1nst Citations

Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1.

J Biol Chem 274 10673-6 (1999)
Cited: 68 times
EuropePMC logo PMID: 10196134

Abstract

Heparan sulfate N-deacetylase/N-sulfotransferase (HSNST) catalyzes the first and obligatory step in the biosynthesis of heparan sulfates and heparin. The crystal structure of the sulfotransferase domain (NST1) of human HSNST-1 has been determined at 2.3-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate (PAP). NST1 is approximately spherical with an open cleft, and consists of a single alpha/beta fold with a central five-stranded parallel beta-sheet and a three-stranded anti-parallel beta-sheet bearing an interstrand disulfide bond. The structural regions alpha1, alpha6, beta1, beta7, 5'-phosphosulfate binding loop (between beta1 and alpha1), and a random coil (between beta8 and alpha13) constitute the PAP binding site of NST1. The alpha6 and random coil (between beta2 and alpha2), which form an open cleft near the 5'-phosphate of the PAP molecule, may provide interactions for substrate binding. The conserved residue Lys-614 is in position to form a hydrogen bond with the bridge oxygen of the 5'-phosphate.

Reviews - 1nst mentioned but not cited (3)

Articles - 1nst mentioned but not cited (7)

  1. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  2. Inhibitory peptides of the sulfotransferase domain of the heparan sulfate enzyme, N-deacetylase-N-sulfotransferase-1. Gesteira TF, Coulson-Thomas VJ, Taunay-Rodrigues A, Oliveira V, Thacker BE, Juliano MA, Pasqualini R, Arap W, Tersariol IL, Nader HB, Esko JD, Pinhal MA. J. Biol. Chem. 286 5338-5346 (2011)
  3. Insights into the N-sulfation mechanism: molecular dynamics simulations of the N-sulfotransferase domain of NDST1 and mutants. Gesteira TF, Pol-Fachin L, Coulson-Thomas VJ, Lima MA, Verli H, Nader HB. PLoS ONE 8 e70880 (2013)
  4. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  5. IM Two Cases of Recessive Intellectual Disability Caused by NDST1 and METTL23 Variants. Khan A, Miao Z, Umair M, Ullah A, Alshabeeb MA, Bilal M, Ahmad F, Rappold GA, Ansar M, Carapito R. Genes (Basel) 11 E1021 (2020)
  6. Improvement of the stability and catalytic efficiency of heparan sulfate N-sulfotransferase for preparing N-sulfated heparosan. Xi X, Hu L, Huang H, Wang Y, Xu R, Du G, Chen J, Kang Z. J Ind Microbiol Biotechnol 50 kuad012 (2023)
  7. Structural Determinants of Substrate Recognition and Catalysis by Heparan Sulfate Sulfotransferases. Gesteira TF, Marforio TD, Mueller JW, Calvaresi M, Coulson-Thomas VJ. ACS Catal 11 10974-10987 (2021)


Reviews citing this publication (20)

  1. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Esko JD, Selleck SB. Annu. Rev. Biochem. 71 435-471 (2002)
  2. Molecular diversity of heparan sulfate. Esko JD, Lindahl U. J. Clin. Invest. 108 169-173 (2001)
  3. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Kehoe JW, Bertozzi CR. Chem. Biol. 7 R57-61 (2000)
  4. Sulfation through the looking glass--recent advances in sulfotransferase research for the curious. Coughtrie MW. Pharmacogenomics J. 2 297-308 (2002)
  5. Diversity and functions of glycosaminoglycan sulfotransferases. Habuchi O. Biochim. Biophys. Acta 1474 115-127 (2000)
  6. Sulfotransferases and sulfatases in mycobacteria. Mougous JD, Green RE, Williams SJ, Brenner SE, Bertozzi CR. Chem. Biol. 9 767-776 (2002)
  7. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Thacker BE, Xu D, Lawrence R, Esko JD. Matrix Biol. 35 60-72 (2014)
  8. Drug targets in mycobacterial sulfur metabolism. Bhave DP, Muse WB, Carroll KS. Infect Disord Drug Targets 7 140-158 (2007)
  9. Sulfotransferases and sulfated oligosaccharides. Honke K, Taniguchi N. Med Res Rev 22 637-654 (2002)
  10. Design of biologically active heparan sulfate and heparin using an enzyme-based approach. Peterson S, Frick A, Liu J. Nat Prod Rep 26 610-627 (2009)
  11. Chemoenzymatic synthesis of heparan sulfate and heparin. Liu J, Linhardt RJ. Nat Prod Rep 31 1676-1685 (2014)
  12. Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination. Bojarová P, Williams SJ. Curr Opin Chem Biol 12 573-581 (2008)
  13. Enzymatic aspects of the phenol (aryl) sulfotransferases. Duffel MW, Marshal AD, McPhie P, Sharma V, Jakoby WB. Drug Metab. Rev. 33 369-395 (2001)
  14. Sulfotransferase structural biology and inhibitor discovery. Rath VL, Verdugo D, Hemmerich S. Drug Discov. Today 9 1003-1011 (2004)
  15. Crystal structure-based studies of cytosolic sulfotransferase. Yoshinari K, Petrotchenko EV, Pedersen LC, Negishi M. J. Biochem. Mol. Toxicol. 15 67-75 (2001)
  16. Enzymatic synthesis of glycosaminoglycan heparin. Linhardt RJ, Dordick JS, Deangelis PL, Liu J. Semin. Thromb. Hemost. 33 453-465 (2007)
  17. Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. Chappell EP, Liu J. Bioorg. Med. Chem. 21 4786-4792 (2013)
  18. New targets and inhibitors of mycobacterial sulfur metabolism. Paritala H, Carroll KS. Infect Disord Drug Targets 13 85-115 (2013)
  19. Production methods for heparosan, a precursor of heparin and heparan sulfate. Chavaroche AA, van den Broek LA, Eggink G. Carbohydr Polym 93 38-47 (2013)
  20. The design and synthesis of new synthetic low-molecular-weight heparins. Chandarajoti K, Liu J, Pawlinski R. J. Thromb. Haemost. 14 1135-1145 (2016)

Articles citing this publication (38)

  1. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG. Cell 99 13-22 (1999)
  2. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, Dota A, Kawasaki S, Inoue Y, Maeda N, Yamamoto S, Fujiwara T, Thonar EJ, Shimomura Y, Kinoshita S, Tanigami A, Fukuda MN. Nat. Genet. 26 237-241 (2000)
  3. Chemoenzymatic design of heparan sulfate oligosaccharides. Liu R, Xu Y, Chen M, Weïwer M, Zhou X, Bridges AS, DeAngelis PL, Zhang Q, Linhardt RJ, Liu J. J. Biol. Chem. 285 34240-34249 (2010)
  4. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, McManus ME, Martin JL. J. Biol. Chem. 278 7655-7662 (2003)
  5. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, Munchel SE, Pratt MR, Riley LW, Leary JA, Berger JM, Bertozzi CR. Nat. Struct. Mol. Biol. 11 721-729 (2004)
  6. Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. Pedersen LC, Petrotchenko EV, Negishi M. FEBS Lett. 475 61-64 (2000)
  7. Crystal structure of human catecholamine sulfotransferase. Bidwell LM, McManus ME, Gaedigk A, Kakuta Y, Negishi M, Pedersen L, Martin JL. J. Mol. Biol. 293 521-530 (1999)
  8. Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution. Via A, Ferrè F, Brannetti B, Valencia A, Helmer-Citterich M. J. Mol. Biol. 303 455-465 (2000)
  9. The dimerization motif of cytosolic sulfotransferases. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M. FEBS Lett. 490 39-43 (2001)
  10. Structural analysis of the sulfotransferase (3-o-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1. Moon AF, Edavettal SC, Krahn JM, Munoz EM, Negishi M, Linhardt RJ, Liu J, Pedersen LC. J. Biol. Chem. 279 45185-45193 (2004)
  11. Engineering sulfotransferases to modify heparan sulfate. Xu D, Moon AF, Song D, Pedersen LC, Liu J. Nat. Chem. Biol. 4 200-202 (2008)
  12. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J. Glycobiology 21 771-780 (2011)
  13. Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3. Barnett AC, Tsvetanov S, Gamage N, Martin JL, Duggleby RG, McManus ME. J. Biol. Chem. 279 18799-18805 (2004)
  14. Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases. Yabe T, Shukla D, Spear PG, Rosenberg RD, Seeberger PH, Shworak NW. Biochem. J. 359 235-241 (2001)
  15. Redirecting the substrate specificity of heparan sulfate 2-O-sulfotransferase by structurally guided mutagenesis. Bethea HN, Xu D, Liu J, Pedersen LC. Proc. Natl. Acad. Sci. U.S.A. 105 18724-18729 (2008)
  16. Observation of a hybrid random ping-pong mechanism of catalysis for NodST: a mass spectrometry approach. Pi N, Yu Y, Mougous JD, Leary JA. Protein Sci. 13 903-912 (2004)
  17. Carbohydrate sulfotransferases: novel therapeutic targets for inflammation, viral infection and cancer. Hemmerich S. Drug Discov. Today 6 27-35 (2001)
  18. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2. Duncan MB, Liu M, Fox C, Liu J. Biochem. Biophys. Res. Commun. 339 1232-1237 (2006)
  19. Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Pi N, Hoang MB, Gao H, Mougous JD, Bertozzi CR, Leary JA. Anal. Biochem. 341 94-104 (2005)
  20. Redox control of aryl sulfotransferase specificity. Marshall AD, McPhie P, Jakoby WB. Arch. Biochem. Biophys. 382 95-104 (2000)
  21. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Teramoto T, Fujikawa Y, Kawaguchi Y, Kurogi K, Soejima M, Adachi R, Nakanishi Y, Mishiro-Sato E, Liu MC, Sakakibara Y, Suiko M, Kimura M, Kakuta Y. Nat Commun 4 1572 (2013)
  22. NDST1 missense mutations in autosomal recessive intellectual disability. Reuter MS, Musante L, Hu H, Diederich S, Sticht H, Ekici AB, Uebe S, Wienker TF, Bartsch O, Zechner U, Oppitz C, Keleman K, Jamra RA, Najmabadi H, Schweiger S, Reis A, Kahrizi K. Am. J. Med. Genet. A 164A 2753-2763 (2014)
  23. Nucleotide binding and sulfation catalyzed by phenol sulfotransferase. Lin ES, Yang YS. Biochem. Biophys. Res. Commun. 271 818-822 (2000)
  24. Oligosaccharide library-based assessment of heparan sulfate 6-O-sulfotransferase substrate specificity. Jemth P, Smeds E, Do AT, Habuchi H, Kimata K, Lindahl U, Kusche-Gullberg M. J. Biol. Chem. 278 24371-24376 (2003)
  25. Novel mutations in the CHST6 gene causing macular corneal dystrophy. Abbruzzese C, Kuhn U, Molina F, Rama P, De Luca M. Clin. Genet. 65 120-125 (2004)
  26. Mechanistic studies of beta-arylsulfotransferase IV. Chapman E, Bryan MC, Wong CH. Proc. Natl. Acad. Sci. U.S.A. 100 910-915 (2003)
  27. Enzymatic placement of 6-O-sulfo groups in heparan sulfate. Liu R, Liu J. Biochemistry 50 4382-4391 (2011)
  28. Heparan sulfate biosynthesis: a theoretical study of the initial sulfation step by N-deacetylase/N-sulfotransferase. Gorokhov A, Perera L, Darden TA, Negishi M, Pedersen LC, Pedersen LG. Biophys. J. 79 2909-2917 (2000)
  29. Identification of structural motifs and amino acids within the structure of human heparan sulfate 3-O-sulfotransferase that mediate enzymatic function. Raman R, Myette J, Venkataraman G, Sasisekharan V, Sasisekharan R. Biochem. Biophys. Res. Commun. 290 1214-1219 (2002)
  30. Isolation and characterisation of a novel rabbit sulfotransferase isoform belonging to the SULT1A subfamily. Riley E, Bolton-Grob R, Liyou N, Wong C, Tresillian M, McManus ME. Int. J. Biochem. Cell Biol. 34 958-969 (2002)
  31. Structure Based Substrate Specificity Analysis of Heparan Sulfate 6-O-Sulfotransferases. Xu Y, Moon AF, Xu S, Krahn JM, Liu J, Pedersen LC. ACS Chem. Biol. 12 73-82 (2017)
  32. Reversible covalent inhibition of a phenol sulfotransferase by coenzyme A. Chodavarapu S, Hertema H, Huynh T, Odette J, Miller R, Fullerton A, Alkirwi J, Hartsfield D, Padmanabhan K, Woods C, Beckmann JD. Arch. Biochem. Biophys. 457 197-204 (2007)
  33. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J. J. Biol. Chem. 290 20427-20437 (2015)
  34. The NDST gene family in zebrafish: role of NDST1B in pharyngeal arch formation. Filipek-Górniok B, Carlsson P, Haitina T, Habicher J, Ledin J, Kjellén L. PLoS ONE 10 e0119040 (2015)
  35. The histological localization of heparin in the northern quahog clam, Mercenaria mercenaria. Ulrich PN, Boon JK. J. Invertebr. Pathol. 78 155-159 (2001)
  36. A dominant negative splice variant of the heparan sulfate biosynthesis enzyme NDST1 reduces heparan sulfate sulfation. Missaghian P, Dierker T, Khosrowabadi E, Axling F, Eriksson I, Ghanem A, Kusche-Gullberg M, Kellokumpu S, Kjellén L. Glycobiology 32 518-528 (2022)
  37. Structural basis of oligosaccharide processing by glycosaminoglycan sulfotransferases. Gesteira TF, Coulson-Thomas VJ. Glycobiology 28 885-897 (2018)
  38. The construction of a dual-functional strain that produces both polysaccharides and sulfotransferases. Li X, Yu Y, Tang J, Gong B, Li W, Chen T, Zhou X. Biotechnol Lett 43 1831-1844 (2021)


Related citations provided by authors (1)

  1. A role of Lys614 in the sulfotransferase activity of human heparan sulfate N-deacetylase/N-sulfotransferase.. Sueyoshi T, Kakuta Y, Pedersen LC, Wall FE, Pedersen LG, Negishi M FEBS Lett 433 211-4 (1998)