1nmf Citations

Structure in solution of the major cold-shock protein from Bacillus subtilis.

Abstract

The cold-shock domain (CSD) is found in many eukaryotic transcriptional factors and is responsible for the specific binding to DNA of a cis-element called the Y-box. The same domain exists in the sequence of the Xenopus RNA-binding proteins FRG Y1 and FRG Y2 (refs 1, 3). The major cold-shock proteins of Escherichia coli (CS7.4) and B. subtilis (CspB) have sequences that are more than 40 per cent identical to the cold-shock domain. We present here the three-dimensional structure of CspB determined by nuclear magnetic resonance spectroscopy. The 67-residue protein consists of an antiparallel five-stranded beta-barrel with strands connected by turns and loops. The structure resembles that of staphylococcal nuclease and the gene-5 single-stranded-DNA-binding protein. A three-stranded beta-sheet, which contains the conserved RNA-binding motif RNP1 as well as a motif similar to RNP2 in two neighbouring antiparallel beta-strands, has basic and aromatic residues at its surface which could serve as a binding site for single-stranded DNA. CspB binds to single-stranded DNA in gel retardation experiments.

Articles - 1nmf mentioned but not cited (2)

  1. Native protein sequences are close to optimal for their structures. Kuhlman B, Baker D. Proc Natl Acad Sci U S A 97 10383-10388 (2000)
  2. Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Zeeb M, Max KE, Weininger U, Löw C, Sticht H, Balbach J. Nucleic Acids Res 34 4561-4571 (2006)


Reviews citing this publication (17)

  1. A superfamily of proteins that contain the cold-shock domain. Graumann PL, Marahiel MA. Trends Biochem Sci 23 286-290 (1998)
  2. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Wolffe AP. Bioessays 16 245-251 (1994)
  3. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Yamanaka K, Fang L, Inouye M. Mol Microbiol 27 247-255 (1998)
  4. RNA recognition by RNP proteins during RNA processing. Varani G, Nagai K. Annu Rev Biophys Biomol Struct 27 407-445 (1998)
  5. Searching protein structure databases has come of age. Holm L, Sander C. Proteins 19 165-173 (1994)
  6. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Valpuesta JM, Carrascosa JL. Q Rev Biophys 27 107-155 (1994)
  7. Bacterial cold shock responses. Weber MH, Marahiel MA. Sci Prog 86 9-75 (2003)
  8. RNA remodeling and gene regulation by cold shock proteins. Phadtare S, Severinov K. RNA Biol 7 788-795 (2010)
  9. Mechanisms of Lin28-mediated miRNA and mRNA regulation--a structural and functional perspective. Mayr F, Heinemann U. Int J Mol Sci 14 16532-16553 (2013)
  10. RNA binding strategies of ribosomal proteins. Draper DE, Reynaldo LP. Nucleic Acids Res 27 381-388 (1999)
  11. A case of convergent evolution of nucleic acid binding modules. Graumann P, Marahiel MA. Bioessays 18 309-315 (1996)
  12. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Weber MH, Marahiel MA. Philos Trans R Soc Lond B Biol Sci 357 895-907 (2002)
  13. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. Chaikam V, Karlson DT. BMB Rep 43 1-8 (2010)
  14. Single-stranded DNA binding protein encoded by the filamentous bacteriophage M13: structural and functional characteristics. Stassen AP, Folmer RH, Hilbers CW, Konings RN. Mol Biol Rep 20 109-127 (1994)
  15. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Heinemann U, Roske Y. Cancers (Basel) 13 E190 (2021)
  16. Lac repressor-operator complex. Kercher MA, Lu P, Lewis M. Curr Opin Struct Biol 7 76-85 (1997)
  17. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles citing this publication (112)

  1. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Birney E, Kumar S, Krainer AR. Nucleic Acids Res 21 5803-5816 (1993)
  2. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Schindelin H, Jiang W, Inouye M, Heinemann U. Proc Natl Acad Sci U S A 91 5119-5123 (1994)
  3. Extremely rapid protein folding in the absence of intermediates. Schindler T, Herrler M, Marahiel MA, Schmid FX. Nat Struct Biol 2 663-673 (1995)
  4. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Hunt SL, Hsuan JJ, Totty N, Jackson RJ. Genes Dev 13 437-448 (1999)
  5. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. Bycroft M, Grünert S, Murzin AG, Proctor M, St Johnston D. EMBO J 14 3563-3571 (1995)
  6. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Perl D, Welker C, Schindler T, Schröder K, Marahiel MA, Jaenicke R, Schmid FX. Nat Struct Biol 5 229-235 (1998)
  7. Cold shock stress-induced proteins in Bacillus subtilis. Graumann P, Schröder K, Schmid R, Marahiel MA. J Bacteriol 178 4611-4619 (1996)
  8. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Newkirk K, Feng W, Jiang W, Tejero R, Emerson SD, Inouye M, Montelione GT. Proc Natl Acad Sci U S A 91 5114-5118 (1994)
  9. Mammalian male and female germ cells express a germ cell-specific Y-Box protein, MSY2. Gu W, Tekur S, Reinbold R, Eppig JJ, Choi YC, Zheng JZ, Murray MT, Hecht NB. Biol Reprod 59 1266-1274 (1998)
  10. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Fabre E, Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC. Cell 78 275-289 (1994)
  11. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif. Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi CO, Boelens R. EMBO J 16 1436-1443 (1997)
  12. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Lee SJ, Xie A, Jiang W, Etchegaray JP, Jones PG, Inouye M. Mol Microbiol 11 833-839 (1994)
  13. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA. Mol Microbiol 16 699-708 (1995)
  14. The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. Kloks CP, Spronk CA, Lasonder E, Hoffmann A, Vuister GW, Grzesiek S, Hilbers CW. J Mol Biol 316 317-326 (2002)
  15. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Mueller U, Perl D, Schmid FX, Heinemann U. J Mol Biol 297 975-988 (2000)
  16. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. Mol Microbiol 39 1572-1584 (2001)
  17. Diffusion control in an elementary protein folding reaction. Jacob M, Schindler T, Balbach J, Schmid FX. Proc Natl Acad Sci U S A 94 5622-5627 (1997)
  18. RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. Frankel P, Aronheim A, Kavanagh E, Balda MS, Matter K, Bunney TD, Marshall CJ. EMBO J 24 54-62 (2005)
  19. Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Yamanaka K, Mitani T, Ogura T, Niki H, Hiraga S. Mol Microbiol 13 301-312 (1994)
  20. An electrostatic basis for the stability of thermophilic proteins. Dominy BN, Minoux H, Brooks CL. Proteins 57 128-141 (2004)
  21. The folding transition state of the cold shock protein is strongly polarized. Garcia-Mira MM, Boehringer D, Schmid FX. J Mol Biol 339 555-569 (2004)
  22. Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Kowalski LR, Kondo K, Inouye M. Mol Microbiol 15 341-353 (1995)
  23. A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Sato N. Nucleic Acids Res 23 2161-2167 (1995)
  24. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. Sachs R, Max KE, Heinemann U, Balbach J. RNA 18 65-76 (2012)
  25. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. Graumann P, Marahiel MA. FEBS Lett 338 157-160 (1994)
  26. Crystal structure of a prokaryotic aspartyl tRNA-synthetase. Delarue M, Poterszman A, Nikonov S, Garber M, Moras D, Thierry JC. EMBO J 13 3219-3229 (1994)
  27. RNA binding specificity of Unr, a protein with five cold shock domains. Triqueneaux G, Velten M, Franzon P, Dautry F, Jacquemin-Sablon H. Nucleic Acids Res 27 1926-1934 (1999)
  28. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Brandi A, Pon CL, Gualerzi CO. Biochimie 76 1090-1098 (1994)
  29. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Kremer W, Schuler B, Harrieder S, Geyer M, Gronwald W, Welker C, Jaenicke R, Kalbitzer HR. Eur J Biochem 268 2527-2539 (2001)
  30. Rapid collapse precedes the fast two-state folding of the cold shock protein. Magg C, Schmid FX. J Mol Biol 335 1309-1323 (2004)
  31. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB. Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U. J Mol Biol 360 702-714 (2006)
  32. In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest. Yang J, Morales CR, Medvedev S, Schultz RM, Hecht NB. Biol Reprod 76 48-54 (2007)
  33. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Jacquemin-Sablon H, Triqueneaux G, Deschamps S, le Maire M, Doniger J, Dautry F. Nucleic Acids Res 22 2643-2650 (1994)
  34. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM. J Mol Biol 336 929-942 (2004)
  35. A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. Harris CE, Boden RA, Astell CR. J Virol 73 72-80 (1999)
  36. Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima. Wassenberg D, Welker C, Jaenicke R. J Mol Biol 289 187-193 (1999)
  37. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus. Max KE, Zeeb M, Bienert R, Balbach J, Heinemann U. FEBS J 274 1265-1279 (2007)
  38. Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB. Gross M, Wilkins DK, Pitkeathly MC, Chung EW, Higham C, Clark A, Dobson CM. Protein Sci 8 1350-1357 (1999)
  39. Binding of Y-box proteins to RNA: involvement of different protein domains. Ladomery M, Sommerville J. Nucleic Acids Res 22 5582-5589 (1994)
  40. Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. Mayr B, Kaplan T, Lechner S, Scherer S. J Bacteriol 178 2916-2925 (1996)
  41. Characterization of the gene for dbpA, a family member of the nucleic-acid-binding proteins containing a cold-shock domain. Kudo S, Mattei MG, Fukuda M. Eur J Biochem 231 72-82 (1995)
  42. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces. Schubert M, Edge RE, Lario P, Cook MA, Strynadka NC, Mackie GA, McIntosh LP. J Mol Biol 341 37-54 (2004)
  43. RNA binding and chaperone activity of the E. coli cold-shock protein CspA. Rennella E, Sára T, Juen M, Wunderlich C, Imbert L, Solyom Z, Favier A, Ayala I, Weinhäupl K, Schanda P, Konrat R, Kreutz C, Brutscher B. Nucleic Acids Res 45 4255-4268 (2017)
  44. A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Sato N. Plant Mol Biol 24 819-823 (1994)
  45. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Teplyakov A, Obmolova G, Wilson KS, Ishii K, Kaji H, Samejima T, Kuranova I. Protein Sci 3 1098-1107 (1994)
  46. Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Schindler T, Perl D, Graumann P, Sieber V, Marahiel MA, Schmid FX. Proteins 30 401-406 (1998)
  47. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. Delbrück H, Mueller U, Perl D, Schmid FX, Heinemann U. J Mol Biol 313 359-369 (2001)
  48. RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins. Manival X, Ghisolfi-Nieto L, Joseph G, Bouvet P, Erard M. Nucleic Acids Res 29 2223-2233 (2001)
  49. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. Weber MH, Beckering CL, Marahiel MA. J Bacteriol 183 7381-7386 (2001)
  50. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Zeeb M, Balbach J. Protein Sci 12 112-123 (2003)
  51. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single-stranded nucleic acids. Folmer RH, Nilges M, Konings RN, Hilbers CW. EMBO J 14 4132-4142 (1995)
  52. Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Makhatadze GI, Marahiel MA. Protein Sci 3 2144-2147 (1994)
  53. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Czapski TR, Trun N. Gene 547 91-97 (2014)
  54. Probing the protein-folding mechanism using denaturant and temperature effects on rate constants. Guinn EJ, Kontur WS, Tsodikov OV, Shkel I, Record MT. Proc Natl Acad Sci U S A 110 16784-16789 (2013)
  55. Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. Nakaminami K, Sasaki K, Kajita S, Takeda H, Karlson D, Ohgi K, Imai R. FEBS Lett 579 4887-4891 (2005)
  56. The Y-box motif mediates redox-dependent transcriptional activation in mouse cells. Duh JL, Zhu H, Shertzer HG, Nebert DW, Puga A. J Biol Chem 270 30499-30507 (1995)
  57. CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Phadtare S, Hwang J, Severinov K, Inouye M. Genes Cells 8 801-810 (2003)
  58. Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics simulations. Huang X, Zhou HX. Biophys J 91 2451-2463 (2006)
  59. Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Welker C, Böhm G, Schurig H, Jaenicke R. Protein Sci 8 394-403 (1999)
  60. Identification and developmental characterization of a novel Y-box protein from Drosophila melanogaster. Thieringer HA, Singh K, Trivedi H, Inouye M. Nucleic Acids Res 25 4764-4770 (1997)
  61. Proteomic analysis of cold adaptation in a Siberian permafrost bacterium--Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Qiu Y, Kathariou S, Lubman DM. Proteomics 6 5221-5233 (2006)
  62. Comparative Study Recruiting proteins to the RNA world. Mattaj IW, Nagai K. Nat Struct Biol 2 518-522 (1995)
  63. Transcription antitermination by translation initiation factor IF1. Phadtare S, Kazakov T, Bubunenko M, Court DL, Pestova T, Severinov K. J Bacteriol 189 4087-4093 (2007)
  64. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Welte H, Zhou T, Mihajlenko X, Mayans O, Kovermann M. Sci Rep 10 2640 (2020)
  65. Characterization of a Schistosoma mansoni gene encoding a homologue of the Y-box binding protein. Franco GR, Garratt RC, Tanaka M, Simpson AJ, Pena SD. Gene 198 5-16 (1997)
  66. Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli. Schröder K, Zuber P, Willimsky G, Wagner B, Marahiel MA. Gene 136 277-280 (1993)
  67. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. Max KE, Wunderlich M, Roske Y, Schmid FX, Heinemann U. J Mol Biol 369 1087-1097 (2007)
  68. Conformational structure and binding mode of glyceraldehyde-3-phosphate dehydrogenase to tRNA studied by Raman and CD spectroscopy. Carmona P, Rodríguez-Casado A, Molina M. Biochim Biophys Acta 1432 222-233 (1999)
  69. Pathogenic Yersinia species carry a novel, cold-inducible major cold shock protein tandem gene duplication producing both bicistronic and monocistronic mRNA. Neuhaus K, Francis KP, Rapposch S, Görg A, Scherer S. J Bacteriol 181 6449-6455 (1999)
  70. Differential promoter usage of infA in response to cold shock in Escherichia coli. Ko JH, Lee SJ, Cho B, Lee Y. FEBS Lett 580 539-544 (2006)
  71. Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1. Wang N, Yamanaka K, Inouye M. Mol Microbiol 38 526-534 (2000)
  72. CSDBase: an interactive database for cold shock domain-containing proteins and the bacterial cold shock response. Weber MH, Fricke I, Doll N, Marahiel MA. Nucleic Acids Res 30 375-378 (2002)
  73. Characterisation of transition state structures for protein folding using 'high', 'medium' and 'low' {Phi}-values. Geierhaas CD, Salvatella X, Clarke J, Vendruscolo M. Protein Eng Des Sel 21 215-222 (2008)
  74. Characterization of a Y-Box factor from Aplysia californica. Skehel PA, Bartsch D. Gene 145 231-235 (1994)
  75. High-temperature solution NMR structure of TmCsp. Jung A, Bamann C, Kremer W, Kalbitzer HR, Brunner E. Protein Sci 13 342-350 (2004)
  76. Macromolecular Crowding Tunes Protein Stability by Manipulating Solvent Accessibility. Köhn B, Kovermann M. Chembiochem 20 759-763 (2019)
  77. NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor. Arolas JL, D'Silva L, Popowicz GM, Aviles FX, Holak TA, Ventura S. Structure 13 1193-1202 (2005)
  78. 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E.coli rho protein. Briercheck DM, Allison TJ, Richardson JP, Ellena JF, Wood TC, Rule GS. J Biomol NMR 8 429-444 (1996)
  79. Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana. Bhatt D, Saxena SC, Jain S, Dobriyal AK, Majee M, Arora S. Mol Biol Rep 40 1155-1165 (2013)
  80. Key role of coulombic interactions for the folding transition state of the cold shock protein. Garcia-Mira MM, Schmid FX. J Mol Biol 364 458-468 (2006)
  81. Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp. Ant5-2 from East Antarctica. Mojib N, Andersen DT, Bej AK. FEMS Microbiol Lett 319 106-114 (2011)
  82. A folded and functional protein domain in an amyloid-like fibril. Sackewitz M, von Einem S, Hause G, Wunderlich M, Schmid FX, Schwarz E. Protein Sci 17 1044-1054 (2008)
  83. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family. Phadtare S, Severinov K. Genes Cells 14 1227-1239 (2009)
  84. Concerted changes in the YB2/RYB-a protein and protamine 2 messenger RNA in the mouse testis under heat stress. Iuchi Y, Kaneko T, Matsuki S, Sasagawa I, Fujii J. Biol Reprod 68 129-135 (2003)
  85. Dynamical properties of cold shock protein A from Mycobacterium tuberculosis. D'Auria G, Esposito C, Falcigno L, Calvanese L, Iaccarino E, Ruggiero A, Pedone C, Pedone E, Berisio R. Biochem Biophys Res Commun 402 693-698 (2010)
  86. Side chain dynamics and alternative hydrogen bonding in the mechanism of protein thermostabilization. Khechinashvili NN, Fedorov MV, Kabanov AV, Monti S, Ghio C, Soda K. J Biomol Struct Dyn 24 255-262 (2006)
  87. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Jin B, Jeong KW, Kim Y. Biochem Biophys Res Commun 451 402-407 (2014)
  88. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer. Ren J, Nettleship JE, Sainsbury S, Saunders NJ, Owens RJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 247-251 (2008)
  89. Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product. Jain S, Saluja B, Gupta A, Marla SS, Goel R. Protein J 30 91-101 (2011)
  90. Computational characterisation of potential RNA-binding sites in arenavirus nucleocapsid proteins. Parisi G, Echave J, Ghiringhelli D, Romanowski V. Virus Genes 13 247-254 (1996)
  91. Identification of cis- and trans-acting elements involved in the expression of cold shock-inducible TIP1 gene of yeast Saccharomyces cerevisiae. Muñoz-Dorado J, Kondo K, Inouye M, Sone H. Nucleic Acids Res 22 560-568 (1994)
  92. Insights into Protein Stability in Cell Lysate by 19 F NMR Spectroscopy. Welte H, Kovermann M. Chembiochem 21 3575-3579 (2020)
  93. RNA polymerase subunit H features a beta-ribbon motif within a novel fold that is present in archaea and eukaryotes. Thiru A, Hodach M, Eloranta JJ, Kostourou V, Weinzierl RO, Matthews S. J Mol Biol 287 753-760 (1999)
  94. Structural effects on ss- and dsDNA recognition by a beta-hairpin peptide. Stewart AL, Waters ML. Chembiochem 10 539-544 (2009)
  95. Thermophilicity of wild type and mutant cold shock proteins by molecular dynamics simulation. Garofoli S, Falconi M, Desideri A. J Biomol Struct Dyn 21 771-780 (2004)
  96. Specificity of DNA binding and dimerization by CspE from Escherichia coli. Johnston D, Tavano C, Wickner S, Trun N. J Biol Chem 281 40208-40215 (2006)
  97. All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy. Köhn B, Kovermann M. Nat Commun 11 5760 (2020)
  98. Redesign of a WW domain peptide for selective recognition of single-stranded DNA. Stewart AL, Park JH, Waters ML. Biochemistry 50 2575-2584 (2011)
  99. Role of electrostatic interactions for the stability and folding behavior of cold shock protein. Su JG, Chen WZ, Wang CX. Proteins 78 2157-2169 (2010)
  100. Structure and interaction of Corynebacterium pseudotuberculosis cold shock protein A with Y-box single-stranded DNA fragment. Caruso IP, Panwalkar V, Coronado MA, Dingley AJ, Cornélio ML, Willbold D, Arni RK, Eberle RJ. FEBS J 285 372-390 (2018)
  101. A Web-based classification system of DNA-binding protein families. Karmirantzou M, Hamodrakas SJ. Protein Eng 14 465-472 (2001)
  102. Assignment of the backbone 1H,15N,13C NMR resonances and secondary structure of a double-stranded RNA binding domain from the Drosophila protein staufen. Bycroft M, Proctor M, Freund SM, St Johnston D. FEBS Lett 362 333-336 (1995)
  103. Criteria for an updated classification of human transcription factor DNA-binding domains. Wingender E. J Bioinform Comput Biol 11 1340007 (2013)
  104. Fluorine NMR Spectroscopy Enables to Quantify the Affinity Between DNA and Proteins in Cell Lysate. Welte H, Sinn P, Kovermann M. Chembiochem 22 2973-2980 (2021)
  105. Resonance assignment and secondary structure of the cold shock domain of the human YB-1 protein. Kloks CP, Hoffmann A, Omichinski JG, Vuister GW, Hilbers CW, Grzesiek S. J Biomol NMR 12 463-464 (1998)
  106. Impact of crowded environments on binding between protein and single-stranded DNA. Köhn B, Schwarz P, Wittung-Stafshede P, Kovermann M. Sci Rep 11 17682 (2021)
  107. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model. Su JG, Han XM, Zhao SX, Hou YX, Li XY, Qi LS, Wang JH. J Mol Model 22 91 (2016)
  108. RNA and DNA Binding Epitopes of the Cold Shock Protein TmCsp from the Hyperthermophile Thermotoga maritima. von König K, Kachel N, Kalbitzer HR, Kremer W. Protein J 39 487-500 (2020)
  109. Unusual dimerization of a BcCsp mutant leads to reduced conformational dynamics. Carvajal AI, Vallejos G, Komives EA, Castro-Fernández V, Leonardo DA, Garratt RC, Ramírez-Sarmiento CA, Babul J. FEBS J 284 1882-1896 (2017)
  110. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins. Ferreira PHB, Freitas FC, McCully ME, Slade GG, de Oliveira RJ. J Chem Inf Model 60 546-561 (2020)
  111. "Fuzzy oil drop" model verified positively. Banach M, Prymula K, Konieczny L, Roterman I. Bioinformation 5 375-377 (2011)
  112. Comparative protein modeling, prediction of conserved residue and active sites in cold resistant protein isolated from CRPF(1), a cold tolerant mutant of Pseudomonas fluorescens. Khan M, Kumar A, Goel R. Curr Microbiol 60 428-434 (2010)


Related citations provided by authors (1)

  1. Characterization of Cspb, a Bacillus Subtilis Inducible Cold Shock Gene Affecting Cell Viability at Low Temperatures. Willimsky G, Bang H, Fischer G, Marahiel MA J. Bacteriol. 174 6326- (1992)