, Burghardt TP, Muhlrad A. Biophys J 81 1101-1114 (2001)
  180. Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. Kim SY, Semyonov AN, Twieg RJ, Horwich AL, Frydman J, Moerner WE. J Phys Chem B 109 24517-24525 (2005)
  181. Structural rearrangements in the active site of smooth-muscle myosin. Robertson CI, Gaffney DP, Chrin LR, Berger CL. Biophys J 89 1882-1892 (2005)
  182. The structure of the nucleotide-binding site of kinesin. Müller J, Marx A, Sack S, Song YH, Mandelkow E. Biol Chem 380 981-992 (1999)
  183. Effect of complexes of ADP and phosphate analogs on the conformation of the Cys707-Cys697 region of myosin subfragment 1. Phan BC, Peyser YM, Reisler E, Muhlrad A. Eur J Biochem 243 636-642 (1997)
  184. Is SH1-SH2-cross-linked myosin subfragment 1 a structural analog of the weakly-bound state of myosin? Bobkov AA, Reisler E. Biophys J 79 460-467 (2000)
  185. Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator. Krutyhołowa R, Hammermeister A, Zabel R, Abdel-Fattah W, Reinhardt-Tews A, Helm M, Stark MJR, Breunig KD, Schaffrath R, Glatt S. Nucleic Acids Res 47 4814-4830 (2019)
  186. Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability. Kronert WA, Melkani GC, Melkani A, Bernstein SI. J Mol Biol 398 625-632 (2010)
  187. Probes bound to myosin Cys-707 rotate during length transients in contraction. Burghardt TP, Garamszegi SP, Ajtai K. Proc Natl Acad Sci U S A 94 9631-9636 (1997)
  188. Amino-acid sequence of squid myosin heavy chain. Matulef K, Sirokmán K, Perreault-Micale CL, Szent-Györgyi AG. J Muscle Res Cell Motil 19 705-712 (1998)
  189. Crystal structure of two quaternary complexes of dethiobiotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid and enzyme-MgADP-dethiobiotin-phosphate; implications for catalysis. Käck H, Sandmark J, Gibson KJ, Schneider G, Lindqvist Y. Protein Sci 7 2560-2566 (1998)
  190. Dictyostelium discoideum myoJ: a member of a broadly defined myosin V class or a class XI unconventional myosin? Peterson MD, Urioste AS, Titus MA. J Muscle Res Cell Motil 17 411-424 (1996)
  191. Early stages of the recovery stroke in myosin II studied by molecular dynamics simulations. Baumketner A, Nesmelov Y. Protein Sci 20 2013-2022 (2011)
  192. Letter Human deafness mutation E385D disrupts the mechanochemical coupling and subcellular targeting of myosin-1a. Yengo CM, Ananthanarayanan SK, Brosey CA, Mao S, Tyska MJ. Biophys J 94 L5-7 (2008)
  193. Initiation of the power stroke in muscle: insights from the phosphate analog AlF4. Kraft T, Mählmann E, Mattei T, Brenner B. Proc Natl Acad Sci U S A 102 13861-13866 (2005)
  194. Ionic interactions play a role in the regulatory mechanism of scallop heavy meromyosin. Nyitrai M, Stafford WF, Szent-Györgyi AG, Geeves MA. Biophys J 85 1053-1062 (2003)
  195. Myosin light chain phosphorylation inhibits muscle fiber shortening velocity in the presence of vanadate. Franks-Skiba K, Lardelli R, Goh G, Cooke R. Am J Physiol Regul Integr Comp Physiol 292 R1603-12 (2007)
  196. Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges. Bell MG, Dale RE, van der Heide UA, Goldman YE. Biophys J 83 1050-1073 (2002)
  197. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Jansen RM, Peruzzo R, Fromm SA, Yokom AL, Zoncu R, Hurley JH. Sci Adv 8 eadd2926 (2022)
  198. Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation. Farrar CT, Ma J, Singel DJ, Halkides CJ. Structure 8 1279-1287 (2000)
  199. The path to visualization of walking myosin V by high-speed atomic force microscopy. Kodera N, Ando T. Biophys Rev 6 237-260 (2014)
  200. Combining EPR with fluorescence spectroscopy to monitor conformational changes at the myosin nucleotide pocket. Naber N, Málnási-Csizmadia A, Purcell TJ, Cooke R, Pate E. J Mol Biol 396 937-948 (2010)
  201. Contractile properties of rabbit psoas muscle fibres inhibited by beryllium fluoride. Regnier M, Chase PB, Martyn DA. J Muscle Res Cell Motil 20 425-432 (1999)
  202. Detection of the swings of the lever arm of a myosin motor by fluorescence resonance energy transfer of green and blue fluorescent proteins. Suzuki Y. Methods 22 355-363 (2000)
  203. News Molecular motors. Switching on kinesin. Schliwa M, Woehlke G. Nature 411 424-425 (2001)
  204. Structural basis for the ARF GAP activity and specificity of the C9orf72 complex. Su MY, Fromm SA, Remis J, Toso DB, Hurley JH. Nat Commun 12 3786 (2021)
  205. The catalytic transition state in ATP synthase. Senior AE, Weber J, Nadanaciva S. J Bioenerg Biomembr 32 523-529 (2000)
  206. A closer look at energy transduction in muscle. Onishi H, Morales MF. Proc Natl Acad Sci U S A 104 12714-12719 (2007)
  207. Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. Xu J, Root DD. J Struct Biol 123 150-161 (1998)
  208. High-resolution helix orientation in actin-bound myosin determined with a bifunctional spin label. Binder BP, Cornea S, Thompson AR, Moen RJ, Thomas DD. Proc Natl Acad Sci U S A 112 7972-7977 (2015)
  209. Kinetic effects of kinesin switch I and switch II mutations. Auerbach SD, Johnson KA. J Biol Chem 280 37061-37068 (2005)
  210. Nucleotide-dependent shape changes in the reverse direction motor, myosin VI. Song CF, Sader K, White H, Kendrick-Jones J, Trinick J. Biophys J 99 3336-3344 (2010)
  211. Redox properties and electron paramagnetic resonance spectroscopy of the transition state complex of Azotobacter vinelandii nitrogenase. Spee JH, Arendsen AF, Wassink H, Marritt SJ, Hagen WR, Haaker H. FEBS Lett 432 55-58 (1998)
  212. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement. Muhlrad A, Peyser YM, Nili M, Ajtai K, Reisler E, Burghardt TP. Biophys J 84 1047-1056 (2003)
  213. Conformational dynamics of the SH1-SH2 helix in the transition states of myosin subfragment-1. Nitao LK, Yeates TO, Reisler E. Biophys J 83 2733-2741 (2002)
  214. Modulation of actin filament sliding by mutations of the SH2 cysteine in Dictyostelium myosin II. Suzuki Y, Ohkura R, Sugiura S, Yasuda R, Kinoshita K, Tanokura M, Sutoh K. Biochem Biophys Res Commun 234 701-706 (1997)
  215. Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD. Wang YK, Park S, Nixon BT, Hoover TR. J Bacteriol 185 6215-6219 (2003)
  216. Solution properties of full length and truncated forms of myosin subfragment 1 from Dictyostelium discoideum. Reynoso JR, Bobkov A, Muhlrad A, Reisler E. J Muscle Res Cell Motil 22 657-664 (2001)
  217. The overall conformation of conventional kinesins studied by small angle X-ray and neutron scattering. Kozielski F, Svergun D, Zaccai G, Wade RH, Koch MH. J Biol Chem 276 1267-1275 (2001)
  218. Actin and temperature effects on the cross-linking of the SH1-SH2 helix in myosin subfragment 1. Nitao LK, Reisler E. Biophys J 78 3072-3080 (2000)
  219. Consequences of placing an intramolecular crosslink in myosin S1. Konno K, Ue K, Khoroshev M, Martinez H, Ray B, Morales MF. Proc Natl Acad Sci U S A 97 1461-1466 (2000)
  220. Design and functional analysis of actomyosin motor domain chimera proteins. Yokoyama K, Hiratuka Y, Akimaru E, Hirose K, Uyeda TQ, Suzuki M, Suzuki M. Biochem Biophys Res Commun 299 825-831 (2002)
  221. Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236. Frye JJ, Klenchin VA, Bagshaw CR, Rayment I. Biochemistry 49 4897-4907 (2010)
  222. Intragenic suppressors of Dictyostelium myosin G680 mutants demarcate discrete structural elements. Implications for conformational states of the motor. Patterson B. Genetics 149 1799-1807 (1998)
  223. Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules. Cope J, Rank KC, Gilbert SP, Rayment I, Hoenger A. PLoS One 8 e53792 (2013)
  224. Kinetics of structural changes in the relay loop and SH3 domain of myosin. van Duffelen M, Chrin LR, Berger CL. Biochem Biophys Res Commun 329 563-572 (2005)
  225. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery. Sato T, Ohnuki J, Takano M. J Chem Phys 147 215101 (2017)
  226. Nucleotide dependent intrinsic fluorescence changes of W29 and W36 in smooth muscle myosin. van Duffelen M, Chrin LR, Berger CL. Biophys J 87 1767-1775 (2004)
  227. Reinterpretation of the Tension Response of Muscle to Stretches and Releases. Offer G, Ranatunga KW. Biophys J 111 2000-2010 (2016)
  228. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system. Caldwell JT, Melkani GC, Huxford T, Bernstein SI. Methods 56 25-32 (2012)
  229. A general method of domain closure is applied to phosphoglycerate kinase and the result compared with the crystal structure of a closed conformation of the enzyme. Chandra NR, Muirhead H, Holbrook JJ, Bernstein BE, Hol WG, Sessions RB. Proteins 30 372-380 (1998)
  230. ATP-induced transconformation of myosin revealed by determining three-dimensional positions of fluorophores from fluorescence energy transfer measurements. Yasunaga T, Suzuki Y, Ohkura R, Sutoh K, Wakabayashi T. J Struct Biol 132 6-18 (2000)
  231. Kinetic studies on the effects of ADP and ionic strength on the interaction between myosin subfragment-1 and actin: implications for load-sensitivity and regulation of the crossbridge cycle. Conibear PB. J Muscle Res Cell Motil 20 727-742 (1999)
  232. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. Cochran JC, Thompson ME, Kull FJ. J Biol Chem 288 28312-28323 (2013)
  233. Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state. Naber N, Larson A, Rice S, Cooke R, Pate E. J Mol Biol 408 628-642 (2011)
  234. Myosin dynamics on the millisecond time scale. Burghardt TP, Hu JY, Ajtai K. Biophys Chem 131 15-28 (2007)
  235. Near UV circular dichroism from biomimetic model compounds define the coordination geometry of vanadate centers in MeVi- and MeADPVi-rabbit myosin subfragment 1 complexes in solution. Ajtai K, Dai F, Park S, Zayas CR, Peyser YM, Muhlrad A, Burghardt TP. Biophys Chem 71 205-220 (1998)
  236. Novel configuration of a myosin II transient intermediate analogue revealed by quick-freeze deep-etch replica electron microscopy. Kimori Y, Baba N, Katayama E. Biochem J 450 23-35 (2013)
  237. Nucleotide binding induces global and local structural changes of myosin head in muscle fibres. Lörinczy D, Belagyi J. Eur J Biochem 268 5970-5976 (2001)
  238. Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter. Kern A, Szentpétery Z, Liliom K, Bakos E, Sarkadi B, Váradi A. Biochem J 380 549-560 (2004)
  239. Optical activity of a nucleotide-sensitive tryptophan in myosin subfragment 1 during ATP hydrolysis. Park S, Ajtai K, Burghardt TP. Biophys Chem 63 67-80 (1996)
  240. Picture story. A powerful stroke. Holmes KC. Nat Struct Biol 5 940-942 (1998)
  241. X-ray diffraction studies on the structural changes of rigor muscles induced by binding of phosphate analogs in the presence of MgADP. Kim DS, Takezawa Y, Ogino M, Kobayashi T, Arata T, Wakabayashi K. Biophys Chem 74 71-82 (1998)
  242. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. Morikawa M, Jerath NU, Ogawa T, Morikawa M, Tanaka Y, Shy ME, Zuchner S, Hirokawa N. EMBO J 41 e108899 (2022)
  243. Actin and nucleotide induced conformational changes in the vicinity of Lys553 in myosin subfragment 1. Peyser YM, Muhlrad A. Eur J Biochem 263 511-517 (1999)
  244. Modulation of muscle contraction by a cell-permeable peptide. Tünnemann G, Karczewski P, Haase H, Cardoso MC, Morano I. J Mol Med (Berl) 85 1405-1412 (2007)
  245. Molecular Mechanism of Mot1, a TATA-binding Protein (TBP)-DNA Dissociating Enzyme. Viswanathan R, True JD, Auble DT. J Biol Chem 291 15714-15726 (2016)
  246. Nucleotide-induced and actin-induced structural changes in SH1-SH2-modified myosin subfragment 1. Shakirova L, Mikhailova V, Siletskaya E, Timofeev VP, Levitsky DI. J Muscle Res Cell Motil 28 67-78 (2007)
  247. Amino acids 519-524 of Dictyostelium myosin II form a surface loop that aids actin binding by facilitating a conformational change. Uyeda TQ, Patterson B, Mendoza L, Hiratsuka Y. J Muscle Res Cell Motil 23 685-695 (2002)
  248. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis. Dergez T, Lorinczy D, Könczöl F, Farkas N, Belagyi J. BMC Struct Biol 7 41 (2007)
  249. Evidence against essential roles for subdomain 1 of actin in actomyosin sliding movements. Siddique MS, Miyazaki T, Katayama E, Uyeda TQ, Suzuki M, Suzuki M. Biochem Biophys Res Commun 332 474-481 (2005)
  250. Evidence for the selective population of FeMo cofactor sites in MoFe protein and its molecular recognition by the Fe protein in transition state complex analogues of nitrogenase. Grossmann JG, Hasnain SS, Yousafzai FK, Eady RR. J Biol Chem 276 6582-6590 (2001)
  251. Modulation of actomyosin motor function by 1-hexanol. Komatsu H, Shigeoka T, Ohno T, Kaseda K, Kanno T, Matsumoto Y, Suzuki M, Suzuki M, Kodama T. J Muscle Res Cell Motil 25 77-85 (2004)
  252. Nucleotide binding is the critical regulator of ABCG2 conformational transitions. Gyöngy Z, Mocsár G, Hegedűs É, Stockner T, Ritter Z, Homolya L, Schamberger A, Orbán TI, Remenyik J, Szakacs G, Goda K. Elife 12 e83976 (2023)
  253. Ternary borate-nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry. Gabel SA, London RE. J Biol Inorg Chem 13 207-217 (2008)
  254. pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). Reinhardt LA, Thoden JB, Peters GS, Holden HM, Cleland WW. FEBS Lett 587 2876-2881 (2013)
  255. A plasma membrane-associated AAA-ATPase from Glycine max. Hicks-Berger C, Sokolchik I, Kim C, Morré DJ. Biofactors 28 135-149 (2006)
  256. A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a. Nagy NT, Chakraborty S, Harami GM, Sellers JR, Sakamoto T, Kovács M. PLoS One 8 e62640 (2013)
  257. An unusual transduction pathway in human tonic smooth muscle myosin. Halstead MF, Ajtai K, Penheiter AR, Spencer JD, Zheng Y, Morrison EA, Burghardt TP. Biophys J 93 3555-3566 (2007)
  258. Driving and photo-regulation of myosin-actin motors at molecular and macroscopic levels by photo-responsive high energy molecules. Menezes HM, Islam MJ, Takahashi M, Tamaoki N. Org Biomol Chem 15 8894-8903 (2017)
  259. Dynamic reorganization of the motor domain of myosin subfragment 1 in different nucleotide states. Bódis E, Szarka K, Nyitrai M, Somogyi B. Eur J Biochem 270 4835-4845 (2003)
  260. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin. Harris MJ, Woo HJ. Eur Biophys J 38 1-12 (2008)
  261. Mn(2+)-nucleotide coordination at the myosin active site as detected by pulsed electron paramagnetic resonance. Astashkin AV, Nesmelov YE. J Phys Chem B 116 13655-13662 (2012)
  262. Mutation in the SH1 helix reduces the activation energy of the ATP-induced conformational transition of myosin. Iwai S, Chaen S. Biochem Biophys Res Commun 357 325-329 (2007)
  263. On the role of arginine-glutamic acid ion pair in the ATP hydrolysis. Carmona P, Molina M, Rodríguez-Casado A. Biophys Chem 119 33-37 (2006)
  264. Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations. Shekhar M, Gupta C, Suzuki K, Chan CK, Murata T, Singharoy A. ACS Cent Sci 8 915-925 (2022)
  265. The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Park JG, Kim S, Jang E, Choi SH, Han H, Ju S, Kim JW, Min DS, Jin MS. Nat Commun 13 5851 (2022)
  266. Comparative Study The muscle in kinesin. Sakowicz R, Goldstein LS. Nat Struct Biol 3 404-407 (1996)
  267. The neck domain of myosin II primarily regulates the actomyosin kinetics, not the stepsize. Hikikoshi Iwane A, Tanaka H, Morimoto S, Ishijima A, Yanagida T. J Mol Biol 353 213-221 (2005)
  268. Actomyosin interaction: mechanical and energetic properties in different nucleotide binding states. Aprodu I, Redaelli A, Soncini M. Int J Mol Sci 9 1927-1943 (2008)
  269. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1345 (2022)
  270. Conformational changes in actin-myosin isoforms probed by Ni(II).Gly-Gly-His reactivity. Van Dijk J, Lafont C, Knetsch ML, Derancourt J, Manstein DJ, Long EC, Chaussepied P. J Muscle Res Cell Motil 25 527-537 (2004)
  271. Electrostatic interaction of loop 1 and backbone of human cardiac myosin regulates the rate of ATP induced actomyosin dissociation. Gargey A, Nesmelov YE. J Muscle Res Cell Motil 43 1-8 (2022)
  272. Engineering lysine reactivity as a conformational sensor in the Dictyostelium myosin II motor domain. Kovács M, Tóth J, Málnási-Csizmadia A, Bagshaw CR, Nyitray L. J Muscle Res Cell Motil 25 95-102 (2004)
  273. Fluorescence changes of a label attached near the myosin active site on nucleotide binding in rat skeletal muscle fibres. Fujita S, Nawata T, Yamada K. J Physiol 515 ( Pt 3) 869-880 (1999)
  274. Kinesin-Calmodulin fusion protein as a molecular shuttle. Shishido H, Nakazato K, Katayama E, Chaen S, Maruta S. J Biochem 147 213-223 (2010)
  275. Metal cation controls phosphate release in the myosin ATPase. Ge J, Huang F, Nesmelov YE. Protein Sci 26 2181-2186 (2017)
  276. Myosin II from rabbit skeletal muscle and Dictyostelium discoideum and its interaction with F-actin studied by (1)H NMR spectroscopy. Kany H, Wolf J, Kalbitzer HR. FEBS Lett 521 121-126 (2002)
  277. Novel inhibition mechanism of Bacillus cereus sphingomyelinase by beryllium fluoride. Fujii S, Nagata M, Morita M, Minoura K, Tsukamoto K, Ikezawa H, Ikeda K. Arch Biochem Biophys 424 201-209 (2004)
  278. Opening the Arg-Glu salt bridge in myosin: computational study. Kaliman I, Grigorenko B, Shadrina M, Nemukhin A. Phys Chem Chem Phys 11 4804-4807 (2009)
  279. RecA-dependent programmable endonuclease Ref cleaves DNA in two distinct steps. Ronayne EA, Cox MM. Nucleic Acids Res 42 3871-3883 (2014)
  280. Single-molecule mechanics. Simmons R. Curr Biol 6 392-394 (1996)
  281. Transition state complexes of the Klebsiella pneumoniae nitrogenase proteins. Spectroscopic properties of aluminium fluoride-stabilized and beryllium fluoride-stabilized MgADP complexes reveal conformational differences of the Fe protein. Miller RW, Eady RR, Fairhurst SA, Gormal CA, Smith BE. Eur J Biochem 268 809-818 (2001)
  282. 2,4-Dinitrophenol reduces the reactivity of Lys553 in the lower 50-kDa region of myosin subfragment 1. Bomfim TR, Machado LE, Lima LM, Sorenson MM, Salerno VP. Arch Biochem Biophys 505 105-111 (2011)
  283. A mutation in switch I alters the load-dependent kinetics of myosin Va. Marang C, Scott B, Chambers J, Gunther LK, Yengo CM, Debold EP. Nat Commun 14 3137 (2023)
  284. Actomyosin Complex. Pepper I, Galkin VE. Subcell Biochem 99 421-470 (2022)
  285. Atomistic Models from Orientation and Distance Constraints Using EPR of a Bifunctional Spin Label. Binder BP, Thompson AR, Thomas DD. Biophys J 117 319-330 (2019)
  286. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1346 (2022)
  287. Mutations in the SH1 helix alter the thermal properties of myosin II. Shibata K, Koyama T, Inde S, Iwai S, Chaen S. Biophys Physicobiol 14 67-73 (2017)
  288. So near and yet so far from understanding molecular motors: recollections in honor of John T. Edsall. Lowey S. Biophys Chem 100 171-175 (2003)
  289. Solubilization of dynein from Tetrahymena ssp. axonemes using phosphate analogues. Nakamura K, Tanaka M. Comp Biochem Physiol B Biochem Mol Biol 136 487-494 (2003)
  290. Synthesis of a spin-labeled photoaffinity ATP analogue, and its use to specifically photolabel myosin cross-bridges in skeletal muscle fibers. Wang D, Luo Y, Cooke R, Grammer J, Pate E, Yount RG. J Muscle Res Cell Motil 20 743-753 (1999)
  291. Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction. Onishi H. J Biochem 146 7-11 (2009)


Related citations provided by authors (2)

  1. Force-Generating Domain of Myosin Motor. Itakura S, Yamakawa H, Toyoshima YY, Ishijima A, Kojima T, Harada Y, Yanagida T, Wakabayashi T, Sutoh K Biochem. Biophys. Res. Commun. 196 1504- (1993)
  2. Three-Dimensional Structure of Myosin Subfragment-1: A Molecular Motor. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM Science 261 50- (1993)