1mr5 Citations

The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis.

Mol Cell 10 757-68 (2002)
Related entries: 1ms0, 1ms1, 1ms3, 1ms4, 1ms5, 1ms8, 1ms9

Cited: 127 times
EuropePMC logo PMID: 12419220

Abstract

Trans-sialidases (TS) are GPI-anchored surface enzymes expressed in specific developmental stages of trypanosome parasites like Trypanosoma cruzi, the etiologic agent of Chagas disease, and T. brucei, the causative agent of sleeping sickness. TS catalyzes the transfer of sialic acid residues from host to parasite glycoconjugates through a transglycosidase reaction that appears to be critical for T. cruzi survival and cell invasion capability. We report here the structure of the T. cruzi trans-sialidase, alone and in complex with sugar ligands. Sialic acid binding is shown to trigger a conformational switch that modulates the affinity for the acceptor substrate and concomitantly creates the conditions for efficient transglycosylation. The structure provides a framework for the structure-based design of novel inhibitors with potential therapeutic applications.

Reviews - 1mr5 mentioned but not cited (2)



Reviews citing this publication (19)

  1. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM. Nat Rev Microbiol 4 229-236 (2006)
  2. Recent structural insights into the expanding world of carbohydrate-active enzymes. Davies GJ, Gloster TM, Henrissat B. Curr Opin Struct Biol 15 637-645 (2005)
  3. Sialic acid metabolism and sialyltransferases: natural functions and applications. Li Y, Chen X. Appl Microbiol Biotechnol 94 887-905 (2012)
  4. Glycosaminoglycans in infectious disease. Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Biol Rev Camb Philos Soc 88 928-943 (2013)
  5. Multigene families in Trypanosoma cruzi and their role in infectivity. De Pablos LM, Osuna A. Infect Immun 80 2258-2264 (2012)
  6. T rypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas' disease. Dc-Rubin SS, Schenkman S. Cell Microbiol 14 1522-1530 (2012)
  7. A survey of the year 2002 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 16 351-382 (2003)
  8. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies. Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonça-Previato L, Previato JO. Glycobiology 25 1142-1149 (2015)
  9. Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance. Nardy AF, Freire-de-Lima CG, Pérez AR, Morrot A. Front Microbiol 7 348 (2016)
  10. Perspectives on the Trypanosoma cruzi-host cell receptor interactions. Villalta F, Scharfstein J, Ashton AW, Tyler KM, Guan F, Mukherjee S, Lima MF, Alvarez S, Weiss LM, Huang H, Machado FS, Tanowitz HB. Parasitol Res 104 1251-1260 (2009)
  11. Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles. Chava AK, Bandyopadhyay S, Chatterjee M, Mandal C. Glycoconj J 20 199-206 (2004)
  12. Molecular analysis of early host cell infection by Trypanosoma cruzi. Villalta F, Madison MN, Kleshchenko YY, Nde PN, Lima MF. Front Biosci 13 3714-3734 (2008)
  13. The chemistry and biology of trypanosomal trans-sialidases: virulence factors in Chagas disease and sleeping sickness. Schauer R, Kamerling JP. Chembiochem 12 2246-2264 (2011)
  14. Trypanosoma cruzi trans-sialidase as a drug target against Chagas disease (American trypanosomiasis). Miller BR, Roitberg AE. Future Med Chem 5 1889-1900 (2013)
  15. Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host. Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, Previato JO, Mendonça-Previato L. Front Microbiol 7 698 (2016)
  16. Parasite-host glycan interactions during Trypanosoma cruzi infection: trans-Sialidase rides the show. Campetella O, Buscaglia CA, Mucci J, Leguizamón MS. Biochim Biophys Acta Mol Basis Dis 1866 165692 (2020)
  17. Recent developments in trans-sialidase inhibitors of Trypanosoma cruzi. Kashif M, Moreno-Herrera A, Lara-Ramirez EE, Ramírez-Moreno E, Bocanegra-García V, Ashfaq M, Rivera G. J Drug Target 25 485-498 (2017)
  18. Sialidase Inhibitors with Different Mechanisms. Keil JM, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. J Med Chem 65 13574-13593 (2022)
  19. Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Bowles WHD, Gloster TM. Front Mol Biosci 8 705133 (2021)

Articles citing this publication (106)

  1. Conformational diversity and protein evolution--a 60-year-old hypothesis revisited. James LC, Tawfik DS. Trends Biochem Sci 28 361-368 (2003)
  2. Sialic acids: fascinating sugars in higher animals and man. Schauer R. Zoology (Jena) 107 49-64 (2004)
  3. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. Lawrence MC, Borg NA, Streltsov VA, Pilling PA, Epa VC, Varghese JN, McKimm-Breschkin JL, Colman PM. J Mol Biol 335 1343-1357 (2004)
  4. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, Jardetzky TS. Structure 13 803-815 (2005)
  5. Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Stummeyer K, Dickmanns A, Mühlenhoff M, Gerardy-Schahn R, Ficner R. Nat Struct Mol Biol 12 90-96 (2005)
  6. Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM. Structure 12 775-784 (2004)
  7. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V. J Exp Med 206 1845-1852 (2009)
  8. The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. Newstead SL, Potter JA, Wilson JC, Xu G, Chien CH, Watts AG, Withers SG, Taylor GL. J Biol Chem 283 9080-9088 (2008)
  9. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. Xu G, Potter JA, Russell RJ, Oggioni MR, Andrew PW, Taylor GL. J Mol Biol 384 436-449 (2008)
  10. The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation. Mucci J, Risso MG, Leguizamón MS, Frasch AC, Campetella O. Cell Microbiol 8 1086-1095 (2006)
  11. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Cell Microbiol 11 1600-1611 (2009)
  12. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Bissaro B, Monsan P, Fauré R, O'Donohue MJ. Biochem J 467 17-35 (2015)
  13. A sialidase mutant displaying trans-sialidase activity. Paris G, Ratier L, Amaya MF, Nguyen T, Alzari PM, Frasch AC. J Mol Biol 345 923-934 (2005)
  14. Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Cheng J, Huang S, Yu H, Li Y, Lau K, Chen X. Glycobiology 20 260-268 (2010)
  15. 'Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Carvalho I, Andrade P, Campo VL, Guedes PM, Sesti-Costa R, Silva JS, Schenkman S, Dedola S, Hill L, Rejzek M, Nepogodiev SA, Field RA. Bioorg Med Chem 18 2412-2427 (2010)
  16. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. Amaya MF, Buschiazzo A, Nguyen T, Alzari PM. J Mol Biol 325 773-784 (2003)
  17. Trypanosoma cruzi targets Akt in host cells as an intracellular antiapoptotic strategy. Chuenkova MV, PereiraPerrin M. Sci Signal 2 ra74 (2009)
  18. A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. Buchini S, Buschiazzo A, Withers SG. Angew Chem Int Ed Engl 47 2700-2703 (2008)
  19. Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi. Dias WB, Fajardo FD, Graça-Souza AV, Freire-de-Lima L, Vieira F, Girard MF, Bouteille B, Previato JO, Mendonça-Previato L, Todeschini AR. Cell Microbiol 10 88-99 (2008)
  20. Decreasing the sialidase activity of multifunctional Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Sugiarto G, Lau K, Li Y, Khedri Z, Yu H, Le DT, Chen X. Mol Biosyst 7 3021-3027 (2011)
  21. Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Neres J, Brewer ML, Ratier L, Botti H, Buschiazzo A, Edwards PN, Mortenson PN, Charlton MH, Alzari PM, Frasch AC, Bryce RA, Douglas KT. Bioorg Med Chem Lett 19 589-596 (2009)
  22. Leukocyte inflammatory responses provoked by pneumococcal sialidase. Chang YC, Uchiyama S, Varki A, Nizet V. mBio 3 (2012)
  23. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. Buschiazzo A, Muiá R, Larrieux N, Pitcovsky T, Mucci J, Campetella O. PLoS Pathog 8 e1002474 (2012)
  24. Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives. Kim JH, Ryu HW, Shim JH, Park KH, Withers SG. Chembiochem 10 2475-2479 (2009)
  25. Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase. Arioka S, Sakagami M, Uematsu R, Yamaguchi H, Togame H, Takemoto H, Hinou H, Nishimura S. Bioorg Med Chem 18 1633-1640 (2010)
  26. Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. Campo VL, Sesti-Costa R, Carneiro ZA, Silva JS, Schenkman S, Carvalho I. Bioorg Med Chem 20 145-156 (2012)
  27. New insights on the sialidase protein family revealed by a phylogenetic analysis in metazoa. Giacopuzzi E, Bresciani R, Schauer R, Monti E, Borsani G. PLoS One 7 e44193 (2012)
  28. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. Tiralongo E, Schrader S, Lange H, Lemke H, Tiralongo J, Schauer R. J Biol Chem 278 23301-23310 (2003)
  29. Modulation of catalytic function by differential plasticity of the active site: case study of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase. Demir O, Roitberg AE. Biochemistry 48 3398-3406 (2009)
  30. Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Guegan F, Plazolles N, Baltz T, Coustou V. Cell Microbiol 15 1285-1303 (2013)
  31. Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase. Neres J, Bonnet P, Edwards PN, Kotian PL, Buschiazzo A, Alzari PM, Bryce RA, Douglas KT. Bioorg Med Chem 15 2106-2119 (2007)
  32. Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis. Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG. Chembiochem 10 2522-2529 (2009)
  33. Structural basis of the interaction of a Trypanosoma cruzi surface molecule implicated in oral infection with host cells and gastric mucin. Cortez C, Yoshida N, Bahia D, Sobreira TJ. PLoS One 7 e42153 (2012)
  34. Building a successful structural motif into sialylmimetics-cyclohexenephosphonate monoesters as pseudo-sialosides with promising inhibitory properties. Streicher H, Busse H. Bioorg Med Chem 14 1047-1057 (2006)
  35. Procyclic Trypanosoma brucei expresses separate sialidase and trans-sialidase enzymes on its surface membrane. Montagna GN, Donelson JE, Frasch AC. J Biol Chem 281 33949-33958 (2006)
  36. Sialic acid: a sweet swing between mammalian host and Trypanosoma cruzi. Freire-de-Lima L, Oliveira IA, Neves JL, Penha LL, Alisson-Silva F, Dias WB, Todeschini AR. Front Immunol 3 356 (2012)
  37. A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Carvalho ST, Sola-Penna M, Oliveira IA, Pita S, Gonçalves AS, Neves BC, Sousa FR, Freire-de-Lima L, Kurogochi M, Hinou H, Nishimura S, Mendonça-Previato L, Previato JO, Todeschini AR. Glycobiology 20 1034-1045 (2010)
  38. Free energy study of the catalytic mechanism of Trypanosoma cruzi trans-sialidase. From the Michaelis complex to the covalent intermediate. Pierdominici-Sottile G, Horenstein NA, Roitberg AE. Biochemistry 50 10150-10158 (2011)
  39. Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Coustou V, Plazolles N, Guegan F, Baltz T. Cell Microbiol 14 431-445 (2012)
  40. Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense. Waespy M, Gbem TT, Elenschneider L, Jeck AP, Day CJ, Hartley-Tassell L, Bovin N, Tiralongo J, Haselhorst T, Kelm S. PLoS Negl Trop Dis 9 e0004120 (2015)
  41. Relevance of the diversity among members of the Trypanosoma cruzi trans-sialidase family analyzed with camelids single-domain antibodies. Ratier L, Urrutia M, Paris G, Zarebski L, Frasch AC, Goldbaum FA. PLoS One 3 e3524 (2008)
  42. A nonradioactive 96-well plate assay for screening of trans-sialidase activity. Schrader S, Tiralongo E, Paris G, Yoshino T, Schauer R. Anal Biochem 322 139-147 (2003)
  43. Probing the acceptor substrate binding site of Trypanosoma cruzi trans-sialidase with systematically modified substrates and glycoside libraries. Harrison JA, Kartha KP, Fournier EJ, Lowary TL, Malet C, Nilsson UJ, Hindsgaul O, Schenkman S, Naismith JH, Field RA. Org Biomol Chem 9 1653-1660 (2011)
  44. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. Weatherly DB, Peng D, Tarleton RL. BMC Genomics 17 729 (2016)
  45. Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. Quistgaard EM, Thirup SS. BMC Struct Biol 9 46 (2009)
  46. Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase. Mitchell FL, Miles SM, Neres J, Bichenkova EV, Bryce RA. Biophys J 98 L38-40 (2010)
  47. Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Neres J, Buschiazzo A, Alzari PM, Walsh L, Douglas KT. Anal Biochem 357 302-304 (2006)
  48. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. Jers C, Michalak M, Larsen DM, Kepp KP, Li H, Guo Y, Kirpekar F, Meyer AS, Mikkelsen JD. PLoS One 9 e83902 (2014)
  49. Trans-sialidase-like sequences from Trypanosoma congolense conserve most of the critical active site residues found in other trans-sialidases. Tiralongo E, Martensen I, Grötzinger J, Tiralongo J, Schauer R. Biol Chem 384 1203-1213 (2003)
  50. Modeling the Trypanosoma cruzi Tc85-11 protein and mapping the laminin-binding site. Marroquin-Quelopana M, Oyama S, Aguiar Pertinhez T, Spisni A, Aparecida Juliano M, Juliano L, Colli W, Alves MJ. Biochem Biophys Res Commun 325 612-618 (2004)
  51. Preparation of sialylated oligosaccharides employing recombinant trans-sialidase from Trypanosoma cruzi. Neubacher B, Schmidt D, Ziegelmuller P, Thiem J. Org Biomol Chem 3 1551-1556 (2005)
  52. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Lara-Ramirez EE, López-Cedillo JC, Nogueda-Torres B, Kashif M, Garcia-Perez C, Bocanegra-Garcia V, Agusti R, Uhrig ML, Rivera G. Eur J Med Chem 132 249-261 (2017)
  53. Biochemical characterization of trans-sialidase TS1 variants from Trypanosoma congolense. Koliwer-Brandl H, Gbem TT, Waespy M, Reichert O, Mandel P, Drebitz E, Dietz F, Kelm S. BMC Biochem 12 39 (2011)
  54. Development of a S. cerevisiae whole cell biocatalyst for in vitro sialylation of oligosaccharides. Ryckaert S, Martens V, De Vusser K, Contreras R. J Biotechnol 119 379-388 (2005)
  55. In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Tonelli RR, Torrecilhas AC, Jacysyn JF, Juliano MA, Colli W, Alves MJ. Parasitology 138 481-492 (2011)
  56. Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines. Lieke T, Gröbe D, Blanchard V, Grunow D, Tauber R, Zimmermann-Kordmann M, Jacobs T, Reutter W. Glycoconj J 28 31-37 (2011)
  57. Plasmodium vivax tryptophan-rich antigen PvTRAg33.5 contains alpha helical structure and multidomain architecture. Bora H, Garg S, Sen P, Kumar D, Kaur P, Khan RH, Sharma YD. PLoS One 6 e16294 (2011)
  58. Structural determinants allowing transferase activity in SENSITIVE TO FREEZING 2, classified as a family I glycosyl hydrolase. Roston RL, Wang K, Kuhn LA, Benning C. J Biol Chem 289 26089-26106 (2014)
  59. Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. Xu G, Ryan C, Kiefel MJ, Wilson JC, Taylor GL. J Mol Biol 386 828-840 (2009)
  60. Synthesis of PEGylated lactose analogs for inhibition studies on T.cruzi trans-sialidase. Giorgi ME, Ratier L, Agusti R, Frasch AC, de Lederkremer RM. Glycoconj J 27 549-559 (2010)
  61. Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase from Micromonospora viridifaciens. Watson JN, Newstead S, Dookhun V, Taylor G, Bennet AJ. FEBS Lett 577 265-269 (2004)
  62. The Aspergillus fumigatus sialidase is a 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid hydrolase (KDNase): structural and mechanistic insights. Telford JC, Yeung JH, Xu G, Kiefel MJ, Watts AG, Hader S, Chan J, Bennet AJ, Moore MM, Taylor GL. J Biol Chem 286 10783-10792 (2011)
  63. Definition, expression, and characterization of a protein domain in the N-terminus of pregnancy-associated plasma protein-A distantly related to the family of laminin G-like modules. Boldt HB, Glerup S, Overgaard MT, Sottrup-Jensen L, Oxvig C. Protein Expr Purif 48 261-273 (2006)
  64. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. BMC Genomics 19 770 (2018)
  65. Molecular insight into substrate recognition by human cytosolic sialidase NEU2. Mozzi A, Mazzacuva P, Zampella G, Forcella ME, Fusi PA, Monti E. Proteins 80 1123-1132 (2012)
  66. Sialic acid C-glycosides with aromatic residues: investigating enzyme binding and inhibition of Trypanosoma cruzi trans-sialidase. Meinke S, Schroven A, Thiem J. Org Biomol Chem 9 4487-4497 (2011)
  67. The trypanosomal trans-sialidase: two catalytic functions associated with one catalytic site. Colman PM, Smith BJ. Structure 10 1466-1468 (2002)
  68. Trypanosoma cruzi coaxes cardiac fibroblasts into preventing cardiomyocyte death by activating nerve growth factor receptor TrkA. Aridgides D, Salvador R, PereiraPerrin M. PLoS One 8 e57450 (2013)
  69. Continuous nonradioactive method for screening trypanosomal trans-sialidase activity and its inhibitors. Sartor PA, Agusti R, Leguizamón MS, Campetella O, de Lederkremer RM. Glycobiology 20 982-990 (2010)
  70. Design of e-pharmacophore models using compound fragments for the trans-sialidase of Trypanosoma cruzi: screening for novel inhibitor scaffolds. Miller BR, Roitberg AE. J Mol Graph Model 45 84-97 (2013)
  71. Donor substrate binding to trans-sialidase of Trypanosoma cruzi as studied by STD NMR. Blume A, Neubacher B, Thiem J, Peters T. Carbohydr Res 342 1904-1909 (2007)
  72. Gallus gallus NEU3 sialidase as model to study protein evolution mechanism based on rapid evolving loops. Giacopuzzi E, Barlati S, Preti A, Venerando B, Monti E, Borsani G, Bresciani R. BMC Biochem 12 45 (2011)
  73. Sialylation of lactosyl lipids in membrane microdomains by T. cruzi trans-sialidase. Noble GT, Craven FL, Segarra-Maset MD, Martínez JE, Šardzík R, Flitsch SL, Webb SJ. Org Biomol Chem 12 9272-9278 (2014)
  74. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Pierdominici-Sottile G, Palma J, Roitberg AE. Proteins 82 424-435 (2014)
  75. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Wilbrink MH, ten Kate GA, van Leeuwen SS, Sanders P, Sallomons E, Hage JA, Dijkhuizen L, Kamerling JP. Appl Environ Microbiol 80 5984-5991 (2014)
  76. Identification of benzoylisoquinolines as potential anti-Chagas agents. Byler KG, Brito-Arias M, Marquez-Navarro A, Nogueda-Torres B, Torres-Bustillos LG, Martínez-Mayorga K. Bioorg Med Chem 20 2587-2594 (2012)
  77. Synthesis of Neu5Ac oligosaccharides and analogues by transglycosylation and their binding properties as ligands to MAG. Neubacher B, Scheid S, Kelm S, Frasch AC, Meyer B, Thiem J. Chembiochem 7 896-899 (2006)
  78. Synthesis of divalent ligands of β-thio- and β-N-galactopyranosides and related lactosides and their evaluation as substrates and inhibitors of Trypanosoma cruzi trans-sialidase. Cano ME, Agusti R, Cagnoni AJ, Tesoriero MF, Kovensky J, Uhrig ML, de Lederkremer RM. Beilstein J Org Chem 10 3073-3086 (2014)
  79. Auto-antibodies to receptor tyrosine kinases TrkA, TrkB and TrkC in patients with chronic Chagas' disease. Lu B, Petrola Z, Luquetti AO, PereiraPerrin M. Scand J Immunol 67 603-609 (2008)
  80. Design, synthesis and enzymatic evaluation of 3-O-substituted aryl β-D-galactopyranosides as inhibitors of Trypanosoma cruzi trans-sialidase. Silva BL, S Filho JD, Andrade P, Carvalho I, Alves RJ. Bioorg Med Chem Lett 24 4529-4532 (2014)
  81. Evidence of ternary complex formation in Trypanosoma cruzi trans-sialidase catalysis. Oliveira IA, Gonçalves AS, Neves JL, von Itzstein M, Todeschini AR. J Biol Chem 289 423-436 (2014)
  82. Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156). Chuzel L, Ganatra MB, Rapp E, Henrissat B, Taron CH. J Biol Chem 293 18138-18150 (2018)
  83. Improved bioavailability of inhibitors of Trypanosoma cruzi trans-sialidase: PEGylation of lactose analogs with multiarm polyethyleneglycol. Giorgi ME, Ratier L, Agusti R, Frasch AC, de Lederkremer RM. Glycobiology 22 1363-1373 (2012)
  84. Inactive trans-Sialidase Expression in iTS-null Trypanosoma cruzi Generates Virulent Trypomastigotes. Pascuale CA, Burgos JM, Postan M, Lantos AB, Bertelli A, Campetella O, Leguizamón MS. Front Cell Infect Microbiol 7 430 (2017)
  85. Insights into the activity and specificity of Trypanosoma cruzi trans-sialidase from molecular dynamics simulations. Mitchell FL, Neres J, Ramraj A, Raju RK, Hillier IH, Vincent MA, Bryce RA. Biochemistry 52 3740-3751 (2013)
  86. Trypanosoma cruzi-Derived Neurotrophic Factor: Role in Neural Repair and Neuroprotection. Chuenkova MV, Pereiraperrin M. J Neuroparasitology 1 55-60 (2010)
  87. α-Selective glycosylation affords mucin-related GalNAc amino acids and diketopiperazines active on Trypanosoma cruzi. Martins-Teixeira MB, Campo VL, Biondo M, Sesti-Costa R, Carneiro ZA, Silva JS, Carvalho I. Bioorg Med Chem 21 1978-1987 (2013)
  88. Biochemical diversity in the Trypanosoma congolense trans-sialidase family. Gbem TT, Waespy M, Hesse B, Dietz F, Smith J, Chechet GD, Nok JA, Kelm S. PLoS Negl Trop Dis 7 e2549 (2013)
  89. It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity. Nordvang RT, Nyffenegger C, Holck J, Jers C, Zeuner B, Sundekilde UK, Meyer AS, Mikkelsen JD. PLoS One 11 e0158434 (2016)
  90. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34. Yu H, Griffiths TM. Phys Chem Chem Phys 16 5785-5792 (2014)
  91. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase. Kashif M, Moreno-Herrera A, Villalobos-Rocha JC, Nogueda-Torres B, Pérez-Villanueva J, Rodríguez-Villar K, Medina-Franco JL, de Andrade P, Carvalho I, Rivera G. Molecules 22 (2017)
  92. Metabolic Labeling of Surface Neo-sialylglyconjugates Catalyzed by Trypanosoma cruzi trans-Sialidase. Carlevaro G, Lantos AB, Cánepa GE, de Los Milagros Cámara M, Somoza M, Buscaglia CA, Campetella O, Mucci J. Methods Mol Biol 1955 135-146 (2019)
  93. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Nat Commun 10 4816 (2019)
  94. Synthesis and Characterization of Sialylated Lactose- and Lactulose-Derived Oligosaccharides by Trypanosoma cruzi Trans-sialidase. Pham HTT, Ten Kate GA, Dijkhuizen L, van Leeuwen SS. J Agric Food Chem 67 3469-3479 (2019)
  95. Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Slack TJ, Li W, Shi D, McArthur JB, Zhao G, Li Y, Xiao A, Khedri Z, Yu H, Liu Y, Chen X. Bioorg Med Chem 26 5751-5757 (2018)
  96. Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase. de Andrade P, Ahmadipour S, Field RA. Beilstein J Org Chem 18 208-216 (2022)
  97. Anti-Trypanosoma cruzi Properties of Sesquiterpene Lactones Isolated from Stevia spp.: In Vitro and In Silico Studies. Borgo J, Elso OG, Gomez J, Coll M, Catalán CAN, Mucci J, Alvarez G, Randall LM, Barrera P, Malchiodi EL, Bivona AE, Martini MF, Sülsen VP. Pharmaceutics 15 647 (2023)
  98. Cooperativity of catalytic and lectin-like domain of Trypanosoma congolense trans-sialidase modulates its catalytic activity. Waespy M, Gbem TT, Dinesh Kumar N, Solaiyappan Mani S, Rosenau J, Dietz F, Kelm S. PLoS Negl Trop Dis 16 e0009585 (2022)
  99. Crystal structure of the Propionibacterium acnes surface sialidase, a drug target for P. acnes-associated diseases. Yu ACY, Volkers G, Jongkees SAK, Worrall LJ, Withers SG, Strynadka NCJ. Glycobiology 32 162-170 (2022)
  100. Effect of the Tc13Tul antigen from Trypanosoma cruzi on splenocytes from naïve mice. Tasso LM, Bruballa AC, Garavaglia PA, Esteva MI, Albareda MC, García GA. Parasitology 147 1114-1123 (2020)
  101. Functional and structural analyses reveal that a dual domain sialidase protects bacteria from complement killing through desialylation of complement factors. Clark ND, Pham C, Kurniyati K, Sze CW, Coleman L, Fu Q, Zhang S, Malkowski MG, Li C. PLoS Pathog 19 e1011674 (2023)
  102. Molecular Dynamics Simulations Reveal the Conformational Transition of GH33 Sialidases. Cao X, Yang X, Xiao M, Jiang X. Int J Mol Sci 24 6830 (2023)
  103. N-glycosylation modulates enzymatic activity of Trypanosoma congolense trans-sialidase. Rosenau J, Grothaus IL, Yang Y, Kumar ND, Ciacchi LC, Kelm S, Waespy M. J Biol Chem 298 102403 (2022)
  104. Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax. Haynes CL, Ameloot P, Remaut H, Callewaert N, Sterckx YG, Magez S. Acta Crystallogr F Struct Biol Commun 71 577-585 (2015)
  105. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase. Gallant JP, Lima-Cordón RA, Justi SA, Monroy MC, Viola T, Stevens L. Infect Genet Evol 62 151-159 (2018)
  106. Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease. Cai CW, O'Shea A, Eickhoff CS, Guo H, Lewis WG, Beverley SM, Hoft DF. Front Microbiol 13 1059115 (2022)