1mzi Citations

Structural analysis of the epitope of the anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion.

Abstract

Inhibition of human immunodeficiency virus (HIV) fusion with the host cell has emerged as a viable therapeutic strategy, and rational design of inhibitors and vaccines, interfering with this process, is a prime target for antiviral research. To advance our knowledge of the structural biology of HIV fusion, we have studied the membrane-proximal region of the fusogenic envelope subunit gp41, which includes the epitope ELDKWA of the broadly neutralizing human antibody 2F5. The structural evidence available for this region is contradictory, with some studies suggesting an overall helical conformation, while the X-ray structure of the ELDKWAS peptide bound to the antibody shows it folded in a type I beta turn. We used a two-step strategy: Firstly, by a competition binding assay, we identified the proper boundaries of the domain recognized by 2F5, which we found considerably larger than the ELDKWAS hexapeptide. Secondly, we studied the structure of the resulting 13 amino acid residue peptide by collecting NMR data and analyzing them by our previously developed statistical method (NAMFIS). Our study revealed that the increase in binding affinity goes in parallel with stabilization of specific local and global conformational propensities, absent from the shorter epitope. When compounded with the available biological evidence, our structural analysis allows us to propose a specific role for the membrane-proximal region during HIV fusion, in terms of a conformational transition between the turn and the helical structure. At the same time, our hypothesis offers a structural explanation for the mechanism of neutralization of mAb 2F5.

Articles - 1mzi mentioned but not cited (3)

  1. Structure and immunogenicity of a peptide vaccine, including the complete HIV-1 gp41 2F5 epitope: implications for antibody recognition mechanism and immunogen design. Serrano S, Araujo A, Apellániz B, Bryson S, Carravilla P, de la Arada I, Huarte N, Rujas E, Pai EF, Arrondo JLR, Domene C, Jiménez MA, Nieva JL. J Biol Chem 289 6565-6580 (2014)
  2. Computer-Aided Approaches for Targeting HIVgp41. Allen WJ, Rizzo RC. Biology (Basel) 1 311-338 (2012)
  3. Folding Molecular Dynamics Simulation of a gp41-Derived Peptide Reconcile Divergent Structure Determinations. Georgoulia PS, Glykos NM. ACS Omega 3 14746-14754 (2018)


Reviews citing this publication (9)

  1. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Montero M, van Houten NE, Wang X, Scott JK. Microbiol Mol Biol Rev 72 54-84, table of contents (2008)
  2. Neutralizing antibodies to HIV-1 induced by immunization. McCoy LE, Weiss RA. J Exp Med 210 209-223 (2013)
  3. Neutralization of animal virus infectivity by antibody. Reading SA, Dimmock NJ. Arch Virol 152 1047-1059 (2007)
  4. Interfacial pre-transmembrane domains in viral proteins promoting membrane fusion and fission. Lorizate M, Huarte N, Sáez-Cirión A, Nieva JL. Biochim Biophys Acta 1778 1624-1639 (2008)
  5. Antigen-specific B cell detection reagents: use and quality control. Moody MA, Haynes BF. Cytometry A 73 1086-1092 (2008)
  6. Short communication: In vitro synergy between peptides or neutralizing antibodies targeting the N- and C-terminal heptad repeats of HIV Type 1 gp41. Hrin R, Montgomery DL, Wang F, Condra JH, An Z, Strohl WR, Bianchi E, Pessi A, Joyce JG, Wang YJ. AIDS Res Hum Retroviruses 24 1537-1544 (2008)
  7. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Garg H, Viard M, Jacobs A, Blumenthal R. Curr Top Med Chem 11 2947-2958 (2011)
  8. Passive immunization against HIV/AIDS by antibody gene transfer. Yang L, Wang P. Viruses 6 428-447 (2014)
  9. The virus-immunity ecosystem. Doherty PC, Turner SJ. Arch Virol Suppl 17-32 (2005)

Articles citing this publication (82)

  1. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene KM, Bilska M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BH, Montefiori DC. J Virol 79 10108-10125 (2005)
  2. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. Ofek G, Tang M, Sambor A, Katinger H, Mascola JR, Wyatt R, Kwong PD. J Virol 78 10724-10737 (2004)
  3. Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. Li M, Salazar-Gonzalez JF, Derdeyn CA, Morris L, Williamson C, Robinson JE, Decker JM, Li Y, Salazar MG, Polonis VR, Mlisana K, Karim SA, Hong K, Greene KM, Bilska M, Zhou J, Allen S, Chomba E, Mulenga J, Vwalika C, Gao F, Zhang M, Korber BT, Hunter E, Hahn BH, Montefiori DC. J Virol 80 11776-11790 (2006)
  4. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Sun ZY, Oh KJ, Kim M, Yu J, Brusic V, Song L, Qiao Z, Wang JH, Wagner G, Reinherz EL. Immunity 28 52-63 (2008)
  5. Elicitation of structure-specific antibodies by epitope scaffolds. Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD. Proc Natl Acad Sci U S A 107 17880-17887 (2010)
  6. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, Katinger H, Burton DR. J Virol 79 1252-1261 (2005)
  7. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, Xia SM, Rits-Volloch S, Sun L, Harrison SC, Haynes BF, Chen B. Proc Natl Acad Sci U S A 106 20234-20239 (2009)
  8. The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. Alam SM, McAdams M, Boren D, Rak M, Scearce RM, Gao F, Camacho ZT, Gewirth D, Kelsoe G, Chen P, Haynes BF. J Immunol 178 4424-4435 (2007)
  9. Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC. J Virol 83 8289-8292 (2009)
  10. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Ingallinella P, Bianchi E, Ladwa NA, Wang YJ, Hrin R, Veneziano M, Bonelli F, Ketas TJ, Moore JP, Miller MD, Pessi A. Proc Natl Acad Sci U S A 106 5801-5806 (2009)
  11. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. Nelson JD, Brunel FM, Jensen R, Crooks ET, Cardoso RM, Wang M, Hessell A, Wilson IA, Binley JM, Dawson PE, Burton DR, Zwick MB. J Virol 81 4033-4043 (2007)
  12. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H. J Virol 78 6938-6945 (2004)
  13. Structure-function analysis of the epitope for 4E10, a broadly neutralizing human immunodeficiency virus type 1 antibody. Brunel FM, Zwick MB, Cardoso RM, Nelson JD, Wilson IA, Burton DR, Dawson PE. J Virol 80 1680-1687 (2006)
  14. Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Song L, Sun ZY, Coleman KE, Zwick MB, Gach JS, Wang JH, Reinherz EL, Wagner G, Kim M. Proc Natl Acad Sci U S A 106 9057-9062 (2009)
  15. Relationship between antibody 2F5 neutralization of HIV-1 and hydrophobicity of its heavy chain third complementarity-determining region. Ofek G, McKee K, Yang Y, Yang ZY, Skinner J, Guenaga FJ, Wyatt R, Zwick MB, Nabel GJ, Mascola JR, Kwong PD. J Virol 84 2955-2962 (2010)
  16. A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. Pejchal R, Gach JS, Brunel FM, Cardoso RM, Stanfield RL, Dawson PE, Burton DR, Zwick MB, Wilson IA. J Virol 83 8451-8462 (2009)
  17. Editorial The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. Zwick MB. AIDS 19 1725-1737 (2005)
  18. Binding of the 2F5 monoclonal antibody to native and fusion-intermediate forms of human immunodeficiency virus type 1 gp41: implications for fusion-inducing conformational changes. de Rosny E, Vassell R, Jiang S, Kunert R, Weiss CD. J Virol 78 2627-2631 (2004)
  19. Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype C HIV-1 Env clones from India. Kulkarni SS, Lapedes A, Tang H, Gnanakaran S, Daniels MG, Zhang M, Bhattacharya T, Li M, Polonis VR, McCutchan FE, Morris L, Ellenberger D, Butera ST, Bollinger RC, Korber BT, Paranjape RS, Montefiori DC. Virology 385 505-520 (2009)
  20. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. Julien JP, Bryson S, Nieva JL, Pai EF. J Mol Biol 384 377-392 (2008)
  21. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. Huang K, Incognito L, Cheng X, Ulbrandt ND, Wu H. J Virol 84 8132-8140 (2010)
  22. Heterologous epitope-scaffold prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. Guenaga J, Dosenovic P, Ofek G, Baker D, Schief WR, Kwong PD, Karlsson Hedestam GB, Wyatt RT. PLoS One 6 e16074 (2011)
  23. Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: replication, neutralization, and survey of HIV-1-positive plasma. Yuste E, Sanford HB, Carmody J, Bixby J, Little S, Zwick MB, Greenough T, Burton DR, Richman DD, Desrosiers RC, Johnson WE. J Virol 80 3030-3041 (2006)
  24. Antibodies to conserved epitopes of the HIV-1 envelope in sera from long-term non-progressors: prevalence and association with neutralizing activity. Braibant M, Brunet S, Costagliola D, Rouzioux C, Agut H, Katinger H, Autran B, Barin F. AIDS 20 1923-1930 (2006)
  25. Utilization of immunoglobulin G Fc receptors by human immunodeficiency virus type 1: a specific role for antibodies against the membrane-proximal external region of gp41. Perez LG, Costa MR, Todd CA, Haynes BF, Montefiori DC. J Virol 83 7397-7410 (2009)
  26. Induction of antibodies in rhesus macaques that recognize a fusion-intermediate conformation of HIV-1 gp41. Dennison SM, Sutherland LL, Jaeger FH, Anasti KM, Parks R, Stewart S, Bowman C, Xia SM, Zhang R, Shen X, Scearce RM, Ofek G, Yang Y, Kwong PD, Santra S, Liao HX, Tomaras G, Letvin NL, Chen B, Alam SM, Haynes BF. PLoS One 6 e27824 (2011)
  27. Conformational constraints imposed on a pan-neutralizing HIV-1 antibody epitope result in increased antigenicity but not neutralizing response. Ho J, Uger RA, Zwick MB, Luscher MA, Barber BH, MacDonald KS. Vaccine 23 1559-1573 (2005)
  28. Importance of the membrane-perturbing properties of the membrane-proximal external region of human immunodeficiency virus type 1 gp41 to viral fusion. Vishwanathan SA, Hunter E. J Virol 82 5118-5126 (2008)
  29. Membrane association and epitope recognition by HIV-1 neutralizing anti-gp41 2F5 and 4E10 antibodies. Sánchez-Martínez S, Lorizate M, Katinger H, Kunert R, Nieva JL. AIDS Res Hum Retroviruses 22 998-1006 (2006)
  30. Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. Arnold GF, Velasco PK, Holmes AK, Wrin T, Geisler SC, Phung P, Tian Y, Resnick DA, Ma X, Mariano TM, Petropoulos CJ, Taylor JW, Katinger H, Arnold E. J Virol 83 5087-5100 (2009)
  31. Immunogenicity of recombinant human immunodeficiency virus type 1-like particles expressing gp41 derivatives in a pre-fusion state. Kim M, Qiao Z, Yu J, Montefiori D, Reinherz EL. Vaccine 25 5102-5114 (2007)
  32. Specific phospholipid recognition by human immunodeficiency virus type-1 neutralizing anti-gp41 2F5 antibody. Sánchez-Martínez S, Lorizate M, Hermann K, Kunert R, Basañez G, Nieva JL. FEBS Lett 580 2395-2399 (2006)
  33. Human immunodeficiency virus type 1-neutralizing monoclonal antibody 2F5 is multispecific for sequences flanking the DKW core epitope. Menendez A, Chow KC, Pan OC, Scott JK. J Mol Biol 338 311-327 (2004)
  34. Localization of a conformational epitope common to non-native and fibrillar immunoglobulin light chains. O'Nuallain B, Allen A, Kennel SJ, Weiss DT, Solomon A, Wall JS. Biochemistry 46 1240-1247 (2007)
  35. Crystal structure of a non-neutralizing antibody to the HIV-1 gp41 membrane-proximal external region. Nicely NI, Dennison SM, Spicer L, Scearce RM, Kelsoe G, Ueda Y, Chen H, Liao HX, Alam SM, Haynes BF. Nat Struct Mol Biol 17 1492-1494 (2010)
  36. HIV gp41-induced apoptosis is mediated by caspase-3-dependent mitochondrial depolarization, which is inhibited by HIV protease inhibitor nelfinavir. Garg H, Blumenthal R. J Leukoc Biol 79 351-362 (2006)
  37. Immunofocusing: antigen engineering to promote the induction of HIV-neutralizing antibodies. Pantophlet R, Burton DR. Trends Mol Med 9 468-473 (2003)
  38. The broadly neutralizing anti-human immunodeficiency virus type 1 4E10 monoclonal antibody is better adapted to membrane-bound epitope recognition and blocking than 2F5. Huarte N, Lorizate M, Maeso R, Kunert R, Arranz R, Valpuesta JM, Nieva JL. J Virol 82 8986-8996 (2008)
  39. Interactions between natural killer cells and antibody Fc result in enhanced antibody neutralization of human immunodeficiency virus type 1. Forthal DN, Landucci G, Phan TB, Becerra J. J Virol 79 2042-2049 (2005)
  40. Trimeric membrane-anchored gp41 inhibits HIV membrane fusion. Lenz O, Dittmar MT, Wagner A, Ferko B, Vorauer-Uhl K, Stiegler G, Weissenhorn W. J Biol Chem 280 4095-4101 (2005)
  41. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies. White RJ, Kallewaard HM, Hsieh W, Patterson AS, Kasehagen JB, Cash KJ, Uzawa T, Soh HT, Plaxco KW. Anal Chem 84 1098-1103 (2012)
  42. Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. Lorizate M, Gómara MJ, de la Torre BG, Andreu D, Nieva JL. J Mol Biol 360 45-55 (2006)
  43. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. J Mol Biol 385 675-691 (2009)
  44. Differential inhibition of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and TZM-bl cells by endotoxin-mediated chemokine and gamma interferon production. Geonnotti AR, Bilska M, Yuan X, Ochsenbauer C, Edmonds TG, Kappes JC, Liao HX, Haynes BF, Montefiori DC. AIDS Res Hum Retroviruses 26 279-291 (2010)
  45. Structure-guided alterations of the gp41-directed HIV-1 broadly neutralizing antibody 2F5 reveal new properties regarding its neutralizing function. Guenaga J, Wyatt RT. PLoS Pathog 8 e1002806 (2012)
  46. Analysis of the HIV-1 gp41 specific immune response using a multiplexed antibody detection assay. Opalka D, Pessi A, Bianchi E, Ciliberto G, Schleif W, McElhaugh M, Danzeisen R, Geleziunas R, Miller M, Eckert DM, Bramhill D, Joyce J, Cook J, Magilton W, Shiver J, Emini E, Esser MT. J Immunol Methods 287 49-65 (2004)
  47. Both lipid environment and pH are critical for determining physiological solution structure of 3-D-conserved epitopes of the HIV-1 gp41-MPER peptide P1. Coutant J, Yu H, Clément MJ, Alfsen A, Toma F, Curmi PA, Bomsel M. FASEB J 22 4338-4351 (2008)
  48. Characterization of a trimeric MPER containing HIV-1 gp41 antigen. Hinz A, Schoehn G, Quendler H, Hulsik DL, Stiegler G, Katinger H, Seaman MS, Montefiori D, Weissenhorn W. Virology 390 221-227 (2009)
  49. Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region. Verkoczy L, Moody MA, Holl TM, Bouton-Verville H, Scearce RM, Hutchinson J, Alam SM, Kelsoe G, Haynes BF. PLoS One 4 e7215 (2009)
  50. Neutralization and infectivity characteristics of envelope glycoproteins from human immunodeficiency virus type 1 infected donors whose sera exhibit broadly cross-reactive neutralizing activity. Cham F, Zhang PF, Heyndrickx L, Bouma P, Zhong P, Katinger H, Robinson J, van der Groen G, Quinnan GV. Virology 347 36-51 (2006)
  51. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry. Giannecchini S, Bonci F, Pistello M, Matteucci D, Sichi O, Rovero P, Bendinelli M. Virology 320 156-166 (2004)
  52. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity. Lu Y, Neo TL, Liu DX, Tam JP. Biochem Biophys Res Commun 371 356-360 (2008)
  53. Designing a soluble near full-length HIV-1 gp41 trimer. Gao G, Wieczorek L, Peachman KK, Polonis VR, Alving CR, Rao M, Rao VB. J Biol Chem 288 234-246 (2013)
  54. Assessment of antibody responses against gp41 in HIV-1-infected patients using soluble gp41 fusion proteins and peptides derived from M group consensus envelope. Penn-Nicholson A, Han DP, Kim SJ, Park H, Ansari R, Montefiori DC, Cho MW. Virology 372 442-456 (2008)
  55. Characteristics of the env genes of HIV type 1 quasispecies in long-term nonprogressors with broadly neutralizing antibodies. Braibant M, Agut H, Rouzioux C, Costagliola D, Autran B, Barin F. J Acquir Immune Defic Syndr 47 274-284 (2008)
  56. Effect of epitope position on neutralization by anti-human immunodeficiency virus monoclonal antibody 2F5. Ou W, Lu N, Yu SS, Silver J. J Virol 80 2539-2547 (2006)
  57. Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins. Wang P, Yang X. J Virol 84 7114-7123 (2010)
  58. Secondary structure assignment for conformationally irregular peptides: comparison between DSSP, STRIDE and KAKSI. Zhang Y, Sagui C. J Mol Graph Model 55 72-84 (2015)
  59. Immunogenicity of a chimeric hepatitis A virus (HAV) carrying the HIV gp41 epitope 2F5. Kusov YY, Zamjatina NA, Poleschuk VF, Michailov MI, Morace G, Eberle J, Gauss-Müller V. Antiviral Res 73 101-111 (2007)
  60. Conformational ensembles of flexible beta-turn mimetics in DMSO-d6. Koivisto JJ, Kumpulainen ET, Koskinen AM. Org Biomol Chem 8 2103-2116 (2010)
  61. Structural basis of antiviral activity of peptides from MPER of FIV gp36. Grimaldi M, Stillitano I, Amodio G, Santoro A, Buonocore M, Moltedo O, Remondelli P, D'Ursi AM. PLoS One 13 e0204042 (2018)
  62. Generation of HIV-1 potent and broad neutralizing antibodies by immunization with postfusion HR1/HR2 complex. Dawood R, Benjelloun F, Pin JJ, Kone A, Chanut B, Jospin F, Lucht F, Verrier B, Moog C, Genin C, Paul S. AIDS 27 717-730 (2013)
  63. Structural features of the C8 antiviral peptide in a membrane-mimicking environment. Scrima M, Di Marino S, Grimaldi M, Campana F, Vitiello G, Piotto SP, D'Errico G, D'Ursi AM. Biochim Biophys Acta 1838 1010-1018 (2014)
  64. Antibodies generated in cats by a lipopeptide reproducing the membrane-proximal external region of the feline immunodeficiency virus transmembrane enhance virus infectivity. Giannecchini S, D'Ursi AM, Esposito C, Scrima M, Zabogli E, Freer G, Rovero P, Bendinelli M. Clin Vaccine Immunol 14 944-951 (2007)
  65. Designed recombinant adenovirus type 5 vector induced envelope-specific CD8(+) cytotoxic T lymphocytes and cross-reactive neutralizing antibodies against human immunodeficiency virus type 1. Ura T, Yoshida A, Xin KQ, Yoshizaki S, Yashima S, Abe S, Mizuguchi H, Okuda K. J Gene Med 11 139-149 (2009)
  66. Chimeric rhinoviruses displaying MPER epitopes elicit anti-HIV neutralizing responses. Yi G, Lapelosa M, Bradley R, Mariano TM, Dietz DE, Hughes S, Wrin T, Petropoulos C, Gallicchio E, Levy RM, Arnold E, Arnold GF. PLoS One 8 e72205 (2013)
  67. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity. Huarte N, Araujo A, Arranz R, Lorizate M, Quendler H, Kunert R, Valpuesta JM, Nieva JL. PLoS One 7 e52740 (2012)
  68. Interaction of short modified peptides deriving from glycoprotein gp36 of feline immunodeficiency virus with phospholipid membranes. D'Errico G, Vitiello G, D'Ursi AM, Marsh D. Eur Biophys J 38 873-882 (2009)
  69. Constrained peptide models from phage display libraries highlighting the cognate epitope-specific potential of the anti-HIV-1 mAb 2F5. Palacios-Rodríguez Y, Gazarian T, Huerta L, Gazarian K. Immunol Lett 136 80-89 (2011)
  70. Dissection of seroreactivity against the tryptophan-rich motif of the feline immunodeficiency virus transmembrane glycoprotein. Freer G, Giannecchini S, Tissot A, Bachmann MF, Rovero P, Serres PF, Bendinelli M. Virology 322 360-369 (2004)
  71. The membranes' role in the HIV-1 neutralizing monoclonal antibody 2F5 mode of action needs re-evaluation. Veiga AS, Castanho MA. Antiviral Res 71 69-72 (2006)
  72. Membrane mediated regulation in free peptides of HIV-1 gp41: minimal modulation of the hemifusion phase. Cerasoli E, Ravi J, Gregor C, Hussain R, Siligardi G, Martyna G, Crain J, Ryadnov MG. Phys Chem Chem Phys 14 1277-1285 (2012)
  73. Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Augusto MT, Hollmann A, Troise F, Veiga AS, Pessi A, Santos NC. Colloids Surf B Biointerfaces 152 311-316 (2017)
  74. Membrane perturbing actions of HIV type 1 glycoprotein 41 domains are inhibited by helical C-peptides. Mobley PW, Barry JA, Waring AJ, Sherman MA, Gordon LM. AIDS Res Hum Retroviruses 23 224-242 (2007)
  75. Autonomous folding in the membrane proximal HIV peptide gp41(659-671): pH tuneability at micelle interfaces. Gregor CR, Cerasoli E, Tulip PR, Ryadnov MG, Martyna GJ, Crain J. Phys Chem Chem Phys 13 127-135 (2011)
  76. Concentration-Dependent Structural Transition of the HIV-1 gp41 MPER Peptide into α-Helical Trimers. Chiliveri SC, Louis JM, Bax A. Angew Chem Int Ed Engl 60 166-170 (2021)
  77. Eliciting neutralizing antibodies against the membrane proximal external region of HIV-1 Env by chimeric live attenuated influenza A virus vaccines. Zang Y, Du D, Li N, Su W, Liu X, Zhang Y, Nie J, Wang Y, Kong W, Jiang C. Vaccine 33 3859-3864 (2015)
  78. Immunogenic epitopes on the surface of the hepatitis A virus capsid: Impact of secondary structure and/or isoelectric point on chimeric virus assembly. Kusov Y, Gauss-Müller V, Morace G. Virus Res 130 296-302 (2007)
  79. Letter Possible explanations for the broadly neutralizing activity of HIV-1 gp41 specific monoclonal antibodies by recognition pattern based amino acid sequence analyses. Lu Z, Tan Y, Tong P, Yu Y, Chen YH. Immunol Lett 150 152-154 (2013)
  80. Free energy simulation of helical transitions. Ma N, Chung YH, van der Vaart A. J Comput Chem 34 640-645 (2013)
  81. NMR Structure of the FIV gp36 C-Terminal Heptad Repeat and Membrane-Proximal External Region. Grimaldi M, Buonocore M, Scrima M, Stillitano I, D'Errico G, Santoro A, Amodio G, Eletto D, Gloria A, Russo T, Moltedo O, Remondelli P, Tosco A, Wienk HLJ, D'Ursi AM. Int J Mol Sci 21 E2037 (2020)
  82. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247. Kirby KA, Ong YT, Hachiya A, Laughlin TG, Chiang LA, Pan Y, Moran JL, Marchand B, Singh K, Gallazzi F, Quinn TP, Yoshimura K, Murakami T, Matsushita S, Sarafianos SG. FASEB J 29 70-80 (2015)


Related citations provided by authors (3)