1nsf Citations

Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP.

Nat Struct Biol 5 803-11 (1998)
Cited: 190 times
EuropePMC logo PMID: 9731775

Abstract

N-ethylmaleimide-sensitive factor (NSF) is a hexameric ATPase which primes and/or dissociates SNARE complexes involved in intracellular fusion events. Each NSF protomer contains three domains: an N-terminal domain required for SNARE binding and two ATPase domains, termed D1 and D2, with D2 being required for oligomerization. We have determined the 1.9 A crystal structure of the D2 domain of NSF complexed with ATP using multi-wavelength anomalous dispersion phasing. D2 consists of a nucleotide binding subdomain with a Rossmann fold and a C-terminal subdomain, which is structurally unique among nucleotide binding proteins. There are interactions between the ATP moiety and both the neighboring D2 protomer and the C-terminal subdomain that may be important for ATP-dependent oligomerization. Of particular importance are three well-ordered and conserved lysine residues that form ionic interactions with the beta- and gamma-phosphates, one of which likely contributes to the low hydrolytic activity of D2.

Reviews - 1nsf mentioned but not cited (2)

Articles - 1nsf mentioned but not cited (22)

  1. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW. Acta Crystallogr D Biol Crystallogr 65 582-601 (2009)
  2. Mechanistic insights into the recycling machine of the SNARE complex. Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, Brunger AT. Nature 518 61-67 (2015)
  3. Recognition of functional sites in protein structures. Shulman-Peleg A, Nussinov R, Wolfson HJ. J Mol Biol 339 607-633 (2004)
  4. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligomeric ATPases. Mocz G, Gibbons IR. Structure 9 93-103 (2001)
  5. Electron cryomicroscopy structure of N-ethyl maleimide sensitive factor at 11 A resolution. Furst J, Sutton RB, Chen J, Brunger AT, Grigorieff N. EMBO J 22 4365-4374 (2003)
  6. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Darwich NF, Phan JM, Kim B, Suh E, Papatriantafyllou JD, Changolkar L, Nguyen AT, O'Rourke CM, He Z, Porta S, Gibbons GS, Luk KC, Papageorgiou SG, Grossman M, Massimo L, Irwin DJ, McMillan CT, Nasrallah IM, Toro C, Aguirre GK, Van Deerlin VM, Lee EB. Science 370 eaay8826 (2020)
  7. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. Igaev M, Kutzner C, Bock LV, Vaiana AC, Grubmüller H. Elife 8 e43542 (2019)
  8. Automatic multiple-zone rigid-body refinement with a large convergence radius. Afonine PV, Grosse-Kunstleve RW, Urzhumtsev A, Adams PD. J Appl Crystallogr 42 607-615 (2009)
  9. Characterization of Rv3868, an essential hypothetical protein of the ESX-1 secretion system in Mycobacterium tuberculosis. Luthra A, Mahmood A, Arora A, Ramachandran R. J Biol Chem 283 36532-36541 (2008)
  10. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. Gleave ES, Schmidt H, Carter AP. J Struct Biol 186 367-375 (2014)
  11. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli. Marquenet E, Richet E. J Bacteriol 192 5181-5191 (2010)
  12. Rapid model building of alpha-helices in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 268-275 (2010)
  13. Distinct Conformation of ATP Molecule in Solution and on Protein. Kobayashi E, Yura K, Nagai Y. Biophysics (Nagoya-shi) 9 1-12 (2013)
  14. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. Kienle N, Kloepper TH, Fasshauer D. BMC Evol Biol 16 215 (2016)
  15. A smooth and differentiable bulk-solvent model for macromolecular diffraction. Fenn TD, Schnieders MJ, Brunger AT. Acta Crystallogr D Biol Crystallogr 66 1024-1031 (2010)
  16. Rapid chain tracing of polypeptide backbones in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 285-294 (2010)
  17. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1345 (2022)
  18. Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces. Dietzen M, Kalinina OV, Taškova K, Kneissl B, Hildebrandt AK, Jaenicke E, Decker H, Lengauer T, Hildebrandt A. Proteins 83 1887-1899 (2015)
  19. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1346 (2022)
  20. Rapid model building of beta-sheets in electron-density maps. Terwilliger TC. Acta Crystallogr D Biol Crystallogr 66 276-284 (2010)
  21. The N1 domain of the peroxisomal AAA-ATPase Pex6 is required for Pex15 binding and proper assembly with Pex1. Ali BA, Judy RM, Chowdhury S, Jacobsen NK, Castanzo DT, Carr KL, Richardson CD, Lander GC, Martin A, Gardner BM. J Biol Chem 300 105504 (2024)
  22. research-article The Pex6 N1 domain is required for Pex15 binding and proper assembly with Pex1. Ali BA, Judy RM, Chowdhury S, Jacobsen NK, Castanzo DT, Carr KL, Richardson CD, Lander GC, Martin A, Gardner BM. bioRxiv 2023.09.15.557798 (2023)


Reviews citing this publication (49)

  1. The 26S proteasome: a molecular machine designed for controlled proteolysis. Voges D, Zwickl P, Baumeister W. Annu Rev Biochem 68 1015-1068 (1999)
  2. Membrane fusion and exocytosis. Jahn R, Südhof TC. Annu Rev Biochem 68 863-911 (1999)
  3. AAA+ superfamily ATPases: common structure--diverse function. Ogura T, Wilkinson AJ. Genes Cells 6 575-597 (2001)
  4. SNARE-mediated membrane fusion. Chen YA, Scheller RH. Nat Rev Mol Cell Biol 2 98-106 (2001)
  5. Evolutionary relationships and structural mechanisms of AAA+ proteins. Erzberger JP, Berger JM. Annu Rev Biophys Biomol Struct 35 93-114 (2006)
  6. Snares and Munc18 in synaptic vesicle fusion. Rizo J, Südhof TC. Nat Rev Neurosci 3 641-653 (2002)
  7. AAA proteins. Lords of the ring. Vale RD. J Cell Biol 150 F13-9 (2000)
  8. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Leipe DD, Koonin EV, Aravind L. J Mol Biol 343 1-28 (2004)
  9. Coiled coils in both intracellular vesicle and viral membrane fusion. Skehel JJ, Wiley DC. Cell 95 871-874 (1998)
  10. Regulation of chromosome replication. Kelly TJ, Brown GW. Annu Rev Biochem 69 829-880 (2000)
  11. Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. Wang Q, Song C, Li CC. J Struct Biol 146 44-57 (2004)
  12. On helicases and other motor proteins. Enemark EJ, Joshua-Tor L. Curr Opin Struct Biol 18 243-257 (2008)
  13. AAA proteases: cellular machines for degrading membrane proteins. Langer T. Trends Biochem Sci 25 247-251 (2000)
  14. Molecular machines for protein degradation. Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Chembiochem 6 222-256 (2005)
  15. The replication clamp-loading machine at work in the three domains of life. Indiani C, O'Donnell M. Nat Rev Mol Cell Biol 7 751-761 (2006)
  16. Substrate access and processing by the 20S proteasome core particle. Groll M, Huber R. Int J Biochem Cell Biol 35 606-616 (2003)
  17. Clamp loaders and sliding clamps. Jeruzalmi D, O'Donnell M, Kuriyan J. Curr Opin Struct Biol 12 217-224 (2002)
  18. Membrane protein degradation by AAA proteases in mitochondria. Arnold I, Langer T. Biochim Biophys Acta 1592 89-96 (2002)
  19. Cellular functions of NSF: not just SNAPs and SNAREs. Zhao C, Slevin JT, Whiteheart SW. FEBS Lett 581 2140-2149 (2007)
  20. The proteasome: a macromolecular assembly designed for controlled proteolysis. Zwickl P, Voges D, Baumeister W. Philos Trans R Soc Lond B Biol Sci 354 1501-1511 (1999)
  21. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine. Lee S, Sowa ME, Choi JM, Tsai FT. J Struct Biol 146 99-105 (2004)
  22. NSF and p97/VCP: similar at first, different at last. Brunger AT, DeLaBarre B. FEBS Lett 555 126-133 (2003)
  23. Structural insights into the molecular mechanism of Ca(2+)-dependent exocytosis. Brunger AT. Curr Opin Neurobiol 10 293-302 (2000)
  24. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. J Struct Biol 146 113-122 (2004)
  25. DNA polymerase clamp loaders and DNA recognition. Bowman GD, Goedken ER, Kazmirski SL, O'Donnell M, Kuriyan J. FEBS Lett 579 863-867 (2005)
  26. Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF). Zhao C, Smith EC, Whiteheart SW. Biochim Biophys Acta 1823 159-171 (2012)
  27. The pre-synaptic fusion machinery. Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q. Curr Opin Struct Biol 54 179-188 (2019)
  28. Structure and mechanism of ATP-dependent proteases. Schmidt M, Lupas AN, Finley D. Curr Opin Chem Biol 3 584-591 (1999)
  29. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. Monroe N, Hill CP. J Mol Biol 428 1897-1911 (2016)
  30. Broad yet high substrate specificity: the challenge of AAA+ proteins. Mogk A, Dougan D, Weibezahn J, Schlieker C, Turgay K, Bukau B. J Struct Biol 146 90-98 (2004)
  31. Protein binding and disruption by Clp/Hsp100 chaperones. Maurizi MR, Xia D. Structure 12 175-183 (2004)
  32. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Thomsen ND, Berger JM. Mol Microbiol 69 1071-1090 (2008)
  33. Torsins: not your typical AAA+ ATPases. Rose AE, Brown RS, Schlieker C. Crit Rev Biochem Mol Biol 50 532-549 (2015)
  34. Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Ryu JK, Jahn R, Yoon TY. Biopolymers 105 518-531 (2016)
  35. Structural insights into the molecular mechanism of calcium-dependent vesicle-membrane fusion. Brunger AT. Curr Opin Struct Biol 11 163-173 (2001)
  36. Structure and function of the membrane deformation AAA ATPase Vps4. Hill CP, Babst M. Biochim Biophys Acta 1823 172-181 (2012)
  37. Structure of proteins involved in synaptic vesicle fusion in neurons. Brunger AT. Annu Rev Biophys Biomol Struct 30 157-171 (2001)
  38. The mechanism of dynein motility: insight from crystal structures of the motor domain. Cho C, Vale RD. Biochim Biophys Acta 1823 182-191 (2012)
  39. N-ethylmaleimide-sensitive factor: a redox sensor in exocytosis. Lowenstein CJ, Tsuda H. Biol Chem 387 1377-1383 (2006)
  40. Bacterial helicases. Egelman EH. J Struct Biol 124 123-128 (1998)
  41. Assembly of the regulatory complex of the 26S proteasome. Gorbea C, Taillandier D, Rechsteiner M. Mol Biol Rep 26 15-19 (1999)
  42. Protein-protein interactions in intracellular membrane fusion. Misura KM, May AP, Weis WI. Curr Opin Struct Biol 10 662-671 (2000)
  43. The hexamerization domain of N-ethylmaleimide-sensitive factor: structural clues to chaperone function. Neuwald AF. Structure 7 R19-23 (1999)
  44. Assessing heterogeneity in oligomeric AAA+ machines. Sysoeva TA. Cell Mol Life Sci 74 1001-1018 (2017)
  45. Molecular structures of proteins involved in vesicle fusion. Ybe JA, Wakeham DE, Brodsky FM, Hwang PK. Traffic 1 474-479 (2000)
  46. Synaptic transmission: two players team up for a new tune. Jahn R. Curr Biol 8 R856-8 (1998)
  47. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. Rizo J, David G, Fealey ME, Jaczynska K. FEBS Open Bio 12 1912-1938 (2022)
  48. Archaeal proteasomes: potential in metabolic engineering. Maupin-Furlow JA, Kaczowka SJ, Reuter CJ, Zuobi-Hasona K, Gil MA. Metab Eng 5 151-163 (2003)
  49. Genetic modifiers of comatose mutations in Drosophila: insights into neuronal NSF (N-ethylmaleimide-sensitive fusion factor) functions. Sanyal S, Krishnan KS. J Neurogenet 26 348-359 (2012)

Articles citing this publication (117)

  1. Structure of the AAA ATPase p97. Zhang X, Shaw A, Bates PA, Newman RH, Gowen B, Orlova E, Gorman MA, Kondo H, Dokurno P, Lally J, Leonard G, Meyer H, van Heel M, Freemont PS. Mol Cell 6 1473-1484 (2000)
  2. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Bowman GD, O'Donnell M, Kuriyan J. Nature 429 724-730 (2004)
  3. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, Huber R. Nature 403 800-805 (2000)
  4. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. DeLaBarre B, Brunger AT. Nat Struct Biol 10 856-863 (2003)
  5. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Erzberger JP, Mott ML, Berger JM. Nat Struct Mol Biol 13 676-683 (2006)
  6. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Jeruzalmi D, O'Donnell M, Kuriyan J. Cell 106 429-441 (2001)
  7. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Roll-Mecak A, Vale RD. Nature 451 363-367 (2008)
  8. Crystal and solution structures of an HslUV protease-chaperone complex. Sousa MC, Trame CB, Tsuruta H, Wilbanks SM, Reddy VS, McKay DB. Cell 103 633-643 (2000)
  9. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O'Donnell M, Kuriyan J. Cell 106 417-428 (2001)
  10. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Venclovas C, Thelen MP. Nucleic Acids Res 28 2481-2493 (2000)
  11. Substrate recognition by the AAA+ chaperone ClpB. Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A. Nat Struct Mol Biol 11 607-615 (2004)
  12. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. Erzberger JP, Pirruccello MM, Berger JM. EMBO J 21 4763-4773 (2002)
  13. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Liu J, Smith CL, DeRyckere D, DeAngelis K, Martin GS, Berger JM. Mol Cell 6 637-648 (2000)
  14. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE. Genes Dev 17 2552-2563 (2003)
  15. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. Hattendorf DA, Lindquist SL. EMBO J 21 12-21 (2002)
  16. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, Chung CH. Structure 9 1107-1116 (2001)
  17. Nucleotide dependent motion and mechanism of action of p97/VCP. DeLaBarre B, Brunger AT. J Mol Biol 347 437-452 (2005)
  18. Structure and mechanism of the RuvB Holliday junction branch migration motor. Putnam CD, Clancy SB, Tsuruta H, Gonzalez S, Wetmur JG, Tainer JA. J Mol Biol 311 297-310 (2001)
  19. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Ortega J, Singh SK, Ishikawa T, Maurizi MR, Steven AC. Mol Cell 6 1515-1521 (2000)
  20. A major conformational change in p97 AAA ATPase upon ATP binding. Rouiller I, Butel VM, Latterich M, Milligan RA, Wilson-Kubalek EM. Mol Cell 6 1485-1490 (2000)
  21. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Qi S, Pang Y, Hu Q, Liu Q, Li H, Zhou Y, He T, Liang Q, Liu Y, Yuan X, Luo G, Li H, Wang J, Yan N, Shi Y. Cell 141 446-457 (2010)
  22. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Smith CK, Baker TA, Sauer RT. Proc Natl Acad Sci U S A 96 6678-6682 (1999)
  23. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Imada K, Minamino T, Tahara A, Namba K. Proc Natl Acad Sci U S A 104 485-490 (2007)
  24. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Ozelius LJ, Page CE, Klein C, Hewett JW, Mineta M, Leung J, Shalish C, Bressman SB, de Leon D, Brin MF, Fahn S, Corey DP, Breakefield XO. Genomics 62 377-384 (1999)
  25. Structure and mechanism of the hexameric MecA-ClpC molecular machine. Wang F, Mei Z, Qi Y, Yan C, Hu Q, Wang J, Shi Y. Nature 471 331-335 (2011)
  26. A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Yu X, Acehan D, Ménétret JF, Booth CR, Ludtke SJ, Riedl SJ, Shi Y, Wang X, Akey CW. Structure 13 1725-1735 (2005)
  27. Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Hohl TM, Parlati F, Wimmer C, Rothman JE, Söllner TH, Engelhardt H. Mol Cell 2 539-548 (1998)
  28. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. Robien MA, Krumm BE, Sandkvist M, Hol WG. J Mol Biol 333 657-674 (2003)
  29. NSF N-terminal domain crystal structure: models of NSF function. Yu RC, Jahn R, Brunger AT. Mol Cell 4 97-107 (1999)
  30. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. Structure 10 1073-1083 (2002)
  31. Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. Rice LM, Brunger AT. Mol Cell 4 85-95 (1999)
  32. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. Su'etsugu M, Shimuta TR, Ishida T, Kawakami H, Katayama T. J Biol Chem 280 6528-6536 (2005)
  33. Going through the motions: the ATPase cycle of p97. Pye VE, Dreveny I, Briggs LC, Sands C, Beuron F, Zhang X, Freemont PS. J Struct Biol 156 12-28 (2006)
  34. Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Zhou T, Daugherty M, Grishin NV, Osterman AL, Zhang H. Structure 8 1247-1257 (2000)
  35. Analysis of the role of PCNA-DNA contacts during clamp loading. McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J. BMC Struct Biol 10 3 (2010)
  36. Crystal structure of the Holliday junction migration motor protein RuvB from Thermus thermophilus HB8. Yamada K, Kunishima N, Mayanagi K, Ohnishi T, Nishino T, Iwasaki H, Shinagawa H, Morikawa K. Proc Natl Acad Sci U S A 98 1442-1447 (2001)
  37. Crystal structure of the SF3 helicase from adeno-associated virus type 2. James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK. Structure 11 1025-1035 (2003)
  38. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Cox GA, Mahaffey CL, Nystuen A, Letts VA, Frankel WN. Nat Genet 26 198-202 (2000)
  39. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple betaalphabetabeta element. Coles M, Diercks T, Liermann J, Gröger A, Rockel B, Baumeister W, Koretke KK, Lupas A, Peters J, Kessler H. Curr Biol 9 1158-1168 (1999)
  40. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. May AP, Misura KM, Whiteheart SW, Weis WI. Nat Cell Biol 1 175-182 (1999)
  41. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Pappas DL, Frisch R, Weinreich M. Genes Dev 18 769-781 (2004)
  42. Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF. Rappas M, Schumacher J, Niwa H, Buck M, Zhang X. J Mol Biol 357 481-492 (2006)
  43. Analysis of nucleotide binding to P97 reveals the properties of a tandem AAA hexameric ATPase. Briggs LC, Baldwin GS, Miyata N, Kondo H, Zhang X, Freemont PS. J Biol Chem 283 13745-13752 (2008)
  44. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Belluzzi E, Gonnelli A, Cirnaru MD, Marte A, Plotegher N, Russo I, Civiero L, Cogo S, Carrion MP, Franchin C, Arrigoni G, Beltramini M, Bubacco L, Onofri F, Piccoli G, Greggio E. Mol Neurodegener 11 1 (2016)
  45. Unscrambling an egg: protein disaggregation by AAA+ proteins. Weibezahn J, Bukau B, Mogk A. Microb Cell Fact 3 1 (2004)
  46. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. Yu Z, Gonciarz MD, Sundquist WI, Hill CP, Jensen GJ. J Mol Biol 377 364-377 (2008)
  47. Crystal structure of the N-terminal domain of the DnaB hexameric helicase. Fass D, Bogden CE, Berger JM. Structure 7 691-698 (1999)
  48. Atomic structure of the clamp loader small subunit from Pyrococcus furiosus. Oyama T, Ishino Y, Cann IK, Ishino S, Morikawa K. Mol Cell 8 455-463 (2001)
  49. Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Chen C, Jomaa A, Jomaa A, Ortega J, Alani EE. Proc Natl Acad Sci U S A 111 E44-53 (2014)
  50. Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Ryu JK, Min D, Rah SH, Kim SJ, Park Y, Kim H, Hyeon C, Kim HM, Jahn R, Yoon TY. Science 347 1485-1489 (2015)
  51. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. Johnson A, O'Donnell M. J Biol Chem 278 14406-14413 (2003)
  52. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. Schumacher J, Zhang X, Jones S, Bordes P, Buck M. J Mol Biol 338 863-875 (2004)
  53. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Hattendorf DA, Lindquist SL. Proc Natl Acad Sci U S A 99 2732-2737 (2002)
  54. Pctaire1 phosphorylates N-ethylmaleimide-sensitive fusion protein: implications in the regulation of its hexamerization and exocytosis. Liu Y, Cheng K, Gong K, Fu AK, Ip NY. J Biol Chem 281 9852-9858 (2006)
  55. Structural principles of SNARE complex recognition by the AAA+ protein NSF. White KI, Zhao M, Choi UB, Pfuetzner RA, Brunger AT. Elife 7 e38888 (2018)
  56. Interaction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29. Lee TJ, Guo P. J Mol Biol 356 589-599 (2006)
  57. Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. Blok NB, Tan D, Wang RY, Penczek PA, Baker D, DiMaio F, Rapoport TA, Walz T. Proc Natl Acad Sci U S A 112 E4017-25 (2015)
  58. Congress Proteolysis in prokaryotes: protein quality control and regulatory principles. Hengge R, Bukau B. Mol Microbiol 49 1451-1462 (2003)
  59. Modeling AAA+ ring complexes from monomeric structures. Diemand AV, Lupas AN. J Struct Biol 156 230-243 (2006)
  60. Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Kazmirski SL, Zhao Y, Bowman GD, O'donnell M, Kuriyan J. Proc Natl Acad Sci U S A 102 13801-13806 (2005)
  61. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Proc Natl Acad Sci U S A 101 16750-16755 (2004)
  62. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. Wang S, Hu Y, Overgaard MT, Karginov FV, Uhlenbeck OC, McKay DB. RNA 12 959-967 (2006)
  63. News Mechanics of membrane fusion. Rizo J, Südhof TC. Nat Struct Biol 5 839-842 (1998)
  64. Low-resolution structure refinement in electron microscopy. Chen JZ, Fürst J, Chapman MS, Grigorieff N. J Struct Biol 144 144-151 (2003)
  65. Proteolysis of bacteriophage lambda CII by Escherichia coli FtsH (HflB). Shotland Y, Shifrin A, Ziv T, Teff D, Koby S, Kobiler O, Oppenheim AB. J Bacteriol 182 3111-3116 (2000)
  66. Structural analysis of Escherichia coli ThiF. Duda DM, Walden H, Sfondouris J, Schulman BA. J Mol Biol 349 774-786 (2005)
  67. Structural characterization of full-length NSF and 20S particles. Chang LF, Chen S, Liu CC, Pan X, Jiang J, Bai XC, Xie X, Wang HW, Sui SF. Nat Struct Mol Biol 19 268-275 (2012)
  68. nsf is essential for organization of myelinated axons in zebrafish. Woods IG, Lyons DA, Voas MG, Pogoda HM, Talbot WS. Curr Biol 16 636-648 (2006)
  69. Modular architecture of the hexameric human mitochondrial DNA helicase. Ziebarth TD, Farr CL, Kaguni LS. J Mol Biol 367 1382-1391 (2007)
  70. Processive ATP-driven substrate disassembly by the N-ethylmaleimide-sensitive factor (NSF) molecular machine. Cipriano DJ, Jung J, Vivona S, Fenn TD, Brunger AT, Bryant Z. J Biol Chem 288 23436-23445 (2013)
  71. Amino acid substitutions in the C-terminal AAA+ module of Hsp104 prevent substrate recognition by disrupting oligomerization and cause high temperature inactivation. Tkach JM, Glover JR. J Biol Chem 279 35692-35701 (2004)
  72. Mutational analysis of the functional motifs of RuvB, an AAA+ class helicase and motor protein for holliday junction branch migration. Iwasaki H, Han YW, Okamoto T, Ohnishi T, Yoshikawa M, Yamada K, Toh H, Daiyasu H, Ogura T, Shinagawa H. Mol Microbiol 36 528-538 (2000)
  73. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Karata K, Verma CS, Wilkinson AJ, Ogura T. Mol Microbiol 39 890-903 (2001)
  74. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Hishida T, Han YW, Fujimoto S, Iwasaki H, Shinagawa H. Proc Natl Acad Sci U S A 101 9573-9577 (2004)
  75. Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion. Indig FE, Partridge JJ, von Kobbe C, Aladjem MI, Latterich M, Bohr VA. J Struct Biol 146 251-259 (2004)
  76. Dissecting the N-ethylmaleimide-sensitive factor: required elements of the N and D1 domains. Zhao C, Matveeva EA, Ren Q, Whiteheart SW. J Biol Chem 285 761-772 (2010)
  77. Crystal structure of the Sec18p N-terminal domain. Babor SM, Fass D. Proc Natl Acad Sci U S A 96 14759-14764 (1999)
  78. DNA replication-coupled inactivation of DnaA protein in vitro: a role for DnaA arginine-334 of the AAA+ Box VIII motif in ATP hydrolysis. Su'etsugu M, Kawakami H, Kurokawa K, Kubota T, Takata M, Katayama T. Mol Microbiol 40 376-386 (2001)
  79. Disassembly of all SNARE complexes by N-ethylmaleimide-sensitive factor (NSF) is initiated by a conserved 1:1 interaction between α-soluble NSF attachment protein (SNAP) and SNARE complex. Vivona S, Cipriano DJ, O'Leary S, Li YH, Fenn TD, Brunger AT. J Biol Chem 288 24984-24991 (2013)
  80. A novel class of fusion polypeptides inhibits exocytosis. Matsushita K, Morrell CN, Lowenstein CJ. Mol Pharmacol 67 1137-1144 (2005)
  81. Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B. Inoue M, Kamikubo H, Kataoka M, Kato R, Yoshimori T, Wakatsuki S, Kawasaki M. Traffic 9 2180-2189 (2008)
  82. Genetic modifiers of the Drosophila NSF mutant, comatose, include a temperature-sensitive paralytic allele of the calcium channel alpha1-subunit gene, cacophony. Dellinger B, Felling R, Ordway RW. Genetics 155 203-211 (2000)
  83. Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. Rockel B, Walz J, Hegerl R, Peters J, Typke D, Baumeister W. FEBS Lett 451 27-32 (1999)
  84. Docking of components in a bacterial complex. Ishikawa T, Maurizi MR, Belnap D, Steven AC. Nature 408 667-668 (2000)
  85. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). Akiyama Y, Ito K. EMBO J 19 3888-3895 (2000)
  86. Three-dimensional electron microscopy of the clamp loader small subunit from Pyrococcus furiosus. Mayanagi K, Miyata T, Oyama T, Ishino Y, Morikawa K. J Struct Biol 134 35-45 (2001)
  87. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y, Teff D, Koby S, Kobiler O, Oppenheim AB. J Mol Biol 299 953-964 (2000)
  88. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. Rockel B, Jakana J, Chiu W, Baumeister W. J Mol Biol 317 673-681 (2002)
  89. ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Joly N, Zhang N, Buck M. Mol Cell 47 484-490 (2012)
  90. The phosphoryl-transfer mechanism of Escherichia coli phosphoenolpyruvate carboxykinase from the use of AlF(3). Sudom AM, Prasad L, Goldie H, Delbaere LT. J Mol Biol 314 83-92 (2001)
  91. Mechanistic insights into the SNARE complex disassembly. Huang X, Sun S, Wang X, Fan F, Zhou Q, Lu S, Cao Y, Wang QW, Dong MQ, Yao J, Sui SF. Sci Adv 5 eaau8164 (2019)
  92. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Structure 11 253-263 (2003)
  93. The AAA(+) motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. Lundqvist J, Elmlund D, Heldt D, Deery E, Söderberg CA, Hansson M, Warren M, Al-Karadaghi S. J Struct Biol 167 227-234 (2009)
  94. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AH, Baumeister W, De Mot R, Zwickl P. J Struct Biol 146 155-165 (2004)
  95. Nucleotide-dependent conformational changes in the N-Ethylmaleimide Sensitive Factor (NSF) and their potential role in SNARE complex disassembly. Moeller A, Zhao C, Fried MG, Wilson-Kubalek EM, Carragher B, Whiteheart SW. J Struct Biol 177 335-343 (2012)
  96. A screen for dominant negative mutants of SEC18 reveals a role for the AAA protein consensus sequence in ATP hydrolysis. Steel GJ, Harley C, Boyd A, Morgan A. Mol Biol Cell 11 1345-1356 (2000)
  97. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. Liu J, Mei Z, Li N, Qi Y, Xu Y, Shi Y, Wang F, Lei J, Gao N. J Biol Chem 288 17597-17608 (2013)
  98. Comment Molecular motors: A magnificent machine. Vallee RB, Höök P. Nature 421 701-702 (2003)
  99. A corrected quaternary arrangement of the peptidase HslV and atpase HslU in a cocrystal structure. Wang J. J Struct Biol 134 15-24 (2001)
  100. Comparative modeling of human NSF reveals a possible binding mode of GABARAP and GATE-16. Thielmann Y, Weiergräber OH, Ma P, Schwarten M, Mohrlüder J, Willbold D. Proteins 77 637-646 (2009)
  101. Selective chemical inactivation of AAA proteins reveals distinct functions of proteasomal ATPases. Russell SJ, Gonzalez F, Joshua-Tor L, Johnston SA. Chem Biol 8 941-950 (2001)
  102. The Neurexin/N-Ethylmaleimide-sensitive Factor (NSF) Interaction Regulates Short Term Synaptic Depression. Li T, Tian Y, Li Q, Chen H, Lv H, Xie W, Han J. J Biol Chem 290 17656-17667 (2015)
  103. News LRRK2 and membrane trafficking: nexus of Parkinson's disease. Hur EM, Jang EH, Jeong GR, Lee BD. BMB Rep 52 533-539 (2019)
  104. Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. Zhan C, Yang J, Dong XC, Wang YL. J Mol Graph Model 26 20-31 (2007)
  105. Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods. Badawi M, Moumen B, Giraud I, Grève P, Cordaux R. Genes (Basel) 9 E290 (2018)
  106. Novel putative targets of N-ethylmaleimide sensitive fusion protein (NSF) and alpha/beta soluble NSF attachment proteins (SNAPs) include the Pak-binding nucleotide exchange factor betaPIX. Martin HG, Henley JM, Meyer G. J Cell Biochem 99 1203-1215 (2006)
  107. Phosphatidic acid induces conformational changes in Sec18 protomers that prevent SNARE priming. Starr ML, Sparks RP, Arango AS, Hurst LR, Zhao Z, Lihan M, Jenkins JL, Tajkhorshid E, Fratti RA. J Biol Chem 294 3100-3116 (2019)
  108. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. J Struct Biol 146 148-154 (2004)
  109. News Capturing a ring of samurai. McNally F. Nat Cell Biol 2 E4-7 (2000)
  110. News A handle on NSF. Owen DJ, Schiavo G. Nat Cell Biol 1 E127-8 (1999)
  111. Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. Sudom A, Walters R, Pastushok L, Goldie D, Prasad L, Delbaere LT, Goldie H. J Bacteriol 185 4233-4242 (2003)
  112. Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine. Neuwald AF. Nucleic Acids Res 34 5280-5290 (2006)
  113. Probing the structural dynamics of the SNARE recycling machine based on coarse-grained modeling. Zheng W. Proteins 84 1055-1066 (2016)
  114. Rotary and unidirectional metal shadowing of VAT: localization of the substrate-binding domain. Rockel B, Guckenberger R, Gross H, Tittmann P, Baumeister W. J Struct Biol 132 162-168 (2000)
  115. A plasma membrane-associated AAA-ATPase from Glycine max. Hicks-Berger C, Sokolchik I, Kim C, Morré DJ. Biofactors 28 135-149 (2006)
  116. Systematic Review Interruption of Endolysosomal Trafficking After Focal Brain Ischemia. Hu K, Gaire BP, Subedi L, Arya A, Teramoto H, Liu C, Hu B. Front Mol Neurosci 14 719100 (2021)
  117. Autoinhibition of a clamp-loader ATPase revealed by deep mutagenesis and cryo-EM. Marcus K, Huang Y, Subramanian S, Gee CL, Gorday K, Ghaffari-Kashani S, Luo XR, Zheng L, O'Donnell M, Subramaniam S, Kuriyan J. Nat Struct Mol Biol (2024)


Related citations provided by authors (1)

  1. Domain Structure of an N-Ethylmaleimide-Sensitive Fusion Protein Involved in Vesicular Transport. Tagaya M, Wilson DW, Brunner M, Arango N, Rothman JE J. Biol. Chem. 268 2662- (1993)